/*
|
* Copyright 2013 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkPerlinNoiseShader.h"
|
|
#include "SkArenaAlloc.h"
|
#include "SkColorFilter.h"
|
#include "SkMakeUnique.h"
|
#include "SkReadBuffer.h"
|
#include "SkShader.h"
|
#include "SkString.h"
|
#include "SkUnPreMultiply.h"
|
#include "SkWriteBuffer.h"
|
|
#if SK_SUPPORT_GPU
|
#include "GrCoordTransform.h"
|
#include "GrRecordingContext.h"
|
#include "GrRecordingContextPriv.h"
|
#include "SkGr.h"
|
#include "effects/GrConstColorProcessor.h"
|
#include "glsl/GrGLSLFragmentProcessor.h"
|
#include "glsl/GrGLSLFragmentShaderBuilder.h"
|
#include "glsl/GrGLSLProgramDataManager.h"
|
#include "glsl/GrGLSLUniformHandler.h"
|
#endif
|
|
static const int kBlockSize = 256;
|
static const int kBlockMask = kBlockSize - 1;
|
static const int kPerlinNoise = 4096;
|
static const int kRandMaximum = SK_MaxS32; // 2**31 - 1
|
|
static uint8_t improved_noise_permutations[] = {
|
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103,
|
30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26,
|
197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174,
|
20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231,
|
83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143,
|
54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
|
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124,
|
123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17,
|
182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101,
|
155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185,
|
112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81,
|
51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176,
|
115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243,
|
141, 128, 195, 78, 66, 215, 61, 156, 180,
|
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103,
|
30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26,
|
197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174,
|
20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231,
|
83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143,
|
54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
|
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124,
|
123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17,
|
182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101,
|
155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185,
|
112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81,
|
51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176,
|
115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243,
|
141, 128, 195, 78, 66, 215, 61, 156, 180
|
};
|
|
class SkPerlinNoiseShaderImpl : public SkShaderBase {
|
public:
|
struct StitchData {
|
StitchData()
|
: fWidth(0)
|
, fWrapX(0)
|
, fHeight(0)
|
, fWrapY(0)
|
{}
|
|
StitchData(SkScalar w, SkScalar h)
|
: fWidth(SkTMin(SkScalarRoundToInt(w), SK_MaxS32 - kPerlinNoise))
|
, fWrapX(kPerlinNoise + fWidth)
|
, fHeight(SkTMin(SkScalarRoundToInt(h), SK_MaxS32 - kPerlinNoise))
|
, fWrapY(kPerlinNoise + fHeight) {}
|
|
bool operator==(const StitchData& other) const {
|
return fWidth == other.fWidth &&
|
fWrapX == other.fWrapX &&
|
fHeight == other.fHeight &&
|
fWrapY == other.fWrapY;
|
}
|
|
int fWidth; // How much to subtract to wrap for stitching.
|
int fWrapX; // Minimum value to wrap.
|
int fHeight;
|
int fWrapY;
|
};
|
|
struct PaintingData {
|
PaintingData(const SkISize& tileSize, SkScalar seed,
|
SkScalar baseFrequencyX, SkScalar baseFrequencyY,
|
const SkMatrix& matrix)
|
{
|
SkVector tileVec;
|
matrix.mapVector(SkIntToScalar(tileSize.fWidth), SkIntToScalar(tileSize.fHeight),
|
&tileVec);
|
|
SkSize scale;
|
if (!matrix.decomposeScale(&scale, nullptr)) {
|
scale.set(SK_ScalarNearlyZero, SK_ScalarNearlyZero);
|
}
|
fBaseFrequency.set(baseFrequencyX * SkScalarInvert(scale.width()),
|
baseFrequencyY * SkScalarInvert(scale.height()));
|
fTileSize.set(SkScalarRoundToInt(tileVec.fX), SkScalarRoundToInt(tileVec.fY));
|
this->init(seed);
|
if (!fTileSize.isEmpty()) {
|
this->stitch();
|
}
|
|
#if SK_SUPPORT_GPU
|
SkImageInfo info = SkImageInfo::MakeA8(kBlockSize, 1);
|
SkPixmap permutationsPixmap(info, fLatticeSelector, info.minRowBytes());
|
fPermutationsImage = SkImage::MakeFromRaster(permutationsPixmap, nullptr, nullptr);
|
|
info = SkImageInfo::MakeN32Premul(kBlockSize, 4);
|
SkPixmap noisePixmap(info, fNoise[0][0], info.minRowBytes());
|
fNoiseImage = SkImage::MakeFromRaster(noisePixmap, nullptr, nullptr);
|
|
info = SkImageInfo::MakeA8(256, 1);
|
SkPixmap impPermutationsPixmap(info, improved_noise_permutations, info.minRowBytes());
|
fImprovedPermutationsImage = SkImage::MakeFromRaster(impPermutationsPixmap, nullptr,
|
nullptr);
|
|
static uint8_t gradients[] = { 2, 2, 1, 0,
|
0, 2, 1, 0,
|
2, 0, 1, 0,
|
0, 0, 1, 0,
|
2, 1, 2, 0,
|
0, 1, 2, 0,
|
2, 1, 0, 0,
|
0, 1, 0, 0,
|
1, 2, 2, 0,
|
1, 0, 2, 0,
|
1, 2, 0, 0,
|
1, 0, 0, 0,
|
2, 2, 1, 0,
|
1, 0, 2, 0,
|
0, 2, 1, 0,
|
1, 0, 0, 0 };
|
info = SkImageInfo::MakeN32Premul(16, 1);
|
SkPixmap gradPixmap(info, gradients, info.minRowBytes());
|
fGradientImage = SkImage::MakeFromRaster(gradPixmap, nullptr, nullptr);
|
#endif
|
}
|
|
#if SK_SUPPORT_GPU
|
PaintingData(const PaintingData& that)
|
: fSeed(that.fSeed)
|
, fTileSize(that.fTileSize)
|
, fBaseFrequency(that.fBaseFrequency)
|
, fStitchDataInit(that.fStitchDataInit)
|
, fPermutationsImage(that.fPermutationsImage)
|
, fNoiseImage(that.fNoiseImage)
|
, fImprovedPermutationsImage(that.fImprovedPermutationsImage)
|
, fGradientImage(that.fGradientImage) {
|
memcpy(fLatticeSelector, that.fLatticeSelector, sizeof(fLatticeSelector));
|
memcpy(fNoise, that.fNoise, sizeof(fNoise));
|
memcpy(fGradient, that.fGradient, sizeof(fGradient));
|
}
|
#endif
|
|
int fSeed;
|
uint8_t fLatticeSelector[kBlockSize];
|
uint16_t fNoise[4][kBlockSize][2];
|
SkPoint fGradient[4][kBlockSize];
|
SkISize fTileSize;
|
SkVector fBaseFrequency;
|
StitchData fStitchDataInit;
|
|
private:
|
|
#if SK_SUPPORT_GPU
|
sk_sp<SkImage> fPermutationsImage;
|
sk_sp<SkImage> fNoiseImage;
|
sk_sp<SkImage> fImprovedPermutationsImage;
|
sk_sp<SkImage> fGradientImage;
|
#endif
|
|
inline int random() {
|
static const int gRandAmplitude = 16807; // 7**5; primitive root of m
|
static const int gRandQ = 127773; // m / a
|
static const int gRandR = 2836; // m % a
|
|
int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ);
|
if (result <= 0)
|
result += kRandMaximum;
|
fSeed = result;
|
return result;
|
}
|
|
// Only called once. Could be part of the constructor.
|
void init(SkScalar seed)
|
{
|
static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize));
|
|
// According to the SVG spec, we must truncate (not round) the seed value.
|
fSeed = SkScalarTruncToInt(seed);
|
// The seed value clamp to the range [1, kRandMaximum - 1].
|
if (fSeed <= 0) {
|
fSeed = -(fSeed % (kRandMaximum - 1)) + 1;
|
}
|
if (fSeed > kRandMaximum - 1) {
|
fSeed = kRandMaximum - 1;
|
}
|
for (int channel = 0; channel < 4; ++channel) {
|
for (int i = 0; i < kBlockSize; ++i) {
|
fLatticeSelector[i] = i;
|
fNoise[channel][i][0] = (random() % (2 * kBlockSize));
|
fNoise[channel][i][1] = (random() % (2 * kBlockSize));
|
}
|
}
|
for (int i = kBlockSize - 1; i > 0; --i) {
|
int k = fLatticeSelector[i];
|
int j = random() % kBlockSize;
|
SkASSERT(j >= 0);
|
SkASSERT(j < kBlockSize);
|
fLatticeSelector[i] = fLatticeSelector[j];
|
fLatticeSelector[j] = k;
|
}
|
|
// Perform the permutations now
|
{
|
// Copy noise data
|
uint16_t noise[4][kBlockSize][2];
|
for (int i = 0; i < kBlockSize; ++i) {
|
for (int channel = 0; channel < 4; ++channel) {
|
for (int j = 0; j < 2; ++j) {
|
noise[channel][i][j] = fNoise[channel][i][j];
|
}
|
}
|
}
|
// Do permutations on noise data
|
for (int i = 0; i < kBlockSize; ++i) {
|
for (int channel = 0; channel < 4; ++channel) {
|
for (int j = 0; j < 2; ++j) {
|
fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j];
|
}
|
}
|
}
|
}
|
|
// Half of the largest possible value for 16 bit unsigned int
|
static const SkScalar gHalfMax16bits = 32767.5f;
|
|
// Compute gradients from permutated noise data
|
for (int channel = 0; channel < 4; ++channel) {
|
for (int i = 0; i < kBlockSize; ++i) {
|
fGradient[channel][i] = SkPoint::Make(
|
(fNoise[channel][i][0] - kBlockSize) * gInvBlockSizef,
|
(fNoise[channel][i][1] - kBlockSize) * gInvBlockSizef);
|
fGradient[channel][i].normalize();
|
// Put the normalized gradient back into the noise data
|
fNoise[channel][i][0] = SkScalarRoundToInt(
|
(fGradient[channel][i].fX + 1) * gHalfMax16bits);
|
fNoise[channel][i][1] = SkScalarRoundToInt(
|
(fGradient[channel][i].fY + 1) * gHalfMax16bits);
|
}
|
}
|
}
|
|
// Only called once. Could be part of the constructor.
|
void stitch() {
|
SkScalar tileWidth = SkIntToScalar(fTileSize.width());
|
SkScalar tileHeight = SkIntToScalar(fTileSize.height());
|
SkASSERT(tileWidth > 0 && tileHeight > 0);
|
// When stitching tiled turbulence, the frequencies must be adjusted
|
// so that the tile borders will be continuous.
|
if (fBaseFrequency.fX) {
|
SkScalar lowFrequencx =
|
SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
|
SkScalar highFrequencx =
|
SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth;
|
// BaseFrequency should be non-negative according to the standard.
|
// lowFrequencx can be 0 if fBaseFrequency.fX is very small.
|
if (sk_ieee_float_divide(fBaseFrequency.fX, lowFrequencx) < highFrequencx / fBaseFrequency.fX) {
|
fBaseFrequency.fX = lowFrequencx;
|
} else {
|
fBaseFrequency.fX = highFrequencx;
|
}
|
}
|
if (fBaseFrequency.fY) {
|
SkScalar lowFrequency =
|
SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
|
SkScalar highFrequency =
|
SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight;
|
// lowFrequency can be 0 if fBaseFrequency.fY is very small.
|
if (sk_ieee_float_divide(fBaseFrequency.fY, lowFrequency) < highFrequency / fBaseFrequency.fY) {
|
fBaseFrequency.fY = lowFrequency;
|
} else {
|
fBaseFrequency.fY = highFrequency;
|
}
|
}
|
// Set up TurbulenceInitial stitch values.
|
fStitchDataInit = StitchData(tileWidth * fBaseFrequency.fX,
|
tileHeight * fBaseFrequency.fY);
|
}
|
|
public:
|
|
#if SK_SUPPORT_GPU
|
const sk_sp<SkImage> getPermutationsImage() const { return fPermutationsImage; }
|
|
const sk_sp<SkImage> getNoiseImage() const { return fNoiseImage; }
|
|
const sk_sp<SkImage> getImprovedPermutationsImage() const {
|
return fImprovedPermutationsImage;
|
}
|
|
const sk_sp<SkImage> getGradientImage() const { return fGradientImage; }
|
#endif
|
};
|
|
/**
|
* About the noise types : the difference between the first 2 is just minor tweaks to the
|
* algorithm, they're not 2 entirely different noises. The output looks different, but once the
|
* noise is generated in the [1, -1] range, the output is brought back in the [0, 1] range by
|
* doing :
|
* kFractalNoise_Type : noise * 0.5 + 0.5
|
* kTurbulence_Type : abs(noise)
|
* Very little differences between the 2 types, although you can tell the difference visually.
|
* "Improved" is based on the Improved Perlin Noise algorithm described at
|
* http://mrl.nyu.edu/~perlin/noise/. It is quite distinct from the other two, and the noise is
|
* a 2D slice of a 3D noise texture. Minor changes to the Z coordinate will result in minor
|
* changes to the noise, making it suitable for animated noise.
|
*/
|
enum Type {
|
kFractalNoise_Type,
|
kTurbulence_Type,
|
kImprovedNoise_Type,
|
kLast_Type = kImprovedNoise_Type
|
};
|
|
static const int kMaxOctaves = 255; // numOctaves must be <= 0 and <= kMaxOctaves
|
|
SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::Type type, SkScalar baseFrequencyX,
|
SkScalar baseFrequencyY, int numOctaves, SkScalar seed,
|
const SkISize* tileSize);
|
|
class PerlinNoiseShaderContext : public Context {
|
public:
|
PerlinNoiseShaderContext(const SkPerlinNoiseShaderImpl& shader, const ContextRec&);
|
|
void shadeSpan(int x, int y, SkPMColor[], int count) override;
|
|
private:
|
SkPMColor shade(const SkPoint& point, StitchData& stitchData) const;
|
SkScalar calculateTurbulenceValueForPoint(
|
int channel,
|
StitchData& stitchData, const SkPoint& point) const;
|
SkScalar calculateImprovedNoiseValueForPoint(int channel, const SkPoint& point) const;
|
SkScalar noise2D(int channel,
|
const StitchData& stitchData, const SkPoint& noiseVector) const;
|
|
SkMatrix fMatrix;
|
PaintingData fPaintingData;
|
|
typedef Context INHERITED;
|
};
|
|
#if SK_SUPPORT_GPU
|
std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(const GrFPArgs&) const override;
|
#endif
|
|
protected:
|
void flatten(SkWriteBuffer&) const override;
|
#ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
|
Context* onMakeContext(const ContextRec&, SkArenaAlloc*) const override;
|
#endif
|
|
private:
|
SK_FLATTENABLE_HOOKS(SkPerlinNoiseShaderImpl)
|
|
const SkPerlinNoiseShaderImpl::Type fType;
|
const SkScalar fBaseFrequencyX;
|
const SkScalar fBaseFrequencyY;
|
const int fNumOctaves;
|
const SkScalar fSeed;
|
const SkISize fTileSize;
|
const bool fStitchTiles;
|
|
friend class ::SkPerlinNoiseShader;
|
|
typedef SkShaderBase INHERITED;
|
};
|
|
namespace {
|
|
// noiseValue is the color component's value (or color)
|
// limitValue is the maximum perlin noise array index value allowed
|
// newValue is the current noise dimension (either width or height)
|
inline int checkNoise(int noiseValue, int limitValue, int newValue) {
|
// If the noise value would bring us out of bounds of the current noise array while we are
|
// stiching noise tiles together, wrap the noise around the current dimension of the noise to
|
// stay within the array bounds in a continuous fashion (so that tiling lines are not visible)
|
if (noiseValue >= limitValue) {
|
noiseValue -= newValue;
|
}
|
return noiseValue;
|
}
|
|
inline SkScalar smoothCurve(SkScalar t) {
|
return t * t * (3 - 2 * t);
|
}
|
|
} // end namespace
|
|
SkPerlinNoiseShaderImpl::SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::Type type,
|
SkScalar baseFrequencyX,
|
SkScalar baseFrequencyY,
|
int numOctaves,
|
SkScalar seed,
|
const SkISize* tileSize)
|
: fType(type)
|
, fBaseFrequencyX(baseFrequencyX)
|
, fBaseFrequencyY(baseFrequencyY)
|
, fNumOctaves(numOctaves > kMaxOctaves ? kMaxOctaves : numOctaves/*[0,255] octaves allowed*/)
|
, fSeed(seed)
|
, fTileSize(nullptr == tileSize ? SkISize::Make(0, 0) : *tileSize)
|
, fStitchTiles(!fTileSize.isEmpty())
|
{
|
SkASSERT(numOctaves >= 0 && numOctaves <= kMaxOctaves);
|
SkASSERT(fBaseFrequencyX >= 0);
|
SkASSERT(fBaseFrequencyY >= 0);
|
}
|
|
sk_sp<SkFlattenable> SkPerlinNoiseShaderImpl::CreateProc(SkReadBuffer& buffer) {
|
Type type = buffer.read32LE(kLast_Type);
|
|
SkScalar freqX = buffer.readScalar();
|
SkScalar freqY = buffer.readScalar();
|
int octaves = buffer.read32LE<int>(kMaxOctaves);
|
|
SkScalar seed = buffer.readScalar();
|
SkISize tileSize;
|
tileSize.fWidth = buffer.readInt();
|
tileSize.fHeight = buffer.readInt();
|
|
switch (type) {
|
case kFractalNoise_Type:
|
return SkPerlinNoiseShader::MakeFractalNoise(freqX, freqY, octaves, seed, &tileSize);
|
case kTurbulence_Type:
|
return SkPerlinNoiseShader::MakeTurbulence(freqX, freqY, octaves, seed, &tileSize);
|
case kImprovedNoise_Type:
|
return SkPerlinNoiseShader::MakeImprovedNoise(freqX, freqY, octaves, seed);
|
default:
|
// Really shouldn't get here b.c. of earlier check on type
|
buffer.validate(false);
|
return nullptr;
|
}
|
}
|
|
void SkPerlinNoiseShaderImpl::flatten(SkWriteBuffer& buffer) const {
|
buffer.writeInt((int) fType);
|
buffer.writeScalar(fBaseFrequencyX);
|
buffer.writeScalar(fBaseFrequencyY);
|
buffer.writeInt(fNumOctaves);
|
buffer.writeScalar(fSeed);
|
buffer.writeInt(fTileSize.fWidth);
|
buffer.writeInt(fTileSize.fHeight);
|
}
|
|
SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::noise2D(
|
int channel, const StitchData& stitchData, const SkPoint& noiseVector) const {
|
struct Noise {
|
int noisePositionIntegerValue;
|
int nextNoisePositionIntegerValue;
|
SkScalar noisePositionFractionValue;
|
Noise(SkScalar component)
|
{
|
SkScalar position = component + kPerlinNoise;
|
noisePositionIntegerValue = SkScalarFloorToInt(position);
|
noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue);
|
nextNoisePositionIntegerValue = noisePositionIntegerValue + 1;
|
}
|
};
|
Noise noiseX(noiseVector.x());
|
Noise noiseY(noiseVector.y());
|
SkScalar u, v;
|
const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader);
|
// If stitching, adjust lattice points accordingly.
|
if (perlinNoiseShader.fStitchTiles) {
|
noiseX.noisePositionIntegerValue =
|
checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
|
noiseY.noisePositionIntegerValue =
|
checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
|
noiseX.nextNoisePositionIntegerValue =
|
checkNoise(noiseX.nextNoisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth);
|
noiseY.nextNoisePositionIntegerValue =
|
checkNoise(noiseY.nextNoisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight);
|
}
|
noiseX.noisePositionIntegerValue &= kBlockMask;
|
noiseY.noisePositionIntegerValue &= kBlockMask;
|
noiseX.nextNoisePositionIntegerValue &= kBlockMask;
|
noiseY.nextNoisePositionIntegerValue &= kBlockMask;
|
int i = fPaintingData.fLatticeSelector[noiseX.noisePositionIntegerValue];
|
int j = fPaintingData.fLatticeSelector[noiseX.nextNoisePositionIntegerValue];
|
int b00 = (i + noiseY.noisePositionIntegerValue) & kBlockMask;
|
int b10 = (j + noiseY.noisePositionIntegerValue) & kBlockMask;
|
int b01 = (i + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
|
int b11 = (j + noiseY.nextNoisePositionIntegerValue) & kBlockMask;
|
SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue);
|
SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue);
|
|
if (sx < 0 || sy < 0 || sx > 1 || sy > 1) {
|
return 0; // Check for pathological inputs.
|
}
|
|
// This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement
|
SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue,
|
noiseY.noisePositionFractionValue); // Offset (0,0)
|
u = fPaintingData.fGradient[channel][b00].dot(fractionValue);
|
fractionValue.fX -= SK_Scalar1; // Offset (-1,0)
|
v = fPaintingData.fGradient[channel][b10].dot(fractionValue);
|
SkScalar a = SkScalarInterp(u, v, sx);
|
fractionValue.fY -= SK_Scalar1; // Offset (-1,-1)
|
v = fPaintingData.fGradient[channel][b11].dot(fractionValue);
|
fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1)
|
u = fPaintingData.fGradient[channel][b01].dot(fractionValue);
|
SkScalar b = SkScalarInterp(u, v, sx);
|
return SkScalarInterp(a, b, sy);
|
}
|
|
SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::calculateTurbulenceValueForPoint(
|
int channel, StitchData& stitchData, const SkPoint& point) const {
|
const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader);
|
if (perlinNoiseShader.fStitchTiles) {
|
// Set up TurbulenceInitial stitch values.
|
stitchData = fPaintingData.fStitchDataInit;
|
}
|
SkScalar turbulenceFunctionResult = 0;
|
SkPoint noiseVector(SkPoint::Make(point.x() * fPaintingData.fBaseFrequency.fX,
|
point.y() * fPaintingData.fBaseFrequency.fY));
|
SkScalar ratio = SK_Scalar1;
|
for (int octave = 0; octave < perlinNoiseShader.fNumOctaves; ++octave) {
|
SkScalar noise = noise2D(channel, stitchData, noiseVector);
|
SkScalar numer = (perlinNoiseShader.fType == kFractalNoise_Type) ?
|
noise : SkScalarAbs(noise);
|
turbulenceFunctionResult += numer / ratio;
|
noiseVector.fX *= 2;
|
noiseVector.fY *= 2;
|
ratio *= 2;
|
if (perlinNoiseShader.fStitchTiles) {
|
// Update stitch values
|
stitchData = StitchData(SkIntToScalar(stitchData.fWidth) * 2,
|
SkIntToScalar(stitchData.fHeight) * 2);
|
}
|
}
|
|
// The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
|
// by fractalNoise and (turbulenceFunctionResult) by turbulence.
|
if (perlinNoiseShader.fType == kFractalNoise_Type) {
|
turbulenceFunctionResult = SkScalarHalf(turbulenceFunctionResult + 1);
|
}
|
|
if (channel == 3) { // Scale alpha by paint value
|
turbulenceFunctionResult *= SkIntToScalar(getPaintAlpha()) / 255;
|
}
|
|
// Clamp result
|
return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1);
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
// Improved Perlin Noise based on Java implementation found at http://mrl.nyu.edu/~perlin/noise/
|
static SkScalar fade(SkScalar t) {
|
return t * t * t * (t * (t * 6 - 15) + 10);
|
}
|
|
static SkScalar lerp(SkScalar t, SkScalar a, SkScalar b) {
|
return a + t * (b - a);
|
}
|
|
static SkScalar grad(int hash, SkScalar x, SkScalar y, SkScalar z) {
|
int h = hash & 15;
|
SkScalar u = h < 8 ? x : y;
|
SkScalar v = h < 4 ? y : h == 12 || h == 14 ? x : z;
|
return ((h & 1) == 0 ? u : -u) + ((h & 2) == 0 ? v : -v);
|
}
|
|
SkScalar SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::calculateImprovedNoiseValueForPoint(
|
int channel, const SkPoint& point) const {
|
const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader);
|
SkScalar x = point.fX * perlinNoiseShader.fBaseFrequencyX;
|
SkScalar y = point.fY * perlinNoiseShader.fBaseFrequencyY;
|
// z offset between different channels, chosen arbitrarily
|
static const SkScalar CHANNEL_DELTA = 1000.0f;
|
SkScalar z = channel * CHANNEL_DELTA + perlinNoiseShader.fSeed;
|
SkScalar result = 0;
|
SkScalar ratio = SK_Scalar1;
|
for (int i = 0; i < perlinNoiseShader.fNumOctaves; i++) {
|
int X = SkScalarFloorToInt(x) & 255;
|
int Y = SkScalarFloorToInt(y) & 255;
|
int Z = SkScalarFloorToInt(z) & 255;
|
SkScalar px = x - SkScalarFloorToScalar(x);
|
SkScalar py = y - SkScalarFloorToScalar(y);
|
SkScalar pz = z - SkScalarFloorToScalar(z);
|
SkScalar u = fade(px);
|
SkScalar v = fade(py);
|
SkScalar w = fade(pz);
|
uint8_t* permutations = improved_noise_permutations;
|
int A = permutations[X] + Y;
|
int AA = permutations[A] + Z;
|
int AB = permutations[A + 1] + Z;
|
int B = permutations[X + 1] + Y;
|
int BA = permutations[B] + Z;
|
int BB = permutations[B + 1] + Z;
|
result += lerp(w, lerp(v, lerp(u, grad(permutations[AA ], px , py , pz ),
|
grad(permutations[BA ], px - 1, py , pz )),
|
lerp(u, grad(permutations[AB ], px , py - 1, pz ),
|
grad(permutations[BB ], px - 1, py - 1, pz ))),
|
lerp(v, lerp(u, grad(permutations[AA + 1], px , py , pz - 1),
|
grad(permutations[BA + 1], px - 1, py , pz - 1)),
|
lerp(u, grad(permutations[AB + 1], px , py - 1, pz - 1),
|
grad(permutations[BB + 1], px - 1, py - 1, pz - 1)))) /
|
ratio;
|
x *= 2;
|
y *= 2;
|
ratio *= 2;
|
}
|
result = SkScalarClampMax((result + 1.0f) / 2.0f, 1.0f);
|
return result;
|
}
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
SkPMColor SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::shade(
|
const SkPoint& point, StitchData& stitchData) const {
|
const SkPerlinNoiseShaderImpl& perlinNoiseShader = static_cast<const SkPerlinNoiseShaderImpl&>(fShader);
|
SkPoint newPoint;
|
fMatrix.mapPoints(&newPoint, &point, 1);
|
newPoint.fX = SkScalarRoundToScalar(newPoint.fX);
|
newPoint.fY = SkScalarRoundToScalar(newPoint.fY);
|
|
U8CPU rgba[4];
|
for (int channel = 3; channel >= 0; --channel) {
|
SkScalar value;
|
if (perlinNoiseShader.fType == kImprovedNoise_Type) {
|
value = calculateImprovedNoiseValueForPoint(channel, newPoint);
|
}
|
else {
|
value = calculateTurbulenceValueForPoint(channel, stitchData, newPoint);
|
}
|
rgba[channel] = SkScalarFloorToInt(255 * value);
|
}
|
return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]);
|
}
|
|
#ifdef SK_ENABLE_LEGACY_SHADERCONTEXT
|
SkShaderBase::Context* SkPerlinNoiseShaderImpl::onMakeContext(const ContextRec& rec,
|
SkArenaAlloc* alloc) const {
|
// should we pay attention to rec's device-colorspace?
|
return alloc->make<PerlinNoiseShaderContext>(*this, rec);
|
}
|
#endif
|
|
static inline SkMatrix total_matrix(const SkShaderBase::ContextRec& rec,
|
const SkShaderBase& shader) {
|
SkMatrix matrix = SkMatrix::Concat(*rec.fMatrix, shader.getLocalMatrix());
|
if (rec.fLocalMatrix) {
|
matrix.preConcat(*rec.fLocalMatrix);
|
}
|
|
return matrix;
|
}
|
|
SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::PerlinNoiseShaderContext(
|
const SkPerlinNoiseShaderImpl& shader, const ContextRec& rec)
|
: INHERITED(shader, rec)
|
, fMatrix(total_matrix(rec, shader)) // used for temp storage, adjusted below
|
, fPaintingData(shader.fTileSize, shader.fSeed, shader.fBaseFrequencyX,
|
shader.fBaseFrequencyY, fMatrix)
|
{
|
// This (1,1) translation is due to WebKit's 1 based coordinates for the noise
|
// (as opposed to 0 based, usually). The same adjustment is in the setData() function.
|
fMatrix.setTranslate(-fMatrix.getTranslateX() + SK_Scalar1,
|
-fMatrix.getTranslateY() + SK_Scalar1);
|
}
|
|
void SkPerlinNoiseShaderImpl::PerlinNoiseShaderContext::shadeSpan(
|
int x, int y, SkPMColor result[], int count) {
|
SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y));
|
StitchData stitchData;
|
for (int i = 0; i < count; ++i) {
|
result[i] = shade(point, stitchData);
|
point.fX += SK_Scalar1;
|
}
|
}
|
|
/////////////////////////////////////////////////////////////////////
|
|
#if SK_SUPPORT_GPU
|
|
class GrGLPerlinNoise : public GrGLSLFragmentProcessor {
|
public:
|
void emitCode(EmitArgs&) override;
|
|
static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b);
|
|
protected:
|
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
|
|
private:
|
GrGLSLProgramDataManager::UniformHandle fStitchDataUni;
|
GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni;
|
|
typedef GrGLSLFragmentProcessor INHERITED;
|
};
|
|
/////////////////////////////////////////////////////////////////////
|
|
class GrPerlinNoise2Effect : public GrFragmentProcessor {
|
public:
|
static std::unique_ptr<GrFragmentProcessor> Make(
|
SkPerlinNoiseShaderImpl::Type type, int numOctaves, bool stitchTiles,
|
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData,
|
sk_sp<GrTextureProxy> permutationsProxy, sk_sp<GrTextureProxy> noiseProxy,
|
const SkMatrix& matrix) {
|
return std::unique_ptr<GrFragmentProcessor>(new GrPerlinNoise2Effect(
|
type, numOctaves, stitchTiles, std::move(paintingData),
|
std::move(permutationsProxy), std::move(noiseProxy), matrix));
|
}
|
|
const char* name() const override { return "PerlinNoise"; }
|
|
std::unique_ptr<GrFragmentProcessor> clone() const override {
|
return std::unique_ptr<GrFragmentProcessor>(new GrPerlinNoise2Effect(*this));
|
}
|
|
const SkPerlinNoiseShaderImpl::StitchData& stitchData() const { return fPaintingData->fStitchDataInit; }
|
|
SkPerlinNoiseShaderImpl::Type type() const { return fType; }
|
bool stitchTiles() const { return fStitchTiles; }
|
const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; }
|
int numOctaves() const { return fNumOctaves; }
|
const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); }
|
|
private:
|
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
|
return new GrGLPerlinNoise;
|
}
|
|
virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps,
|
GrProcessorKeyBuilder* b) const override {
|
GrGLPerlinNoise::GenKey(*this, caps, b);
|
}
|
|
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
|
const GrPerlinNoise2Effect& s = sBase.cast<GrPerlinNoise2Effect>();
|
return fType == s.fType &&
|
fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency &&
|
fNumOctaves == s.fNumOctaves &&
|
fStitchTiles == s.fStitchTiles &&
|
fPaintingData->fStitchDataInit == s.fPaintingData->fStitchDataInit;
|
}
|
|
GrPerlinNoise2Effect(SkPerlinNoiseShaderImpl::Type type, int numOctaves, bool stitchTiles,
|
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData,
|
sk_sp<GrTextureProxy> permutationsProxy,
|
sk_sp<GrTextureProxy> noiseProxy,
|
const SkMatrix& matrix)
|
: INHERITED(kGrPerlinNoise2Effect_ClassID, kNone_OptimizationFlags)
|
, fType(type)
|
, fNumOctaves(numOctaves)
|
, fStitchTiles(stitchTiles)
|
, fPermutationsSampler(std::move(permutationsProxy))
|
, fNoiseSampler(std::move(noiseProxy))
|
, fPaintingData(std::move(paintingData)) {
|
this->setTextureSamplerCnt(2);
|
fCoordTransform = GrCoordTransform(matrix);
|
this->addCoordTransform(&fCoordTransform);
|
}
|
|
GrPerlinNoise2Effect(const GrPerlinNoise2Effect& that)
|
: INHERITED(kGrPerlinNoise2Effect_ClassID, kNone_OptimizationFlags)
|
, fType(that.fType)
|
, fCoordTransform(that.fCoordTransform)
|
, fNumOctaves(that.fNumOctaves)
|
, fStitchTiles(that.fStitchTiles)
|
, fPermutationsSampler(that.fPermutationsSampler)
|
, fNoiseSampler(that.fNoiseSampler)
|
, fPaintingData(new SkPerlinNoiseShaderImpl::PaintingData(*that.fPaintingData)) {
|
this->setTextureSamplerCnt(2);
|
this->addCoordTransform(&fCoordTransform);
|
}
|
|
const TextureSampler& onTextureSampler(int i) const override {
|
return IthTextureSampler(i, fPermutationsSampler, fNoiseSampler);
|
}
|
|
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
|
|
SkPerlinNoiseShaderImpl::Type fType;
|
GrCoordTransform fCoordTransform;
|
int fNumOctaves;
|
bool fStitchTiles;
|
TextureSampler fPermutationsSampler;
|
TextureSampler fNoiseSampler;
|
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> fPaintingData;
|
|
typedef GrFragmentProcessor INHERITED;
|
};
|
|
/////////////////////////////////////////////////////////////////////
|
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrPerlinNoise2Effect);
|
|
#if GR_TEST_UTILS
|
std::unique_ptr<GrFragmentProcessor> GrPerlinNoise2Effect::TestCreate(GrProcessorTestData* d) {
|
int numOctaves = d->fRandom->nextRangeU(2, 10);
|
bool stitchTiles = d->fRandom->nextBool();
|
SkScalar seed = SkIntToScalar(d->fRandom->nextU());
|
SkISize tileSize = SkISize::Make(d->fRandom->nextRangeU(4, 4096),
|
d->fRandom->nextRangeU(4, 4096));
|
SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f,
|
0.99f);
|
SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f,
|
0.99f);
|
|
sk_sp<SkShader> shader(d->fRandom->nextBool() ?
|
SkPerlinNoiseShader::MakeFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed,
|
stitchTiles ? &tileSize : nullptr) :
|
SkPerlinNoiseShader::MakeTurbulence(baseFrequencyX, baseFrequencyY, numOctaves, seed,
|
stitchTiles ? &tileSize : nullptr));
|
|
GrTest::TestAsFPArgs asFPArgs(d);
|
return as_SB(shader)->asFragmentProcessor(asFPArgs.args());
|
}
|
#endif
|
|
void GrGLPerlinNoise::emitCode(EmitArgs& args) {
|
const GrPerlinNoise2Effect& pne = args.fFp.cast<GrPerlinNoise2Effect>();
|
|
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
|
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
|
SkString vCoords = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
|
|
fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
|
"baseFrequency");
|
const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni);
|
|
const char* stitchDataUni = nullptr;
|
if (pne.stitchTiles()) {
|
fStitchDataUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
|
"stitchData");
|
stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni);
|
}
|
|
// There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8
|
const char* chanCoordR = "0.125";
|
const char* chanCoordG = "0.375";
|
const char* chanCoordB = "0.625";
|
const char* chanCoordA = "0.875";
|
const char* chanCoord = "chanCoord";
|
const char* stitchData = "stitchData";
|
const char* ratio = "ratio";
|
const char* noiseVec = "noiseVec";
|
const char* noiseSmooth = "noiseSmooth";
|
const char* floorVal = "floorVal";
|
const char* fractVal = "fractVal";
|
const char* uv = "uv";
|
const char* ab = "ab";
|
const char* latticeIdx = "latticeIdx";
|
const char* bcoords = "bcoords";
|
const char* lattice = "lattice";
|
const char* inc8bit = "0.00390625"; // 1.0 / 256.0
|
// This is the math to convert the two 16bit integer packed into rgba 8 bit input into a
|
// [-1,1] vector and perform a dot product between that vector and the provided vector.
|
const char* dotLattice = "dot(((%s.ga + %s.rb * half2(%s)) * half2(2.0) - half2(1.0)), %s);";
|
|
// Add noise function
|
const GrShaderVar gPerlinNoiseArgs[] = {
|
GrShaderVar(chanCoord, kHalf_GrSLType),
|
GrShaderVar(noiseVec, kHalf2_GrSLType)
|
};
|
|
const GrShaderVar gPerlinNoiseStitchArgs[] = {
|
GrShaderVar(chanCoord, kHalf_GrSLType),
|
GrShaderVar(noiseVec, kHalf2_GrSLType),
|
GrShaderVar(stitchData, kHalf2_GrSLType)
|
};
|
|
SkString noiseCode;
|
|
noiseCode.appendf("\thalf4 %s;\n", floorVal);
|
noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec);
|
noiseCode.appendf("\t%s.zw = %s.xy + half2(1.0);\n", floorVal, floorVal);
|
noiseCode.appendf("\thalf2 %s = fract(%s);\n", fractVal, noiseVec);
|
|
// smooth curve : t * t * (3 - 2 * t)
|
noiseCode.appendf("\n\thalf2 %s = %s * %s * (half2(3.0) - half2(2.0) * %s);",
|
noiseSmooth, fractVal, fractVal, fractVal);
|
|
// Adjust frequencies if we're stitching tiles
|
if (pne.stitchTiles()) {
|
noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }",
|
floorVal, stitchData, floorVal, stitchData);
|
noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }",
|
floorVal, stitchData, floorVal, stitchData);
|
noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }",
|
floorVal, stitchData, floorVal, stitchData);
|
noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }",
|
floorVal, stitchData, floorVal, stitchData);
|
}
|
|
// Get texture coordinates and normalize
|
noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / half4(256.0));\n",
|
floorVal, floorVal);
|
|
// Get permutation for x
|
{
|
SkString xCoords("");
|
xCoords.appendf("half2(%s.x, 0.5)", floorVal);
|
|
noiseCode.appendf("\n\thalf2 %s;\n\t%s.x = ", latticeIdx, latticeIdx);
|
fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(),
|
kHalf2_GrSLType);
|
noiseCode.append(".r;");
|
}
|
|
// Get permutation for x + 1
|
{
|
SkString xCoords("");
|
xCoords.appendf("half2(%s.z, 0.5)", floorVal);
|
|
noiseCode.appendf("\n\t%s.y = ", latticeIdx);
|
fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[0], xCoords.c_str(),
|
kHalf2_GrSLType);
|
noiseCode.append(".r;");
|
}
|
|
#if defined(SK_BUILD_FOR_ANDROID)
|
// Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3).
|
// The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit
|
// value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725
|
// (or 0.484368 here). The following rounding operation prevents these precision issues from
|
// affecting the result of the noise by making sure that we only have multiples of 1/255.
|
// (Note that 1/255 is about 0.003921569, which is the value used here).
|
noiseCode.appendf("\n\t%s = floor(%s * half2(255.0) + half2(0.5)) * half2(0.003921569);",
|
latticeIdx, latticeIdx);
|
#endif
|
|
// Get (x,y) coordinates with the permutated x
|
noiseCode.appendf("\n\thalf4 %s = fract(%s.xyxy + %s.yyww);", bcoords, latticeIdx, floorVal);
|
|
noiseCode.appendf("\n\n\thalf2 %s;", uv);
|
// Compute u, at offset (0,0)
|
{
|
SkString latticeCoords("");
|
latticeCoords.appendf("half2(%s.x, %s)", bcoords, chanCoord);
|
noiseCode.appendf("\n\thalf4 %s = ", lattice);
|
fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
|
kHalf2_GrSLType);
|
noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
|
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
|
}
|
|
noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal);
|
// Compute v, at offset (-1,0)
|
{
|
SkString latticeCoords("");
|
latticeCoords.appendf("half2(%s.y, %s)", bcoords, chanCoord);
|
noiseCode.append("\n\tlattice = ");
|
fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
|
kHalf2_GrSLType);
|
noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
|
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
|
}
|
|
// Compute 'a' as a linear interpolation of 'u' and 'v'
|
noiseCode.appendf("\n\thalf2 %s;", ab);
|
noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
|
|
noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal);
|
// Compute v, at offset (-1,-1)
|
{
|
SkString latticeCoords("");
|
latticeCoords.appendf("half2(%s.w, %s)", bcoords, chanCoord);
|
noiseCode.append("\n\tlattice = ");
|
fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
|
kHalf2_GrSLType);
|
noiseCode.appendf(".bgra;\n\t%s.y = ", uv);
|
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
|
}
|
|
noiseCode.appendf("\n\t%s.x += 1.0;", fractVal);
|
// Compute u, at offset (0,-1)
|
{
|
SkString latticeCoords("");
|
latticeCoords.appendf("half2(%s.z, %s)", bcoords, chanCoord);
|
noiseCode.append("\n\tlattice = ");
|
fragBuilder->appendTextureLookup(&noiseCode, args.fTexSamplers[1], latticeCoords.c_str(),
|
kHalf2_GrSLType);
|
noiseCode.appendf(".bgra;\n\t%s.x = ", uv);
|
noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal);
|
}
|
|
// Compute 'b' as a linear interpolation of 'u' and 'v'
|
noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth);
|
// Compute the noise as a linear interpolation of 'a' and 'b'
|
noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth);
|
|
SkString noiseFuncName;
|
if (pne.stitchTiles()) {
|
fragBuilder->emitFunction(kHalf_GrSLType,
|
"perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs),
|
gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName);
|
} else {
|
fragBuilder->emitFunction(kHalf_GrSLType,
|
"perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs),
|
gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName);
|
}
|
|
// There are rounding errors if the floor operation is not performed here
|
fragBuilder->codeAppendf("\n\t\thalf2 %s = half2(floor(%s.xy) * %s);",
|
noiseVec, vCoords.c_str(), baseFrequencyUni);
|
|
// Clear the color accumulator
|
fragBuilder->codeAppendf("\n\t\t%s = half4(0.0);", args.fOutputColor);
|
|
if (pne.stitchTiles()) {
|
// Set up TurbulenceInitial stitch values.
|
fragBuilder->codeAppendf("\n\t\thalf2 %s = %s;", stitchData, stitchDataUni);
|
}
|
|
fragBuilder->codeAppendf("\n\t\thalf %s = 1.0;", ratio);
|
|
// Loop over all octaves
|
fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves());
|
|
fragBuilder->codeAppendf("\n\t\t\t%s += ", args.fOutputColor);
|
if (pne.type() != SkPerlinNoiseShaderImpl::kFractalNoise_Type) {
|
fragBuilder->codeAppend("abs(");
|
}
|
if (pne.stitchTiles()) {
|
fragBuilder->codeAppendf(
|
"half4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s),"
|
"\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))",
|
noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData,
|
noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData,
|
noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData,
|
noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData);
|
} else {
|
fragBuilder->codeAppendf(
|
"half4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s),"
|
"\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))",
|
noiseFuncName.c_str(), chanCoordR, noiseVec,
|
noiseFuncName.c_str(), chanCoordG, noiseVec,
|
noiseFuncName.c_str(), chanCoordB, noiseVec,
|
noiseFuncName.c_str(), chanCoordA, noiseVec);
|
}
|
if (pne.type() != SkPerlinNoiseShaderImpl::kFractalNoise_Type) {
|
fragBuilder->codeAppendf(")"); // end of "abs("
|
}
|
fragBuilder->codeAppendf(" * %s;", ratio);
|
|
fragBuilder->codeAppendf("\n\t\t\t%s *= half2(2.0);", noiseVec);
|
fragBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio);
|
|
if (pne.stitchTiles()) {
|
fragBuilder->codeAppendf("\n\t\t\t%s *= half2(2.0);", stitchData);
|
}
|
fragBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves
|
|
if (pne.type() == SkPerlinNoiseShaderImpl::kFractalNoise_Type) {
|
// The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2
|
// by fractalNoise and (turbulenceFunctionResult) by turbulence.
|
fragBuilder->codeAppendf("\n\t\t%s = %s * half4(0.5) + half4(0.5);",
|
args.fOutputColor,args.fOutputColor);
|
}
|
|
// Clamp values
|
fragBuilder->codeAppendf("\n\t\t%s = saturate(%s);", args.fOutputColor, args.fOutputColor);
|
|
// Pre-multiply the result
|
fragBuilder->codeAppendf("\n\t\t%s = half4(%s.rgb * %s.aaa, %s.a);\n",
|
args.fOutputColor, args.fOutputColor,
|
args.fOutputColor, args.fOutputColor);
|
}
|
|
void GrGLPerlinNoise::GenKey(const GrProcessor& processor, const GrShaderCaps&,
|
GrProcessorKeyBuilder* b) {
|
const GrPerlinNoise2Effect& turbulence = processor.cast<GrPerlinNoise2Effect>();
|
|
uint32_t key = turbulence.numOctaves();
|
|
key = key << 3; // Make room for next 3 bits
|
|
switch (turbulence.type()) {
|
case SkPerlinNoiseShaderImpl::kFractalNoise_Type:
|
key |= 0x1;
|
break;
|
case SkPerlinNoiseShaderImpl::kTurbulence_Type:
|
key |= 0x2;
|
break;
|
default:
|
// leave key at 0
|
break;
|
}
|
|
if (turbulence.stitchTiles()) {
|
key |= 0x4; // Flip the 3rd bit if tile stitching is on
|
}
|
|
b->add32(key);
|
}
|
|
void GrGLPerlinNoise::onSetData(const GrGLSLProgramDataManager& pdman,
|
const GrFragmentProcessor& processor) {
|
INHERITED::onSetData(pdman, processor);
|
|
const GrPerlinNoise2Effect& turbulence = processor.cast<GrPerlinNoise2Effect>();
|
|
const SkVector& baseFrequency = turbulence.baseFrequency();
|
pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY);
|
|
if (turbulence.stitchTiles()) {
|
const SkPerlinNoiseShaderImpl::StitchData& stitchData = turbulence.stitchData();
|
pdman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth),
|
SkIntToScalar(stitchData.fHeight));
|
}
|
}
|
|
/////////////////////////////////////////////////////////////////////
|
|
class GrGLImprovedPerlinNoise : public GrGLSLFragmentProcessor {
|
public:
|
void emitCode(EmitArgs&) override;
|
|
static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*);
|
|
protected:
|
void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
|
|
private:
|
GrGLSLProgramDataManager::UniformHandle fZUni;
|
GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni;
|
|
typedef GrGLSLFragmentProcessor INHERITED;
|
};
|
|
/////////////////////////////////////////////////////////////////////
|
|
class GrImprovedPerlinNoiseEffect : public GrFragmentProcessor {
|
public:
|
static std::unique_ptr<GrFragmentProcessor> Make(
|
int octaves, SkScalar z,
|
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData,
|
sk_sp<GrTextureProxy> permutationsProxy, sk_sp<GrTextureProxy> gradientProxy,
|
const SkMatrix& matrix) {
|
return std::unique_ptr<GrFragmentProcessor>(new GrImprovedPerlinNoiseEffect(
|
octaves, z, std::move(paintingData), std::move(permutationsProxy),
|
std::move(gradientProxy), matrix));
|
}
|
|
const char* name() const override { return "ImprovedPerlinNoise"; }
|
|
std::unique_ptr<GrFragmentProcessor> clone() const override {
|
return std::unique_ptr<GrFragmentProcessor>(new GrImprovedPerlinNoiseEffect(*this));
|
}
|
|
const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; }
|
SkScalar z() const { return fZ; }
|
int octaves() const { return fOctaves; }
|
const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); }
|
|
private:
|
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
|
return new GrGLImprovedPerlinNoise;
|
}
|
|
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
|
GrGLImprovedPerlinNoise::GenKey(*this, caps, b);
|
}
|
|
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
|
const GrImprovedPerlinNoiseEffect& s = sBase.cast<GrImprovedPerlinNoiseEffect>();
|
return fZ == fZ &&
|
fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency;
|
}
|
|
GrImprovedPerlinNoiseEffect(int octaves, SkScalar z,
|
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData,
|
sk_sp<GrTextureProxy> permutationsProxy,
|
sk_sp<GrTextureProxy> gradientProxy,
|
const SkMatrix& matrix)
|
: INHERITED(kGrImprovedPerlinNoiseEffect_ClassID, kNone_OptimizationFlags)
|
, fOctaves(octaves)
|
, fZ(z)
|
, fPermutationsSampler(std::move(permutationsProxy))
|
, fGradientSampler(std::move(gradientProxy))
|
, fPaintingData(std::move(paintingData)) {
|
this->setTextureSamplerCnt(2);
|
fCoordTransform = GrCoordTransform(matrix);
|
this->addCoordTransform(&fCoordTransform);
|
}
|
|
GrImprovedPerlinNoiseEffect(const GrImprovedPerlinNoiseEffect& that)
|
: INHERITED(kGrImprovedPerlinNoiseEffect_ClassID, kNone_OptimizationFlags)
|
, fCoordTransform(that.fCoordTransform)
|
, fOctaves(that.fOctaves)
|
, fZ(that.fZ)
|
, fPermutationsSampler(that.fPermutationsSampler)
|
, fGradientSampler(that.fGradientSampler)
|
, fPaintingData(new SkPerlinNoiseShaderImpl::PaintingData(*that.fPaintingData)) {
|
this->setTextureSamplerCnt(2);
|
this->addCoordTransform(&fCoordTransform);
|
}
|
|
const TextureSampler& onTextureSampler(int i) const override {
|
return IthTextureSampler(i, fPermutationsSampler, fGradientSampler);
|
}
|
|
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
|
|
GrCoordTransform fCoordTransform;
|
int fOctaves;
|
SkScalar fZ;
|
TextureSampler fPermutationsSampler;
|
TextureSampler fGradientSampler;
|
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> fPaintingData;
|
|
typedef GrFragmentProcessor INHERITED;
|
};
|
|
/////////////////////////////////////////////////////////////////////
|
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrImprovedPerlinNoiseEffect);
|
|
#if GR_TEST_UTILS
|
std::unique_ptr<GrFragmentProcessor> GrImprovedPerlinNoiseEffect::TestCreate(
|
GrProcessorTestData* d) {
|
SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f,
|
0.99f);
|
SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f,
|
0.99f);
|
int numOctaves = d->fRandom->nextRangeU(2, 10);
|
SkScalar z = SkIntToScalar(d->fRandom->nextU());
|
|
sk_sp<SkShader> shader(SkPerlinNoiseShader::MakeImprovedNoise(baseFrequencyX,
|
baseFrequencyY,
|
numOctaves,
|
z));
|
|
GrTest::TestAsFPArgs asFPArgs(d);
|
return as_SB(shader)->asFragmentProcessor(asFPArgs.args());
|
}
|
#endif
|
|
void GrGLImprovedPerlinNoise::emitCode(EmitArgs& args) {
|
const GrImprovedPerlinNoiseEffect& pne = args.fFp.cast<GrImprovedPerlinNoiseEffect>();
|
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
|
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
|
SkString vCoords = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
|
|
fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
|
"baseFrequency");
|
const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni);
|
|
fZUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "z");
|
const char* zUni = uniformHandler->getUniformCStr(fZUni);
|
|
// fade function
|
const GrShaderVar fadeArgs[] = {
|
GrShaderVar("t", kHalf3_GrSLType)
|
};
|
SkString fadeFuncName;
|
fragBuilder->emitFunction(kHalf3_GrSLType, "fade", SK_ARRAY_COUNT(fadeArgs),
|
fadeArgs,
|
"return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);",
|
&fadeFuncName);
|
|
// perm function
|
const GrShaderVar permArgs[] = {
|
GrShaderVar("x", kHalf_GrSLType)
|
};
|
SkString permFuncName;
|
SkString permCode("return ");
|
// FIXME even though I'm creating these textures with kRepeat_TileMode, they're clamped. Not
|
// sure why. Using fract() (here and the next texture lookup) as a workaround.
|
fragBuilder->appendTextureLookup(&permCode, args.fTexSamplers[0], "float2(fract(x / 256.0), 0.0)",
|
kHalf2_GrSLType);
|
permCode.append(".r * 255.0;");
|
fragBuilder->emitFunction(kHalf_GrSLType, "perm", SK_ARRAY_COUNT(permArgs), permArgs,
|
permCode.c_str(), &permFuncName);
|
|
// grad function
|
const GrShaderVar gradArgs[] = {
|
GrShaderVar("x", kHalf_GrSLType),
|
GrShaderVar("p", kHalf3_GrSLType)
|
};
|
SkString gradFuncName;
|
SkString gradCode("return half(dot(");
|
fragBuilder->appendTextureLookup(&gradCode, args.fTexSamplers[1], "float2(fract(x / 16.0), 0.0)",
|
kHalf2_GrSLType);
|
gradCode.append(".rgb * 255.0 - float3(1.0), p));");
|
fragBuilder->emitFunction(kHalf_GrSLType, "grad", SK_ARRAY_COUNT(gradArgs), gradArgs,
|
gradCode.c_str(), &gradFuncName);
|
|
// lerp function
|
const GrShaderVar lerpArgs[] = {
|
GrShaderVar("a", kHalf_GrSLType),
|
GrShaderVar("b", kHalf_GrSLType),
|
GrShaderVar("w", kHalf_GrSLType)
|
};
|
SkString lerpFuncName;
|
fragBuilder->emitFunction(kHalf_GrSLType, "lerp", SK_ARRAY_COUNT(lerpArgs), lerpArgs,
|
"return a + w * (b - a);", &lerpFuncName);
|
|
// noise function
|
const GrShaderVar noiseArgs[] = {
|
GrShaderVar("p", kHalf3_GrSLType),
|
};
|
SkString noiseFuncName;
|
SkString noiseCode;
|
noiseCode.append("half3 P = mod(floor(p), 256.0);");
|
noiseCode.append("p -= floor(p);");
|
noiseCode.appendf("half3 f = %s(p);", fadeFuncName.c_str());
|
noiseCode.appendf("half A = %s(P.x) + P.y;", permFuncName.c_str());
|
noiseCode.appendf("half AA = %s(A) + P.z;", permFuncName.c_str());
|
noiseCode.appendf("half AB = %s(A + 1.0) + P.z;", permFuncName.c_str());
|
noiseCode.appendf("half B = %s(P.x + 1.0) + P.y;", permFuncName.c_str());
|
noiseCode.appendf("half BA = %s(B) + P.z;", permFuncName.c_str());
|
noiseCode.appendf("half BB = %s(B + 1.0) + P.z;", permFuncName.c_str());
|
noiseCode.appendf("half result = %s(", lerpFuncName.c_str());
|
noiseCode.appendf("%s(%s(%s(%s(AA), p),", lerpFuncName.c_str(), lerpFuncName.c_str(),
|
gradFuncName.c_str(), permFuncName.c_str());
|
noiseCode.appendf("%s(%s(BA), p + half3(-1.0, 0.0, 0.0)), f.x),", gradFuncName.c_str(),
|
permFuncName.c_str());
|
noiseCode.appendf("%s(%s(%s(AB), p + half3(0.0, -1.0, 0.0)),", lerpFuncName.c_str(),
|
gradFuncName.c_str(), permFuncName.c_str());
|
noiseCode.appendf("%s(%s(BB), p + half3(-1.0, -1.0, 0.0)), f.x), f.y),",
|
gradFuncName.c_str(), permFuncName.c_str());
|
noiseCode.appendf("%s(%s(%s(%s(AA + 1.0), p + half3(0.0, 0.0, -1.0)),",
|
lerpFuncName.c_str(), lerpFuncName.c_str(), gradFuncName.c_str(),
|
permFuncName.c_str());
|
noiseCode.appendf("%s(%s(BA + 1.0), p + half3(-1.0, 0.0, -1.0)), f.x),",
|
gradFuncName.c_str(), permFuncName.c_str());
|
noiseCode.appendf("%s(%s(%s(AB + 1.0), p + half3(0.0, -1.0, -1.0)),",
|
lerpFuncName.c_str(), gradFuncName.c_str(), permFuncName.c_str());
|
noiseCode.appendf("%s(%s(BB + 1.0), p + half3(-1.0, -1.0, -1.0)), f.x), f.y), f.z);",
|
gradFuncName.c_str(), permFuncName.c_str());
|
noiseCode.append("return result;");
|
fragBuilder->emitFunction(kHalf_GrSLType, "noise", SK_ARRAY_COUNT(noiseArgs), noiseArgs,
|
noiseCode.c_str(), &noiseFuncName);
|
|
// noiseOctaves function
|
const GrShaderVar noiseOctavesArgs[] = {
|
GrShaderVar("p", kHalf3_GrSLType)
|
};
|
SkString noiseOctavesFuncName;
|
SkString noiseOctavesCode;
|
noiseOctavesCode.append("half result = 0.0;");
|
noiseOctavesCode.append("half ratio = 1.0;");
|
noiseOctavesCode.appendf("for (half i = 0.0; i < %d; i++) {", pne.octaves());
|
noiseOctavesCode.appendf("result += %s(p) / ratio;", noiseFuncName.c_str());
|
noiseOctavesCode.append("p *= 2.0;");
|
noiseOctavesCode.append("ratio *= 2.0;");
|
noiseOctavesCode.append("}");
|
noiseOctavesCode.append("return (result + 1.0) / 2.0;");
|
fragBuilder->emitFunction(kHalf_GrSLType, "noiseOctaves", SK_ARRAY_COUNT(noiseOctavesArgs),
|
noiseOctavesArgs, noiseOctavesCode.c_str(), &noiseOctavesFuncName);
|
|
fragBuilder->codeAppendf("half2 coords = half2(%s * %s);", vCoords.c_str(), baseFrequencyUni);
|
fragBuilder->codeAppendf("half r = %s(half3(coords, %s));", noiseOctavesFuncName.c_str(),
|
zUni);
|
fragBuilder->codeAppendf("half g = %s(half3(coords, %s + 0000.0));",
|
noiseOctavesFuncName.c_str(), zUni);
|
fragBuilder->codeAppendf("half b = %s(half3(coords, %s + 0000.0));",
|
noiseOctavesFuncName.c_str(), zUni);
|
fragBuilder->codeAppendf("half a = %s(half3(coords, %s + 0000.0));",
|
noiseOctavesFuncName.c_str(), zUni);
|
fragBuilder->codeAppendf("%s = half4(r, g, b, a);", args.fOutputColor);
|
|
// Clamp values
|
fragBuilder->codeAppendf("%s = saturate(%s);", args.fOutputColor, args.fOutputColor);
|
|
// Pre-multiply the result
|
fragBuilder->codeAppendf("\n\t\t%s = half4(%s.rgb * %s.aaa, %s.a);\n",
|
args.fOutputColor, args.fOutputColor,
|
args.fOutputColor, args.fOutputColor);
|
}
|
|
void GrGLImprovedPerlinNoise::GenKey(const GrProcessor& processor, const GrShaderCaps&,
|
GrProcessorKeyBuilder* b) {
|
const GrImprovedPerlinNoiseEffect& pne = processor.cast<GrImprovedPerlinNoiseEffect>();
|
b->add32(pne.octaves());
|
}
|
|
void GrGLImprovedPerlinNoise::onSetData(const GrGLSLProgramDataManager& pdman,
|
const GrFragmentProcessor& processor) {
|
INHERITED::onSetData(pdman, processor);
|
|
const GrImprovedPerlinNoiseEffect& noise = processor.cast<GrImprovedPerlinNoiseEffect>();
|
|
const SkVector& baseFrequency = noise.baseFrequency();
|
pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY);
|
|
pdman.set1f(fZUni, noise.z());
|
}
|
|
/////////////////////////////////////////////////////////////////////
|
std::unique_ptr<GrFragmentProcessor> SkPerlinNoiseShaderImpl::asFragmentProcessor(
|
const GrFPArgs& args) const {
|
SkASSERT(args.fContext);
|
|
const auto localMatrix = this->totalLocalMatrix(args.fPreLocalMatrix, args.fPostLocalMatrix);
|
const auto paintMatrix = SkMatrix::Concat(*args.fViewMatrix, *localMatrix);
|
|
// Either we don't stitch tiles, either we have a valid tile size
|
SkASSERT(!fStitchTiles || !fTileSize.isEmpty());
|
|
std::unique_ptr<SkPerlinNoiseShaderImpl::PaintingData> paintingData =
|
skstd::make_unique<SkPerlinNoiseShaderImpl::PaintingData>(fTileSize,
|
fSeed,
|
fBaseFrequencyX,
|
fBaseFrequencyY,
|
paintMatrix);
|
|
SkMatrix m = *args.fViewMatrix;
|
m.setTranslateX(-localMatrix->getTranslateX() + SK_Scalar1);
|
m.setTranslateY(-localMatrix->getTranslateY() + SK_Scalar1);
|
|
auto proxyProvider = args.fContext->priv().proxyProvider();
|
if (fType == kImprovedNoise_Type) {
|
// Need to assert that the textures we'll create are power of 2 so a copy isn't needed.
|
// We also know that we will not be using mipmaps. If things things weren't true we should
|
// go through GrBitmapTextureMaker to handle needed copies.
|
const sk_sp<SkImage> permutationsImage = paintingData->getImprovedPermutationsImage();
|
SkASSERT(SkIsPow2(permutationsImage->width()) && SkIsPow2(permutationsImage->height()));
|
sk_sp<GrTextureProxy> permutationsTexture(
|
GrMakeCachedImageProxy(proxyProvider, std::move(permutationsImage)));
|
|
const sk_sp<SkImage> gradientImage = paintingData->getGradientImage();
|
SkASSERT(SkIsPow2(gradientImage->width()) && SkIsPow2(gradientImage->height()));
|
sk_sp<GrTextureProxy> gradientTexture(
|
GrMakeCachedImageProxy(proxyProvider, std::move(gradientImage)));
|
return GrImprovedPerlinNoiseEffect::Make(fNumOctaves, fSeed, std::move(paintingData),
|
std::move(permutationsTexture),
|
std::move(gradientTexture), m);
|
}
|
|
if (0 == fNumOctaves) {
|
if (kFractalNoise_Type == fType) {
|
// Extract the incoming alpha and emit rgba = (a/4, a/4, a/4, a/2)
|
// TODO: Either treat the output of this shader as sRGB or allow client to specify a
|
// color space of the noise. Either way, this case (and the GLSL) need to convert to
|
// the destination.
|
auto inner =
|
GrConstColorProcessor::Make(SkPMColor4f::FromBytes_RGBA(0x80404040),
|
GrConstColorProcessor::InputMode::kModulateRGBA);
|
return GrFragmentProcessor::MulChildByInputAlpha(std::move(inner));
|
}
|
// Emit zero.
|
return GrConstColorProcessor::Make(SK_PMColor4fTRANSPARENT,
|
GrConstColorProcessor::InputMode::kIgnore);
|
}
|
|
// Need to assert that the textures we'll create are power of 2 so that now copy is needed. We
|
// also know that we will not be using mipmaps. If things things weren't true we should go
|
// through GrBitmapTextureMaker to handle needed copies.
|
const sk_sp<SkImage> permutationsImage = paintingData->getPermutationsImage();
|
SkASSERT(SkIsPow2(permutationsImage->width()) && SkIsPow2(permutationsImage->height()));
|
sk_sp<GrTextureProxy> permutationsProxy = GrMakeCachedImageProxy(proxyProvider,
|
std::move(permutationsImage));
|
|
const sk_sp<SkImage> noiseImage = paintingData->getNoiseImage();
|
SkASSERT(SkIsPow2(noiseImage->width()) && SkIsPow2(noiseImage->height()));
|
sk_sp<GrTextureProxy> noiseProxy = GrMakeCachedImageProxy(proxyProvider,
|
std::move(noiseImage));
|
|
if (permutationsProxy && noiseProxy) {
|
auto inner = GrPerlinNoise2Effect::Make(fType,
|
fNumOctaves,
|
fStitchTiles,
|
std::move(paintingData),
|
std::move(permutationsProxy),
|
std::move(noiseProxy),
|
m);
|
return GrFragmentProcessor::MulChildByInputAlpha(std::move(inner));
|
}
|
return nullptr;
|
}
|
|
#endif
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
static bool valid_input(SkScalar baseX, SkScalar baseY, int numOctaves, const SkISize* tileSize,
|
SkScalar seed) {
|
if (!(baseX >= 0 && baseY >= 0)) {
|
return false;
|
}
|
if (!(numOctaves >= 0 && numOctaves <= SkPerlinNoiseShaderImpl::kMaxOctaves)) {
|
return false;
|
}
|
if (tileSize && !(tileSize->width() >= 0 && tileSize->height() >= 0)) {
|
return false;
|
}
|
if (!SkScalarIsFinite(seed)) {
|
return false;
|
}
|
return true;
|
}
|
|
sk_sp<SkShader> SkPerlinNoiseShader::MakeFractalNoise(SkScalar baseFrequencyX,
|
SkScalar baseFrequencyY,
|
int numOctaves, SkScalar seed,
|
const SkISize* tileSize) {
|
if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, tileSize, seed)) {
|
return nullptr;
|
}
|
return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kFractalNoise_Type,
|
baseFrequencyX, baseFrequencyY, numOctaves, seed,
|
tileSize));
|
}
|
|
sk_sp<SkShader> SkPerlinNoiseShader::MakeTurbulence(SkScalar baseFrequencyX,
|
SkScalar baseFrequencyY,
|
int numOctaves, SkScalar seed,
|
const SkISize* tileSize) {
|
if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, tileSize, seed)) {
|
return nullptr;
|
}
|
return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kTurbulence_Type,
|
baseFrequencyX, baseFrequencyY, numOctaves, seed,
|
tileSize));
|
}
|
|
sk_sp<SkShader> SkPerlinNoiseShader::MakeImprovedNoise(SkScalar baseFrequencyX,
|
SkScalar baseFrequencyY,
|
int numOctaves, SkScalar z) {
|
if (!valid_input(baseFrequencyX, baseFrequencyY, numOctaves, nullptr, z)) {
|
return nullptr;
|
}
|
return sk_sp<SkShader>(new SkPerlinNoiseShaderImpl(SkPerlinNoiseShaderImpl::kImprovedNoise_Type,
|
baseFrequencyX, baseFrequencyY, numOctaves, z,
|
nullptr));
|
}
|
|
void SkPerlinNoiseShader::RegisterFlattenables() {
|
SK_REGISTER_FLATTENABLE(SkPerlinNoiseShaderImpl);
|
}
|