/*
|
* Copyright 2012 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#ifndef SkFloatUtils_DEFINED
|
#define SkFloatUtils_DEFINED
|
|
#include "SkTypes.h"
|
#include <limits.h>
|
#include <float.h>
|
|
template <size_t size>
|
class SkTypeWithSize {
|
public:
|
// Prevents using SkTypeWithSize<N> with non-specialized N.
|
typedef void UInt;
|
};
|
|
template <>
|
class SkTypeWithSize<32> {
|
public:
|
typedef uint32_t UInt;
|
};
|
|
template <>
|
class SkTypeWithSize<64> {
|
public:
|
typedef uint64_t UInt;
|
};
|
|
template <typename RawType>
|
struct SkNumericLimits {
|
static const int digits = 0;
|
};
|
|
template <>
|
struct SkNumericLimits<double> {
|
static const int digits = DBL_MANT_DIG;
|
};
|
|
template <>
|
struct SkNumericLimits<float> {
|
static const int digits = FLT_MANT_DIG;
|
};
|
|
//See
|
//http://stackoverflow.com/questions/17333/most-effective-way-for-float-and-double-comparison/3423299#3423299
|
//http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h
|
//http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
|
|
template <typename RawType, unsigned int ULPs>
|
class SkFloatingPoint {
|
public:
|
/** Bits is a unsigned integer the same size as the floating point number. */
|
typedef typename SkTypeWithSize<sizeof(RawType) * CHAR_BIT>::UInt Bits;
|
|
/** # of bits in a number. */
|
static const size_t kBitCount = CHAR_BIT * sizeof(RawType);
|
|
/** # of fraction bits in a number. */
|
static const size_t kFractionBitCount = SkNumericLimits<RawType>::digits - 1;
|
|
/** # of exponent bits in a number. */
|
static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
|
|
/** The mask for the sign bit. */
|
static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
|
|
/** The mask for the fraction bits. */
|
static const Bits kFractionBitMask =
|
~static_cast<Bits>(0) >> (kExponentBitCount + 1);
|
|
/** The mask for the exponent bits. */
|
static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
|
|
/** How many ULP's (Units in the Last Place) to tolerate when comparing. */
|
static const size_t kMaxUlps = ULPs;
|
|
/**
|
* Constructs a FloatingPoint from a raw floating-point number.
|
*
|
* On an Intel CPU, passing a non-normalized NAN (Not a Number)
|
* around may change its bits, although the new value is guaranteed
|
* to be also a NAN. Therefore, don't expect this constructor to
|
* preserve the bits in x when x is a NAN.
|
*/
|
explicit SkFloatingPoint(const RawType& x) { fU.value = x; }
|
|
/** Returns the exponent bits of this number. */
|
Bits exponent_bits() const { return kExponentBitMask & fU.bits; }
|
|
/** Returns the fraction bits of this number. */
|
Bits fraction_bits() const { return kFractionBitMask & fU.bits; }
|
|
/** Returns true iff this is NAN (not a number). */
|
bool is_nan() const {
|
// It's a NAN if both of the folloowing are true:
|
// * the exponent bits are all ones
|
// * the fraction bits are not all zero.
|
return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
|
}
|
|
/**
|
* Returns true iff this number is at most kMaxUlps ULP's away from ths.
|
* In particular, this function:
|
* - returns false if either number is (or both are) NAN.
|
* - treats really large numbers as almost equal to infinity.
|
* - thinks +0.0 and -0.0 are 0 DLP's apart.
|
*/
|
bool AlmostEquals(const SkFloatingPoint& rhs) const {
|
// Any comparison operation involving a NAN must return false.
|
if (is_nan() || rhs.is_nan()) return false;
|
|
const Bits dist = DistanceBetweenSignAndMagnitudeNumbers(fU.bits,
|
rhs.fU.bits);
|
//SkDEBUGF("(%f, %f, %d) ", u_.value_, rhs.u_.value_, dist);
|
return dist <= kMaxUlps;
|
}
|
|
private:
|
/** The data type used to store the actual floating-point number. */
|
union FloatingPointUnion {
|
/** The raw floating-point number. */
|
RawType value;
|
/** The bits that represent the number. */
|
Bits bits;
|
};
|
|
/**
|
* Converts an integer from the sign-and-magnitude representation to
|
* the biased representation. More precisely, let N be 2 to the
|
* power of (kBitCount - 1), an integer x is represented by the
|
* unsigned number x + N.
|
*
|
* For instance,
|
*
|
* -N + 1 (the most negative number representable using
|
* sign-and-magnitude) is represented by 1;
|
* 0 is represented by N; and
|
* N - 1 (the biggest number representable using
|
* sign-and-magnitude) is represented by 2N - 1.
|
*
|
* Read http://en.wikipedia.org/wiki/Signed_number_representations
|
* for more details on signed number representations.
|
*/
|
static Bits SignAndMagnitudeToBiased(const Bits &sam) {
|
if (kSignBitMask & sam) {
|
// sam represents a negative number.
|
return ~sam + 1;
|
} else {
|
// sam represents a positive number.
|
return kSignBitMask | sam;
|
}
|
}
|
|
/**
|
* Given two numbers in the sign-and-magnitude representation,
|
* returns the distance between them as an unsigned number.
|
*/
|
static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
|
const Bits &sam2) {
|
const Bits biased1 = SignAndMagnitudeToBiased(sam1);
|
const Bits biased2 = SignAndMagnitudeToBiased(sam2);
|
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
|
}
|
|
FloatingPointUnion fU;
|
};
|
|
#endif
|