# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
#
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
# you may not use this file except in compliance with the License.
|
# You may obtain a copy of the License at
|
#
|
# http://www.apache.org/licenses/LICENSE-2.0
|
#
|
# Unless required by applicable law or agreed to in writing, software
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# See the License for the specific language governing permissions and
|
# limitations under the License.
|
# ==============================================================================
|
"""Tests for tf.dynamic_stitch."""
|
|
from __future__ import absolute_import
|
from __future__ import division
|
from __future__ import print_function
|
|
import numpy as np
|
|
from tensorflow.compiler.tests import xla_test
|
from tensorflow.python.framework import dtypes
|
from tensorflow.python.ops import array_ops
|
from tensorflow.python.ops import data_flow_ops
|
from tensorflow.python.platform import googletest
|
|
|
class DynamicStitchTest(xla_test.XLATestCase):
|
|
def _AssertDynamicStitchResultIs(self, indices, data, expected):
|
with self.cached_session() as session:
|
index_placeholders = [
|
array_ops.placeholder(dtypes.as_dtype(arg.dtype)) for arg in indices
|
]
|
data_placeholders = [
|
array_ops.placeholder(dtypes.as_dtype(arg.dtype)) for arg in data
|
]
|
with self.test_scope():
|
output = data_flow_ops.dynamic_stitch(index_placeholders,
|
data_placeholders)
|
|
feed_dict = {}
|
for placeholder, value in zip(index_placeholders, indices):
|
feed_dict[placeholder] = value
|
for placeholder, value in zip(data_placeholders, data):
|
feed_dict[placeholder] = value
|
result = session.run(output, feed_dict=feed_dict)
|
self.assertAllClose(expected, result, rtol=1e-3)
|
|
def testSimpleEmpty(self):
|
idx1 = np.array([0, 2], dtype=np.int32)
|
idx2 = np.array([[1], [3]], dtype=np.int32)
|
val1 = np.array([[], []], dtype=np.int32)
|
val2 = np.array([[[]], [[]]], dtype=np.int32)
|
self._AssertDynamicStitchResultIs(
|
[idx1, idx2], [val1, val2],
|
expected=np.array([[], [], [], []], np.int32))
|
|
def testEmptyIndex(self):
|
idx1 = np.array([], dtype=np.int32)
|
idx2 = np.array([[], []], dtype=np.int32)
|
val1 = np.ndarray(shape=(0, 9), dtype=np.int32)
|
val2 = np.ndarray(shape=(2, 0, 9), dtype=np.int32)
|
self._AssertDynamicStitchResultIs([idx1, idx2], [val1, val2],
|
expected=np.ndarray(
|
shape=(0, 9), dtype=np.int32))
|
|
def testSimple1D(self):
|
val1 = np.array([0, 4, 7], dtype=np.int32)
|
val2 = np.array([1, 6, 2, 3, 5], dtype=np.int32)
|
val3 = np.array([0, 40, 70], dtype=np.float32)
|
val4 = np.array([10, 60, 20, 30, 50], dtype=np.float32)
|
expected = np.array([0, 10, 20, 30, 40, 50, 60, 70], dtype=np.float32)
|
self._AssertDynamicStitchResultIs(
|
[val1, val2], [val3, val4], expected=expected)
|
|
def testSimple2D(self):
|
val1 = np.array([0, 4, 7], dtype=np.int32)
|
val2 = np.array([1, 6], dtype=np.int32)
|
val3 = np.array([2, 3, 5], dtype=np.int32)
|
val4 = np.array([[0, 1], [40, 41], [70, 71]], dtype=np.float32)
|
val5 = np.array([[10, 11], [60, 61]], dtype=np.float32)
|
val6 = np.array([[20, 21], [30, 31], [50, 51]], dtype=np.float32)
|
expected = np.array(
|
[[0, 1], [10, 11], [20, 21], [30, 31], [40, 41], [50, 51], [60, 61],
|
[70, 71]],
|
dtype=np.float32)
|
self._AssertDynamicStitchResultIs(
|
[val1, val2, val3], [val4, val5, val6], expected=expected)
|
|
|
if __name__ == "__main__":
|
googletest.main()
|