lin
2025-08-14 dae8bad597b6607a449b32bf76c523423f7720ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*
 * Copyright 2016 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
 
#include "SkArenaAlloc.h"
#include "SkBlendModePriv.h"
#include "SkBlitter.h"
#include "SkColor.h"
#include "SkColorFilter.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpaceXformer.h"
#include "SkColorSpaceXformSteps.h"
#include "SkOpts.h"
#include "SkRasterPipeline.h"
#include "SkShader.h"
#include "SkShaderBase.h"
#include "SkTo.h"
#include "SkUtils.h"
 
class SkRasterPipelineBlitter final : public SkBlitter {
public:
    // This is our common entrypoint for creating the blitter once we've sorted out shaders.
    static SkBlitter* Create(const SkPixmap&, const SkPaint&, SkArenaAlloc*,
                             const SkRasterPipeline& shaderPipeline,
                             bool is_opaque, bool is_constant);
 
    SkRasterPipelineBlitter(SkPixmap dst,
                            SkBlendMode blend,
                            SkArenaAlloc* alloc)
        : fDst(dst)
        , fBlend(blend)
        , fAlloc(alloc)
        , fColorPipeline(alloc)
    {}
 
    void blitH     (int x, int y, int w)                            override;
    void blitAntiH (int x, int y, const SkAlpha[], const int16_t[]) override;
    void blitAntiH2(int x, int y, U8CPU a0, U8CPU a1)               override;
    void blitAntiV2(int x, int y, U8CPU a0, U8CPU a1)               override;
    void blitMask  (const SkMask&, const SkIRect& clip)             override;
    void blitRect  (int x, int y, int width, int height)            override;
    void blitV     (int x, int y, int height, SkAlpha alpha)        override;
 
private:
    void append_load_dst      (SkRasterPipeline*) const;
    void append_store         (SkRasterPipeline*) const;
 
    SkPixmap               fDst;
    SkBlendMode            fBlend;
    SkArenaAlloc*          fAlloc;
    SkRasterPipeline       fColorPipeline;
 
    SkRasterPipeline_MemoryCtx
        fDstPtr       = {nullptr,0},  // Always points to the top-left of fDst.
        fMaskPtr      = {nullptr,0};  // Updated each call to blitMask().
    SkRasterPipeline_EmbossCtx fEmbossCtx;  // Used only for k3D_Format masks.
 
    // We may be able to specialize blitH() or blitRect() into a memset.
    void   (*fMemset2D)(SkPixmap*, int x,int y, int w,int h, uint64_t color) = nullptr;
    uint64_t fMemsetColor = 0;   // Big enough for largest memsettable dst format, F16.
 
    // Built lazily on first use.
    std::function<void(size_t, size_t, size_t, size_t)> fBlitRect,
                                                        fBlitAntiH,
                                                        fBlitMaskA8,
                                                        fBlitMaskLCD16,
                                                        fBlitMask3D;
 
    // These values are pointed to by the blit pipelines above,
    // which allows us to adjust them from call to call.
    float fCurrentCoverage = 0.0f;
    float fDitherRate      = 0.0f;
 
    typedef SkBlitter INHERITED;
};
 
SkBlitter* SkCreateRasterPipelineBlitter(const SkPixmap& dst,
                                         const SkPaint& paint,
                                         const SkMatrix& ctm,
                                         SkArenaAlloc* alloc) {
    // For legacy/SkColorSpaceXformCanvas to keep working,
    // we need to sometimes still need to distinguish null dstCS from sRGB.
#if 0
    SkColorSpace* dstCS = dst.colorSpace() ? dst.colorSpace()
                                           : sk_srgb_singleton();
#else
    SkColorSpace* dstCS = dst.colorSpace();
#endif
    SkColorType dstCT = dst.colorType();
    SkColor4f paintColor = paint.getColor4f();
    SkColorSpaceXformSteps(sk_srgb_singleton(), kUnpremul_SkAlphaType,
                           dstCS,               kUnpremul_SkAlphaType).apply(paintColor.vec());
 
    auto shader = as_SB(paint.getShader());
 
    SkRasterPipeline_<256> shaderPipeline;
    if (!shader) {
        // Having no shader makes things nice and easy... just use the paint color.
        shaderPipeline.append_constant_color(alloc, paintColor.premul().vec());
        bool is_opaque    = paintColor.fA == 1.0f,
             is_constant  = true;
        return SkRasterPipelineBlitter::Create(dst, paint, alloc,
                                               shaderPipeline, is_opaque, is_constant);
    }
 
    bool is_opaque    = shader->isOpaque() && paintColor.fA == 1.0f;
    bool is_constant  = shader->isConstant();
 
    if (shader->appendStages({&shaderPipeline, alloc, dstCT, dstCS, paint, nullptr, ctm})) {
        if (paintColor.fA != 1.0f) {
            shaderPipeline.append(SkRasterPipeline::scale_1_float,
                                  alloc->make<float>(paintColor.fA));
        }
        return SkRasterPipelineBlitter::Create(dst, paint, alloc,
                                               shaderPipeline, is_opaque, is_constant);
    }
 
    // The shader has opted out of drawing anything.
    return alloc->make<SkNullBlitter>();
}
 
SkBlitter* SkCreateRasterPipelineBlitter(const SkPixmap& dst,
                                         const SkPaint& paint,
                                         const SkRasterPipeline& shaderPipeline,
                                         bool is_opaque,
                                         SkArenaAlloc* alloc) {
    bool is_constant = false;  // If this were the case, it'd be better to just set a paint color.
    return SkRasterPipelineBlitter::Create(dst, paint, alloc,
                                           shaderPipeline, is_opaque, is_constant);
}
 
SkBlitter* SkRasterPipelineBlitter::Create(const SkPixmap& dst,
                                           const SkPaint& paint,
                                           SkArenaAlloc* alloc,
                                           const SkRasterPipeline& shaderPipeline,
                                           bool is_opaque,
                                           bool is_constant) {
    auto blitter = alloc->make<SkRasterPipelineBlitter>(dst,
                                                        paint.getBlendMode(),
                                                        alloc);
 
    // Our job in this factory is to fill out the blitter's color pipeline.
    // This is the common front of the full blit pipelines, each constructed lazily on first use.
    // The full blit pipelines handle reading and writing the dst, blending, coverage, dithering.
    auto colorPipeline = &blitter->fColorPipeline;
 
    // Let's get the shader in first.
    colorPipeline->extend(shaderPipeline);
 
    // If there's a color filter it comes next.
    if (auto colorFilter = paint.getColorFilter()) {
        colorFilter->appendStages(colorPipeline, dst.colorSpace(), alloc, is_opaque);
        is_opaque = is_opaque && (colorFilter->getFlags() & SkColorFilter::kAlphaUnchanged_Flag);
    }
 
    // Not all formats make sense to dither (think, F16).  We set their dither rate
    // to zero.  We need to decide if we're going to dither now to keep is_constant accurate.
    if (paint.isDither()) {
        switch (dst.info().colorType()) {
            default:                        blitter->fDitherRate =      0.0f; break;
            case kARGB_4444_SkColorType:    blitter->fDitherRate =   1/15.0f; break;
            case   kRGB_565_SkColorType:    blitter->fDitherRate =   1/63.0f; break;
            case    kGray_8_SkColorType:
            case  kRGB_888x_SkColorType:
            case kRGBA_8888_SkColorType:
            case kBGRA_8888_SkColorType:    blitter->fDitherRate =  1/255.0f; break;
            case kRGB_101010x_SkColorType:
            case kRGBA_1010102_SkColorType: blitter->fDitherRate = 1/1023.0f; break;
        }
        // TODO: for constant colors, we could try to measure the effect of dithering, and if
        //       it has no value (i.e. all variations result in the same 32bit color, then we
        //       could disable it (for speed, by not adding the stage).
    }
    is_constant = is_constant && (blitter->fDitherRate == 0.0f);
 
    // We're logically done here.  The code between here and return blitter is all optimization.
 
    // A pipeline that's still constant here can collapse back into a constant color.
    if (is_constant) {
        SkColor4f constantColor;
        SkRasterPipeline_MemoryCtx constantColorPtr = { &constantColor, 0 };
        colorPipeline->append_gamut_clamp_if_normalized(dst.info());
        colorPipeline->append(SkRasterPipeline::store_f32, &constantColorPtr);
        colorPipeline->run(0,0,1,1);
        colorPipeline->reset();
        colorPipeline->append_constant_color(alloc, constantColor);
 
        is_opaque = constantColor.fA == 1.0f;
    }
 
    // We can strength-reduce SrcOver into Src when opaque.
    if (is_opaque && blitter->fBlend == SkBlendMode::kSrcOver) {
        blitter->fBlend = SkBlendMode::kSrc;
    }
 
    // When we're drawing a constant color in Src mode, we can sometimes just memset.
    // (The previous two optimizations help find more opportunities for this one.)
    if (is_constant && blitter->fBlend == SkBlendMode::kSrc) {
        // Run our color pipeline all the way through to produce what we'd memset when we can.
        // Not all blits can memset, so we need to keep colorPipeline too.
        SkRasterPipeline_<256> p;
        p.extend(*colorPipeline);
        p.append_gamut_clamp_if_normalized(dst.info());
        blitter->fDstPtr = SkRasterPipeline_MemoryCtx{&blitter->fMemsetColor, 0};
        blitter->append_store(&p);
        p.run(0,0,1,1);
 
        switch (blitter->fDst.shiftPerPixel()) {
            case 0: blitter->fMemset2D = [](SkPixmap* dst, int x,int y, int w,int h, uint64_t c) {
                void* p = dst->writable_addr(x,y);
                while (h --> 0) {
                    memset(p, c, w);
                    p = SkTAddOffset<void>(p, dst->rowBytes());
                }
            }; break;
 
            case 1: blitter->fMemset2D = [](SkPixmap* dst, int x,int y, int w,int h, uint64_t c) {
                uint16_t* p = dst->writable_addr16(x,y);
                auto fn = SkOpts::memset16;
                while (h --> 0) {
                    fn(p, c, w);
                    p = SkTAddOffset<uint16_t>(p, dst->rowBytes());
                }
            }; break;
 
            case 2: blitter->fMemset2D = [](SkPixmap* dst, int x,int y, int w,int h, uint64_t c) {
                uint32_t* p = dst->writable_addr32(x,y);
                auto fn = SkOpts::memset32;
                while (h --> 0) {
                    fn(p, c, w);
                    p = SkTAddOffset<uint32_t>(p, dst->rowBytes());
                }
            }; break;
 
            case 3: blitter->fMemset2D = [](SkPixmap* dst, int x,int y, int w,int h, uint64_t c) {
                uint64_t* p = dst->writable_addr64(x,y);
                auto fn = SkOpts::memset64;
                while (h --> 0) {
                    fn(p, c, w);
                    p = SkTAddOffset<uint64_t>(p, dst->rowBytes());
                }
            }; break;
 
            // TODO(F32)?
        }
    }
 
    blitter->fDstPtr = SkRasterPipeline_MemoryCtx{
        blitter->fDst.writable_addr(),
        blitter->fDst.rowBytesAsPixels(),
    };
 
    return blitter;
}
 
void SkRasterPipelineBlitter::append_load_dst(SkRasterPipeline* p) const {
    p->append_load_dst(fDst.info().colorType(), &fDstPtr);
    if (fDst.info().alphaType() == kUnpremul_SkAlphaType) {
        p->append(SkRasterPipeline::premul_dst);
    }
}
 
void SkRasterPipelineBlitter::append_store(SkRasterPipeline* p) const {
    if (fDst.info().alphaType() == kUnpremul_SkAlphaType) {
        p->append(SkRasterPipeline::unpremul);
    }
    if (fDitherRate > 0.0f) {
        p->append(SkRasterPipeline::dither, &fDitherRate);
    }
 
    p->append_store(fDst.info().colorType(), &fDstPtr);
}
 
void SkRasterPipelineBlitter::blitH(int x, int y, int w) {
    this->blitRect(x,y,w,1);
}
 
void SkRasterPipelineBlitter::blitRect(int x, int y, int w, int h) {
    if (fMemset2D) {
        fMemset2D(&fDst, x,y, w,h, fMemsetColor);
        return;
    }
 
    if (!fBlitRect) {
        SkRasterPipeline p(fAlloc);
        p.extend(fColorPipeline);
        p.append_gamut_clamp_if_normalized(fDst.info());
        if (fBlend == SkBlendMode::kSrcOver
                && (fDst.info().colorType() == kRGBA_8888_SkColorType ||
                    fDst.info().colorType() == kBGRA_8888_SkColorType)
                && !fDst.colorSpace()
                && fDst.info().alphaType() != kUnpremul_SkAlphaType
                && fDitherRate == 0.0f) {
            if (fDst.info().colorType() == kBGRA_8888_SkColorType) {
                p.append(SkRasterPipeline::swap_rb);
            }
            p.append(SkRasterPipeline::srcover_rgba_8888, &fDstPtr);
        } else {
            if (fBlend != SkBlendMode::kSrc) {
                this->append_load_dst(&p);
                SkBlendMode_AppendStages(fBlend, &p);
            }
            this->append_store(&p);
        }
        fBlitRect = p.compile();
    }
 
    fBlitRect(x,y,w,h);
}
 
void SkRasterPipelineBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) {
    if (!fBlitAntiH) {
        SkRasterPipeline p(fAlloc);
        p.extend(fColorPipeline);
        p.append_gamut_clamp_if_normalized(fDst.info());
        if (SkBlendMode_ShouldPreScaleCoverage(fBlend, /*rgb_coverage=*/false)) {
            p.append(SkRasterPipeline::scale_1_float, &fCurrentCoverage);
            this->append_load_dst(&p);
            SkBlendMode_AppendStages(fBlend, &p);
        } else {
            this->append_load_dst(&p);
            SkBlendMode_AppendStages(fBlend, &p);
            p.append(SkRasterPipeline::lerp_1_float, &fCurrentCoverage);
        }
 
        this->append_store(&p);
        fBlitAntiH = p.compile();
    }
 
    for (int16_t run = *runs; run > 0; run = *runs) {
        switch (*aa) {
            case 0x00:                       break;
            case 0xff: this->blitH(x,y,run); break;
            default:
                fCurrentCoverage = *aa * (1/255.0f);
                fBlitAntiH(x,y,run,1);
        }
        x    += run;
        runs += run;
        aa   += run;
    }
}
 
void SkRasterPipelineBlitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) {
    SkIRect clip = {x,y, x+2,y+1};
    uint8_t coverage[] = { (uint8_t)a0, (uint8_t)a1 };
 
    SkMask mask;
    mask.fImage    = coverage;
    mask.fBounds   = clip;
    mask.fRowBytes = 2;
    mask.fFormat   = SkMask::kA8_Format;
 
    this->blitMask(mask, clip);
}
 
void SkRasterPipelineBlitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) {
    SkIRect clip = {x,y, x+1,y+2};
    uint8_t coverage[] = { (uint8_t)a0, (uint8_t)a1 };
 
    SkMask mask;
    mask.fImage    = coverage;
    mask.fBounds   = clip;
    mask.fRowBytes = 1;
    mask.fFormat   = SkMask::kA8_Format;
 
    this->blitMask(mask, clip);
}
 
void SkRasterPipelineBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
    SkIRect clip = {x,y, x+1,y+height};
 
    SkMask mask;
    mask.fImage    = &alpha;
    mask.fBounds   = clip;
    mask.fRowBytes = 0;     // so we reuse the 1 "row" for all of height
    mask.fFormat   = SkMask::kA8_Format;
 
    this->blitMask(mask, clip);
}
 
void SkRasterPipelineBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
    if (mask.fFormat == SkMask::kBW_Format) {
        // TODO: native BW masks?
        return INHERITED::blitMask(mask, clip);
    }
 
    // ARGB and SDF masks shouldn't make it here.
    SkASSERT(mask.fFormat == SkMask::kA8_Format
          || mask.fFormat == SkMask::kLCD16_Format
          || mask.fFormat == SkMask::k3D_Format);
 
    auto extract_mask_plane = [&mask](int plane, SkRasterPipeline_MemoryCtx* ctx) {
        // LCD is 16-bit per pixel; A8 and 3D are 8-bit per pixel.
        size_t bpp = mask.fFormat == SkMask::kLCD16_Format ? 2 : 1;
 
        // Select the right mask plane.  Usually plane == 0 and this is just mask.fImage.
        auto ptr = (uintptr_t)mask.fImage
                 + plane * mask.computeImageSize();
 
        // Update ctx to point "into" this current mask, but lined up with fDstPtr at (0,0).
        // This sort of trickery upsets UBSAN (pointer-overflow) so our ptr must be a uintptr_t.
        // mask.fRowBytes is a uint32_t, which would break our addressing math on 64-bit builds.
        size_t rowBytes = mask.fRowBytes;
        ctx->stride = rowBytes / bpp;
        ctx->pixels = (void*)(ptr - mask.fBounds.left() * bpp
                                  - mask.fBounds.top()  * rowBytes);
    };
 
    extract_mask_plane(0, &fMaskPtr);
    if (mask.fFormat == SkMask::k3D_Format) {
        extract_mask_plane(1, &fEmbossCtx.mul);
        extract_mask_plane(2, &fEmbossCtx.add);
    }
 
    // Lazily build whichever pipeline we need, specialized for each mask format.
    if (mask.fFormat == SkMask::kA8_Format && !fBlitMaskA8) {
        SkRasterPipeline p(fAlloc);
        p.extend(fColorPipeline);
        p.append_gamut_clamp_if_normalized(fDst.info());
        if (SkBlendMode_ShouldPreScaleCoverage(fBlend, /*rgb_coverage=*/false)) {
            p.append(SkRasterPipeline::scale_u8, &fMaskPtr);
            this->append_load_dst(&p);
            SkBlendMode_AppendStages(fBlend, &p);
        } else {
            this->append_load_dst(&p);
            SkBlendMode_AppendStages(fBlend, &p);
            p.append(SkRasterPipeline::lerp_u8, &fMaskPtr);
        }
        this->append_store(&p);
        fBlitMaskA8 = p.compile();
    }
    if (mask.fFormat == SkMask::kLCD16_Format && !fBlitMaskLCD16) {
        SkRasterPipeline p(fAlloc);
        p.extend(fColorPipeline);
        p.append_gamut_clamp_if_normalized(fDst.info());
        if (SkBlendMode_ShouldPreScaleCoverage(fBlend, /*rgb_coverage=*/true)) {
            // Somewhat unusually, scale_565 needs dst loaded first.
            this->append_load_dst(&p);
            p.append(SkRasterPipeline::scale_565, &fMaskPtr);
            SkBlendMode_AppendStages(fBlend, &p);
        } else {
            this->append_load_dst(&p);
            SkBlendMode_AppendStages(fBlend, &p);
            p.append(SkRasterPipeline::lerp_565, &fMaskPtr);
        }
        this->append_store(&p);
        fBlitMaskLCD16 = p.compile();
    }
    if (mask.fFormat == SkMask::k3D_Format && !fBlitMask3D) {
        SkRasterPipeline p(fAlloc);
        p.extend(fColorPipeline);
        // This bit is where we differ from kA8_Format:
        p.append(SkRasterPipeline::emboss, &fEmbossCtx);
        // Now onward just as kA8.
        p.append_gamut_clamp_if_normalized(fDst.info());
        if (SkBlendMode_ShouldPreScaleCoverage(fBlend, /*rgb_coverage=*/false)) {
            p.append(SkRasterPipeline::scale_u8, &fMaskPtr);
            this->append_load_dst(&p);
            SkBlendMode_AppendStages(fBlend, &p);
        } else {
            this->append_load_dst(&p);
            SkBlendMode_AppendStages(fBlend, &p);
            p.append(SkRasterPipeline::lerp_u8, &fMaskPtr);
        }
        this->append_store(&p);
        fBlitMask3D = p.compile();
    }
 
    std::function<void(size_t,size_t,size_t,size_t)>* blitter = nullptr;
    switch (mask.fFormat) {
        case SkMask::kA8_Format:    blitter = &fBlitMaskA8;    break;
        case SkMask::kLCD16_Format: blitter = &fBlitMaskLCD16; break;
        case SkMask::k3D_Format:    blitter = &fBlitMask3D;    break;
        default:
            SkASSERT(false);
            return;
    }
 
    SkASSERT(blitter);
    (*blitter)(clip.left(),clip.top(), clip.width(),clip.height());
}