# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
#
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
# you may not use this file except in compliance with the License.
|
# You may obtain a copy of the License at
|
#
|
# http://www.apache.org/licenses/LICENSE-2.0
|
#
|
# Unless required by applicable law or agreed to in writing, software
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# See the License for the specific language governing permissions and
|
# limitations under the License.
|
# ==============================================================================
|
"""Tests for AdaMax optimizer."""
|
|
from __future__ import absolute_import
|
from __future__ import division
|
from __future__ import print_function
|
|
import numpy as np
|
|
from tensorflow.compiler.tests import xla_test
|
from tensorflow.contrib.opt.python.training import adamax
|
from tensorflow.python.framework import constant_op
|
from tensorflow.python.framework import ops
|
from tensorflow.python.ops import resource_variable_ops
|
from tensorflow.python.ops import variable_scope
|
from tensorflow.python.ops import variables
|
from tensorflow.python.platform import test
|
|
|
def adamax_update_numpy(param,
|
g_t,
|
t,
|
m,
|
v,
|
alpha=0.001,
|
beta1=0.9,
|
beta2=0.999,
|
epsilon=1e-8):
|
m_t = beta1 * m + (1 - beta1) * g_t
|
v_t = np.maximum(beta2 * v, np.abs(g_t))
|
param_t = param - (alpha / (1 - beta1**t)) * (m_t / (v_t + epsilon))
|
return param_t, m_t, v_t
|
|
|
class AdaMaxOptimizerTest(xla_test.XLATestCase):
|
|
def testBasic(self):
|
for i, dtype in enumerate(self.float_types):
|
with self.cached_session(), self.test_scope():
|
variable_scope.get_variable_scope().set_use_resource(True)
|
# Initialize variables for numpy implementation.
|
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
|
var0_np = np.array([1.0, 2.0], dtype=dtype)
|
grads0_np = np.array([0.1, 0.1], dtype=dtype)
|
var1_np = np.array([3.0, 4.0], dtype=dtype)
|
grads1_np = np.array([0.01, 0.01], dtype=dtype)
|
|
var0 = resource_variable_ops.ResourceVariable(
|
var0_np, name="var0_%d" % i)
|
var1 = resource_variable_ops.ResourceVariable(
|
var1_np, name="var1_%d" % i)
|
grads0 = constant_op.constant(grads0_np)
|
grads1 = constant_op.constant(grads1_np)
|
|
opt = adamax.AdaMaxOptimizer()
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
opt_variables = opt.variables()
|
beta1_power = opt._get_beta_accumulators()
|
self.assertTrue(beta1_power is not None)
|
self.assertIn(beta1_power, opt_variables)
|
|
with ops.Graph().as_default():
|
# Shouldn't return non-slot variables from other graphs.
|
self.assertEqual(0, len(opt.variables()))
|
|
variables.global_variables_initializer().run()
|
# Fetch params to validate initial values
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
beta1_power = opt._get_beta_accumulators()
|
|
# Run 3 steps of AdaMax
|
for t in range(1, 4):
|
update.run()
|
|
self.assertAllCloseAccordingToType(0.9**(t + 1),
|
self.evaluate(beta1_power))
|
|
var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0)
|
var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1)
|
|
# Validate updated params
|
self.assertAllCloseAccordingToType(
|
var0_np, self.evaluate(var0), rtol=1e-2)
|
self.assertAllCloseAccordingToType(
|
var1_np, self.evaluate(var1), rtol=1e-2)
|
self.assertEqual("var0_%d/AdaMax:0" % (i,),
|
opt.get_slot(var=var0, name="m").name)
|
|
def testTensorLearningRate(self):
|
for dtype in self.float_types:
|
with self.cached_session(), self.test_scope():
|
variable_scope.get_variable_scope().set_use_resource(True)
|
# Initialize variables for numpy implementation.
|
m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0
|
var0_np = np.array([1.0, 2.0], dtype=dtype)
|
grads0_np = np.array([0.1, 0.1], dtype=dtype)
|
var1_np = np.array([3.0, 4.0], dtype=dtype)
|
grads1_np = np.array([0.01, 0.01], dtype=dtype)
|
|
var0 = resource_variable_ops.ResourceVariable(var0_np)
|
var1 = resource_variable_ops.ResourceVariable(var1_np)
|
grads0 = constant_op.constant(grads0_np)
|
grads1 = constant_op.constant(grads1_np)
|
opt = adamax.AdaMaxOptimizer(constant_op.constant(0.001))
|
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
variables.global_variables_initializer().run()
|
|
# Fetch params to validate initial values
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
beta1_power = opt._get_beta_accumulators()
|
|
# Run 3 steps of AdaMax
|
for t in range(1, 4):
|
self.assertAllCloseAccordingToType(0.9**t, self.evaluate(beta1_power))
|
update.run()
|
|
var0_np, m0, v0 = adamax_update_numpy(var0_np, grads0_np, t, m0, v0)
|
var1_np, m1, v1 = adamax_update_numpy(var1_np, grads1_np, t, m1, v1)
|
|
# Validate updated params
|
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
|
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
|
|
|
if __name__ == "__main__":
|
test.main()
|