/*
|
* Copyright 2012 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#ifndef SkPathOpsCubic_DEFINED
|
#define SkPathOpsCubic_DEFINED
|
|
#include "SkArenaAlloc.h"
|
#include "SkPath.h"
|
#include "SkPathOpsTCurve.h"
|
|
struct SkDCubicPair;
|
|
struct SkDCubic {
|
static const int kPointCount = 4;
|
static const int kPointLast = kPointCount - 1;
|
static const int kMaxIntersections = 9;
|
|
enum SearchAxis {
|
kXAxis,
|
kYAxis
|
};
|
|
bool collapsed() const {
|
return fPts[0].approximatelyEqual(fPts[1]) && fPts[0].approximatelyEqual(fPts[2])
|
&& fPts[0].approximatelyEqual(fPts[3]);
|
}
|
|
bool controlsInside() const {
|
SkDVector v01 = fPts[0] - fPts[1];
|
SkDVector v02 = fPts[0] - fPts[2];
|
SkDVector v03 = fPts[0] - fPts[3];
|
SkDVector v13 = fPts[1] - fPts[3];
|
SkDVector v23 = fPts[2] - fPts[3];
|
return v03.dot(v01) > 0 && v03.dot(v02) > 0 && v03.dot(v13) > 0 && v03.dot(v23) > 0;
|
}
|
|
static bool IsConic() { return false; }
|
|
const SkDPoint& operator[](int n) const { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
|
SkDPoint& operator[](int n) { SkASSERT(n >= 0 && n < kPointCount); return fPts[n]; }
|
|
void align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const;
|
double binarySearch(double min, double max, double axisIntercept, SearchAxis xAxis) const;
|
double calcPrecision() const;
|
SkDCubicPair chopAt(double t) const;
|
static void Coefficients(const double* cubic, double* A, double* B, double* C, double* D);
|
static int ComplexBreak(const SkPoint pts[4], SkScalar* t);
|
int convexHull(char order[kPointCount]) const;
|
|
void debugInit() {
|
sk_bzero(fPts, sizeof(fPts));
|
}
|
|
void debugSet(const SkDPoint* pts);
|
|
void dump() const; // callable from the debugger when the implementation code is linked in
|
void dumpID(int id) const;
|
void dumpInner() const;
|
SkDVector dxdyAtT(double t) const;
|
bool endsAreExtremaInXOrY() const;
|
static int FindExtrema(const double src[], double tValue[2]);
|
int findInflections(double tValues[2]) const;
|
|
static int FindInflections(const SkPoint a[kPointCount], double tValues[2]) {
|
SkDCubic cubic;
|
return cubic.set(a).findInflections(tValues);
|
}
|
|
int findMaxCurvature(double tValues[]) const;
|
|
#ifdef SK_DEBUG
|
SkOpGlobalState* globalState() const { return fDebugGlobalState; }
|
#endif
|
|
bool hullIntersects(const SkDCubic& c2, bool* isLinear) const;
|
bool hullIntersects(const SkDConic& c, bool* isLinear) const;
|
bool hullIntersects(const SkDQuad& c2, bool* isLinear) const;
|
bool hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const;
|
bool isLinear(int startIndex, int endIndex) const;
|
static int maxIntersections() { return kMaxIntersections; }
|
bool monotonicInX() const;
|
bool monotonicInY() const;
|
void otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const;
|
static int pointCount() { return kPointCount; }
|
static int pointLast() { return kPointLast; }
|
SkDPoint ptAtT(double t) const;
|
static int RootsReal(double A, double B, double C, double D, double t[3]);
|
static int RootsValidT(const double A, const double B, const double C, double D, double s[3]);
|
|
int searchRoots(double extremes[6], int extrema, double axisIntercept,
|
SearchAxis xAxis, double* validRoots) const;
|
|
bool toFloatPoints(SkPoint* ) const;
|
/**
|
* Return the number of valid roots (0 < root < 1) for this cubic intersecting the
|
* specified horizontal line.
|
*/
|
int horizontalIntersect(double yIntercept, double roots[3]) const;
|
/**
|
* Return the number of valid roots (0 < root < 1) for this cubic intersecting the
|
* specified vertical line.
|
*/
|
int verticalIntersect(double xIntercept, double roots[3]) const;
|
|
// add debug only global pointer so asserts can be skipped by fuzzers
|
const SkDCubic& set(const SkPoint pts[kPointCount]
|
SkDEBUGPARAMS(SkOpGlobalState* state = nullptr)) {
|
fPts[0] = pts[0];
|
fPts[1] = pts[1];
|
fPts[2] = pts[2];
|
fPts[3] = pts[3];
|
SkDEBUGCODE(fDebugGlobalState = state);
|
return *this;
|
}
|
|
SkDCubic subDivide(double t1, double t2) const;
|
void subDivide(double t1, double t2, SkDCubic* c) const { *c = this->subDivide(t1, t2); }
|
|
static SkDCubic SubDivide(const SkPoint a[kPointCount], double t1, double t2) {
|
SkDCubic cubic;
|
return cubic.set(a).subDivide(t1, t2);
|
}
|
|
void subDivide(const SkDPoint& a, const SkDPoint& d, double t1, double t2, SkDPoint p[2]) const;
|
|
static void SubDivide(const SkPoint pts[kPointCount], const SkDPoint& a, const SkDPoint& d, double t1,
|
double t2, SkDPoint p[2]) {
|
SkDCubic cubic;
|
cubic.set(pts).subDivide(a, d, t1, t2, p);
|
}
|
|
double top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const;
|
SkDQuad toQuad() const;
|
|
static const int gPrecisionUnit;
|
SkDPoint fPts[kPointCount];
|
SkDEBUGCODE(SkOpGlobalState* fDebugGlobalState);
|
};
|
|
/* Given the set [0, 1, 2, 3], and two of the four members, compute an XOR mask
|
that computes the other two. Note that:
|
|
one ^ two == 3 for (0, 3), (1, 2)
|
one ^ two < 3 for (0, 1), (0, 2), (1, 3), (2, 3)
|
3 - (one ^ two) is either 0, 1, or 2
|
1 >> (3 - (one ^ two)) is either 0 or 1
|
thus:
|
returned == 2 for (0, 3), (1, 2)
|
returned == 3 for (0, 1), (0, 2), (1, 3), (2, 3)
|
given that:
|
(0, 3) ^ 2 -> (2, 1) (1, 2) ^ 2 -> (3, 0)
|
(0, 1) ^ 3 -> (3, 2) (0, 2) ^ 3 -> (3, 1) (1, 3) ^ 3 -> (2, 0) (2, 3) ^ 3 -> (1, 0)
|
*/
|
inline int other_two(int one, int two) {
|
return 1 >> (3 - (one ^ two)) ^ 3;
|
}
|
|
struct SkDCubicPair {
|
const SkDCubic first() const {
|
#ifdef SK_DEBUG
|
SkDCubic result;
|
result.debugSet(&pts[0]);
|
return result;
|
#else
|
return (const SkDCubic&) pts[0];
|
#endif
|
}
|
const SkDCubic second() const {
|
#ifdef SK_DEBUG
|
SkDCubic result;
|
result.debugSet(&pts[3]);
|
return result;
|
#else
|
return (const SkDCubic&) pts[3];
|
#endif
|
}
|
SkDPoint pts[7];
|
};
|
|
class SkTCubic : public SkTCurve {
|
public:
|
SkDCubic fCubic;
|
|
SkTCubic() {}
|
|
SkTCubic(const SkDCubic& c)
|
: fCubic(c) {
|
}
|
|
~SkTCubic() override {}
|
|
const SkDPoint& operator[](int n) const override { return fCubic[n]; }
|
SkDPoint& operator[](int n) override { return fCubic[n]; }
|
|
bool collapsed() const override { return fCubic.collapsed(); }
|
bool controlsInside() const override { return fCubic.controlsInside(); }
|
void debugInit() override { return fCubic.debugInit(); }
|
#if DEBUG_T_SECT
|
void dumpID(int id) const override { return fCubic.dumpID(id); }
|
#endif
|
SkDVector dxdyAtT(double t) const override { return fCubic.dxdyAtT(t); }
|
#ifdef SK_DEBUG
|
SkOpGlobalState* globalState() const override { return fCubic.globalState(); }
|
#endif
|
bool hullIntersects(const SkDQuad& quad, bool* isLinear) const override;
|
bool hullIntersects(const SkDConic& conic, bool* isLinear) const override;
|
|
bool hullIntersects(const SkDCubic& cubic, bool* isLinear) const override {
|
return cubic.hullIntersects(fCubic, isLinear);
|
}
|
|
bool hullIntersects(const SkTCurve& curve, bool* isLinear) const override {
|
return curve.hullIntersects(fCubic, isLinear);
|
}
|
|
int intersectRay(SkIntersections* i, const SkDLine& line) const override;
|
bool IsConic() const override { return false; }
|
SkTCurve* make(SkArenaAlloc& heap) const override { return heap.make<SkTCubic>(); }
|
|
int maxIntersections() const override { return SkDCubic::kMaxIntersections; }
|
|
void otherPts(int oddMan, const SkDPoint* endPt[2]) const override {
|
fCubic.otherPts(oddMan, endPt);
|
}
|
|
int pointCount() const override { return SkDCubic::kPointCount; }
|
int pointLast() const override { return SkDCubic::kPointLast; }
|
SkDPoint ptAtT(double t) const override { return fCubic.ptAtT(t); }
|
void setBounds(SkDRect* ) const override;
|
|
void subDivide(double t1, double t2, SkTCurve* curve) const override {
|
((SkTCubic*) curve)->fCubic = fCubic.subDivide(t1, t2);
|
}
|
};
|
|
#endif
|