/*
|
* Copyright 2006 The Android Open Source Project
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkString.h"
|
|
#include "SkSafeMath.h"
|
#include "SkTo.h"
|
#include "SkUtils.h"
|
|
#include <cstdarg>
|
#include <cstdio>
|
#include <new>
|
#include <utility>
|
|
|
// number of bytes (on the stack) to receive the printf result
|
static const size_t kBufferSize = 1024;
|
|
static const char* apply_format_string(const char* format, va_list args, char* stackBuffer,
|
size_t stackBufferSize, int* length, SkString* heapBuffer) {
|
va_list argsCopy;
|
va_copy(argsCopy, args);
|
*length = std::vsnprintf(stackBuffer, stackBufferSize, format, args);
|
if (*length < 0) {
|
SkDebugf("SkString: vsnprintf reported error.");
|
va_end(argsCopy);
|
*length = 0;
|
return stackBuffer;
|
}
|
if (*length < SkToInt(stackBufferSize)) {
|
va_end(argsCopy);
|
return stackBuffer;
|
}
|
heapBuffer->resize(*length);
|
SkDEBUGCODE(int check =)
|
std::vsnprintf(heapBuffer->writable_str(), *length + 1, format, argsCopy);
|
SkASSERT(check == *length);
|
va_end(argsCopy);
|
return heapBuffer->c_str();
|
}
|
|
#define ARGS_TO_BUFFER(format, buffer, size, written, result) \
|
SkString overflow; \
|
do { \
|
va_list args; \
|
va_start(args, format); \
|
result = apply_format_string(format, args, buffer, size, &written, &overflow); \
|
va_end(args); \
|
} while (0)
|
|
#define V_SKSTRING_PRINTF(output, format) \
|
do { \
|
char buffer[kBufferSize]; \
|
va_list args; \
|
va_start(args, format); \
|
int length; \
|
auto result = apply_format_string(format, args, buffer, kBufferSize, &length, &output); \
|
SkASSERT(result == output.c_str() || result == buffer); \
|
if (result == buffer) { \
|
output.set(buffer, length); \
|
} \
|
} while (0)
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
bool SkStrEndsWith(const char string[], const char suffixStr[]) {
|
SkASSERT(string);
|
SkASSERT(suffixStr);
|
size_t strLen = strlen(string);
|
size_t suffixLen = strlen(suffixStr);
|
return strLen >= suffixLen &&
|
!strncmp(string + strLen - suffixLen, suffixStr, suffixLen);
|
}
|
|
bool SkStrEndsWith(const char string[], const char suffixChar) {
|
SkASSERT(string);
|
size_t strLen = strlen(string);
|
if (0 == strLen) {
|
return false;
|
} else {
|
return (suffixChar == string[strLen-1]);
|
}
|
}
|
|
int SkStrStartsWithOneOf(const char string[], const char prefixes[]) {
|
int index = 0;
|
do {
|
const char* limit = strchr(prefixes, '\0');
|
if (!strncmp(string, prefixes, limit - prefixes)) {
|
return index;
|
}
|
prefixes = limit + 1;
|
index++;
|
} while (prefixes[0]);
|
return -1;
|
}
|
|
char* SkStrAppendU32(char string[], uint32_t dec) {
|
SkDEBUGCODE(char* start = string;)
|
|
char buffer[SkStrAppendU32_MaxSize];
|
char* p = buffer + sizeof(buffer);
|
|
do {
|
*--p = SkToU8('0' + dec % 10);
|
dec /= 10;
|
} while (dec != 0);
|
|
SkASSERT(p >= buffer);
|
char* stop = buffer + sizeof(buffer);
|
while (p < stop) {
|
*string++ = *p++;
|
}
|
SkASSERT(string - start <= SkStrAppendU32_MaxSize);
|
return string;
|
}
|
|
char* SkStrAppendS32(char string[], int32_t dec) {
|
uint32_t udec = dec;
|
if (dec < 0) {
|
*string++ = '-';
|
udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful
|
}
|
return SkStrAppendU32(string, udec);
|
}
|
|
char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) {
|
SkDEBUGCODE(char* start = string;)
|
|
char buffer[SkStrAppendU64_MaxSize];
|
char* p = buffer + sizeof(buffer);
|
|
do {
|
*--p = SkToU8('0' + (int32_t) (dec % 10));
|
dec /= 10;
|
minDigits--;
|
} while (dec != 0);
|
|
while (minDigits > 0) {
|
*--p = '0';
|
minDigits--;
|
}
|
|
SkASSERT(p >= buffer);
|
size_t cp_len = buffer + sizeof(buffer) - p;
|
memcpy(string, p, cp_len);
|
string += cp_len;
|
|
SkASSERT(string - start <= SkStrAppendU64_MaxSize);
|
return string;
|
}
|
|
char* SkStrAppendS64(char string[], int64_t dec, int minDigits) {
|
uint64_t udec = dec;
|
if (dec < 0) {
|
*string++ = '-';
|
udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful
|
}
|
return SkStrAppendU64(string, udec, minDigits);
|
}
|
|
char* SkStrAppendFloat(char string[], float value) {
|
// since floats have at most 8 significant digits, we limit our %g to that.
|
static const char gFormat[] = "%.8g";
|
// make it 1 larger for the terminating 0
|
char buffer[SkStrAppendScalar_MaxSize + 1];
|
int len = snprintf(buffer, sizeof(buffer), gFormat, value);
|
memcpy(string, buffer, len);
|
SkASSERT(len <= SkStrAppendScalar_MaxSize);
|
return string + len;
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
const SkString::Rec SkString::gEmptyRec(0, 0);
|
|
#define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec)
|
|
static uint32_t trim_size_t_to_u32(size_t value) {
|
if (sizeof(size_t) > sizeof(uint32_t)) {
|
if (value > UINT32_MAX) {
|
value = UINT32_MAX;
|
}
|
}
|
return (uint32_t)value;
|
}
|
|
static size_t check_add32(size_t base, size_t extra) {
|
SkASSERT(base <= UINT32_MAX);
|
if (sizeof(size_t) > sizeof(uint32_t)) {
|
if (base + extra > UINT32_MAX) {
|
extra = UINT32_MAX - base;
|
}
|
}
|
return extra;
|
}
|
|
sk_sp<SkString::Rec> SkString::Rec::Make(const char text[], size_t len) {
|
if (0 == len) {
|
return sk_sp<SkString::Rec>(const_cast<Rec*>(&gEmptyRec));
|
}
|
|
SkSafeMath safe;
|
// We store a 32bit version of the length
|
uint32_t stringLen = safe.castTo<uint32_t>(len);
|
// Add SizeOfRec() for our overhead and 1 for null-termination
|
size_t allocationSize = safe.add(len, SizeOfRec() + sizeof(char));
|
// Align up to a multiple of 4
|
allocationSize = safe.alignUp(allocationSize, 4);
|
|
SkASSERT_RELEASE(safe.ok());
|
|
void* storage = ::operator new (allocationSize);
|
sk_sp<Rec> rec(new (storage) Rec(stringLen, 1));
|
if (text) {
|
memcpy(rec->data(), text, len);
|
}
|
rec->data()[len] = 0;
|
return rec;
|
}
|
|
void SkString::Rec::ref() const {
|
if (this == &SkString::gEmptyRec) {
|
return;
|
}
|
SkAssertResult(this->fRefCnt.fetch_add(+1, std::memory_order_relaxed));
|
}
|
|
void SkString::Rec::unref() const {
|
if (this == &SkString::gEmptyRec) {
|
return;
|
}
|
int32_t oldRefCnt = this->fRefCnt.fetch_add(-1, std::memory_order_acq_rel);
|
SkASSERT(oldRefCnt);
|
if (1 == oldRefCnt) {
|
delete this;
|
}
|
}
|
|
bool SkString::Rec::unique() const {
|
return fRefCnt.load(std::memory_order_acquire) == 1;
|
}
|
|
#ifdef SK_DEBUG
|
void SkString::validate() const {
|
// make sure know one has written over our global
|
SkASSERT(0 == gEmptyRec.fLength);
|
SkASSERT(0 == gEmptyRec.fRefCnt.load(std::memory_order_relaxed));
|
SkASSERT(0 == gEmptyRec.data()[0]);
|
|
if (fRec.get() != &gEmptyRec) {
|
SkASSERT(fRec->fLength > 0);
|
SkASSERT(fRec->fRefCnt.load(std::memory_order_relaxed) > 0);
|
SkASSERT(0 == fRec->data()[fRec->fLength]);
|
}
|
}
|
#endif
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) {
|
}
|
|
SkString::SkString(size_t len) {
|
fRec = Rec::Make(nullptr, len);
|
}
|
|
SkString::SkString(const char text[]) {
|
size_t len = text ? strlen(text) : 0;
|
|
fRec = Rec::Make(text, len);
|
}
|
|
SkString::SkString(const char text[], size_t len) {
|
fRec = Rec::Make(text, len);
|
}
|
|
SkString::SkString(const SkString& src) {
|
src.validate();
|
|
fRec = src.fRec;
|
}
|
|
SkString::SkString(SkString&& src) {
|
src.validate();
|
|
fRec = std::move(src.fRec);
|
src.fRec.reset(const_cast<Rec*>(&gEmptyRec));
|
}
|
|
SkString::~SkString() {
|
this->validate();
|
}
|
|
bool SkString::equals(const SkString& src) const {
|
return fRec == src.fRec || this->equals(src.c_str(), src.size());
|
}
|
|
bool SkString::equals(const char text[]) const {
|
return this->equals(text, text ? strlen(text) : 0);
|
}
|
|
bool SkString::equals(const char text[], size_t len) const {
|
SkASSERT(len == 0 || text != nullptr);
|
|
return fRec->fLength == len && !memcmp(fRec->data(), text, len);
|
}
|
|
SkString& SkString::operator=(const SkString& src) {
|
this->validate();
|
|
if (fRec != src.fRec) {
|
SkString tmp(src);
|
this->swap(tmp);
|
}
|
return *this;
|
}
|
|
SkString& SkString::operator=(SkString&& src) {
|
this->validate();
|
|
if (fRec != src.fRec) {
|
this->swap(src);
|
}
|
return *this;
|
}
|
|
SkString& SkString::operator=(const char text[]) {
|
this->validate();
|
|
SkString tmp(text);
|
this->swap(tmp);
|
|
return *this;
|
}
|
|
void SkString::reset() {
|
this->validate();
|
fRec.reset(const_cast<Rec*>(&gEmptyRec));
|
}
|
|
char* SkString::writable_str() {
|
this->validate();
|
|
if (fRec->fLength) {
|
if (!fRec->unique()) {
|
fRec = Rec::Make(fRec->data(), fRec->fLength);
|
}
|
}
|
return fRec->data();
|
}
|
|
void SkString::set(const char text[]) {
|
this->set(text, text ? strlen(text) : 0);
|
}
|
|
void SkString::set(const char text[], size_t len) {
|
len = trim_size_t_to_u32(len);
|
bool unique = fRec->unique();
|
if (0 == len) {
|
this->reset();
|
} else if (unique && len <= fRec->fLength) {
|
// should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))?
|
// just use less of the buffer without allocating a smaller one
|
char* p = this->writable_str();
|
if (text) {
|
memcpy(p, text, len);
|
}
|
p[len] = 0;
|
fRec->fLength = SkToU32(len);
|
} else if (unique && (fRec->fLength >> 2) == (len >> 2)) {
|
// we have spare room in the current allocation, so don't alloc a larger one
|
char* p = this->writable_str();
|
if (text) {
|
memcpy(p, text, len);
|
}
|
p[len] = 0;
|
fRec->fLength = SkToU32(len);
|
} else {
|
SkString tmp(text, len);
|
this->swap(tmp);
|
}
|
}
|
|
void SkString::insert(size_t offset, const char text[]) {
|
this->insert(offset, text, text ? strlen(text) : 0);
|
}
|
|
void SkString::insert(size_t offset, const char text[], size_t len) {
|
if (len) {
|
size_t length = fRec->fLength;
|
if (offset > length) {
|
offset = length;
|
}
|
|
// Check if length + len exceeds 32bits, we trim len
|
len = check_add32(length, len);
|
if (0 == len) {
|
return;
|
}
|
|
/* If we're the only owner, and we have room in our allocation for the insert,
|
do it in place, rather than allocating a new buffer.
|
|
To know we have room, compare the allocated sizes
|
beforeAlloc = SkAlign4(length + 1)
|
afterAlloc = SkAligh4(length + 1 + len)
|
but SkAlign4(x) is (x + 3) >> 2 << 2
|
which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2
|
and we can then eliminate the +1+3 since that doesn't affec the answer
|
*/
|
if (fRec->unique() && (length >> 2) == ((length + len) >> 2)) {
|
char* dst = this->writable_str();
|
|
if (offset < length) {
|
memmove(dst + offset + len, dst + offset, length - offset);
|
}
|
memcpy(dst + offset, text, len);
|
|
dst[length + len] = 0;
|
fRec->fLength = SkToU32(length + len);
|
} else {
|
/* Seems we should use realloc here, since that is safe if it fails
|
(we have the original data), and might be faster than alloc/copy/free.
|
*/
|
SkString tmp(fRec->fLength + len);
|
char* dst = tmp.writable_str();
|
|
if (offset > 0) {
|
memcpy(dst, fRec->data(), offset);
|
}
|
memcpy(dst + offset, text, len);
|
if (offset < fRec->fLength) {
|
memcpy(dst + offset + len, fRec->data() + offset,
|
fRec->fLength - offset);
|
}
|
|
this->swap(tmp);
|
}
|
}
|
}
|
|
void SkString::insertUnichar(size_t offset, SkUnichar uni) {
|
char buffer[SkUTF::kMaxBytesInUTF8Sequence];
|
size_t len = SkUTF::ToUTF8(uni, buffer);
|
|
if (len) {
|
this->insert(offset, buffer, len);
|
}
|
}
|
|
void SkString::insertS32(size_t offset, int32_t dec) {
|
char buffer[SkStrAppendS32_MaxSize];
|
char* stop = SkStrAppendS32(buffer, dec);
|
this->insert(offset, buffer, stop - buffer);
|
}
|
|
void SkString::insertS64(size_t offset, int64_t dec, int minDigits) {
|
char buffer[SkStrAppendS64_MaxSize];
|
char* stop = SkStrAppendS64(buffer, dec, minDigits);
|
this->insert(offset, buffer, stop - buffer);
|
}
|
|
void SkString::insertU32(size_t offset, uint32_t dec) {
|
char buffer[SkStrAppendU32_MaxSize];
|
char* stop = SkStrAppendU32(buffer, dec);
|
this->insert(offset, buffer, stop - buffer);
|
}
|
|
void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) {
|
char buffer[SkStrAppendU64_MaxSize];
|
char* stop = SkStrAppendU64(buffer, dec, minDigits);
|
this->insert(offset, buffer, stop - buffer);
|
}
|
|
void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) {
|
minDigits = SkTPin(minDigits, 0, 8);
|
|
char buffer[8];
|
char* p = buffer + sizeof(buffer);
|
|
do {
|
*--p = SkHexadecimalDigits::gUpper[hex & 0xF];
|
hex >>= 4;
|
minDigits -= 1;
|
} while (hex != 0);
|
|
while (--minDigits >= 0) {
|
*--p = '0';
|
}
|
|
SkASSERT(p >= buffer);
|
this->insert(offset, p, buffer + sizeof(buffer) - p);
|
}
|
|
void SkString::insertScalar(size_t offset, SkScalar value) {
|
char buffer[SkStrAppendScalar_MaxSize];
|
char* stop = SkStrAppendScalar(buffer, value);
|
this->insert(offset, buffer, stop - buffer);
|
}
|
|
void SkString::printf(const char format[], ...) {
|
V_SKSTRING_PRINTF((*this), format);
|
}
|
|
void SkString::appendf(const char format[], ...) {
|
char buffer[kBufferSize];
|
int length;
|
const char* result;
|
ARGS_TO_BUFFER(format, buffer, kBufferSize, length, result);
|
|
this->append(result, length);
|
}
|
|
void SkString::appendVAList(const char format[], va_list args) {
|
char buffer[kBufferSize];
|
int length = vsnprintf(buffer, kBufferSize, format, args);
|
SkASSERT(length >= 0 && length < SkToInt(kBufferSize));
|
|
this->append(buffer, length);
|
}
|
|
void SkString::prependf(const char format[], ...) {
|
char buffer[kBufferSize];
|
int length;
|
const char* result;
|
ARGS_TO_BUFFER(format, buffer, kBufferSize, length, result);
|
|
this->prepend(result, length);
|
}
|
|
void SkString::prependVAList(const char format[], va_list args) {
|
char buffer[kBufferSize];
|
int length = vsnprintf(buffer, kBufferSize, format, args);
|
SkASSERT(length >= 0 && length < SkToInt(kBufferSize));
|
|
this->prepend(buffer, length);
|
}
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkString::remove(size_t offset, size_t length) {
|
size_t size = this->size();
|
|
if (offset < size) {
|
if (length > size - offset) {
|
length = size - offset;
|
}
|
SkASSERT(length <= size);
|
SkASSERT(offset <= size - length);
|
if (length > 0) {
|
SkString tmp(size - length);
|
char* dst = tmp.writable_str();
|
const char* src = this->c_str();
|
|
if (offset) {
|
memcpy(dst, src, offset);
|
}
|
size_t tail = size - (offset + length);
|
if (tail) {
|
memcpy(dst + offset, src + (offset + length), tail);
|
}
|
SkASSERT(dst[tmp.size()] == 0);
|
this->swap(tmp);
|
}
|
}
|
}
|
|
void SkString::swap(SkString& other) {
|
this->validate();
|
other.validate();
|
|
using std::swap;
|
swap(fRec, other.fRec);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
SkString SkStringPrintf(const char* format, ...) {
|
SkString formattedOutput;
|
V_SKSTRING_PRINTF(formattedOutput, format);
|
return formattedOutput;
|
}
|
|
void SkStrSplit(const char* str, const char* delimiters, SkStrSplitMode splitMode,
|
SkTArray<SkString>* out) {
|
if (splitMode == kCoalesce_SkStrSplitMode) {
|
// Skip any delimiters.
|
str += strspn(str, delimiters);
|
}
|
if (!*str) {
|
return;
|
}
|
|
while (true) {
|
// Find a token.
|
const size_t len = strcspn(str, delimiters);
|
if (splitMode == kStrict_SkStrSplitMode || len > 0) {
|
out->push_back().set(str, len);
|
str += len;
|
}
|
|
if (!*str) {
|
return;
|
}
|
if (splitMode == kCoalesce_SkStrSplitMode) {
|
// Skip any delimiters.
|
str += strspn(str, delimiters);
|
} else {
|
// Skip one delimiter.
|
str += 1;
|
}
|
}
|
}
|