/*
|
* Copyright 2016 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkArenaAlloc.h"
|
#include "SkBlendModePriv.h"
|
#include "SkBlitter.h"
|
#include "SkColor.h"
|
#include "SkColorFilter.h"
|
#include "SkColorSpacePriv.h"
|
#include "SkColorSpaceXformer.h"
|
#include "SkColorSpaceXformSteps.h"
|
#include "SkOpts.h"
|
#include "SkRasterPipeline.h"
|
#include "SkShader.h"
|
#include "SkShaderBase.h"
|
#include "SkTo.h"
|
#include "SkUtils.h"
|
|
class SkRasterPipelineBlitter final : public SkBlitter {
|
public:
|
// This is our common entrypoint for creating the blitter once we've sorted out shaders.
|
static SkBlitter* Create(const SkPixmap&, const SkPaint&, SkArenaAlloc*,
|
const SkRasterPipeline& shaderPipeline,
|
bool is_opaque, bool is_constant);
|
|
SkRasterPipelineBlitter(SkPixmap dst,
|
SkBlendMode blend,
|
SkArenaAlloc* alloc)
|
: fDst(dst)
|
, fBlend(blend)
|
, fAlloc(alloc)
|
, fColorPipeline(alloc)
|
{}
|
|
void blitH (int x, int y, int w) override;
|
void blitAntiH (int x, int y, const SkAlpha[], const int16_t[]) override;
|
void blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) override;
|
void blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) override;
|
void blitMask (const SkMask&, const SkIRect& clip) override;
|
void blitRect (int x, int y, int width, int height) override;
|
void blitV (int x, int y, int height, SkAlpha alpha) override;
|
|
private:
|
void append_load_dst (SkRasterPipeline*) const;
|
void append_store (SkRasterPipeline*) const;
|
|
SkPixmap fDst;
|
SkBlendMode fBlend;
|
SkArenaAlloc* fAlloc;
|
SkRasterPipeline fColorPipeline;
|
|
SkRasterPipeline_MemoryCtx
|
fDstPtr = {nullptr,0}, // Always points to the top-left of fDst.
|
fMaskPtr = {nullptr,0}; // Updated each call to blitMask().
|
SkRasterPipeline_EmbossCtx fEmbossCtx; // Used only for k3D_Format masks.
|
|
// We may be able to specialize blitH() or blitRect() into a memset.
|
void (*fMemset2D)(SkPixmap*, int x,int y, int w,int h, uint64_t color) = nullptr;
|
uint64_t fMemsetColor = 0; // Big enough for largest memsettable dst format, F16.
|
|
// Built lazily on first use.
|
std::function<void(size_t, size_t, size_t, size_t)> fBlitRect,
|
fBlitAntiH,
|
fBlitMaskA8,
|
fBlitMaskLCD16,
|
fBlitMask3D;
|
|
// These values are pointed to by the blit pipelines above,
|
// which allows us to adjust them from call to call.
|
float fCurrentCoverage = 0.0f;
|
float fDitherRate = 0.0f;
|
|
typedef SkBlitter INHERITED;
|
};
|
|
SkBlitter* SkCreateRasterPipelineBlitter(const SkPixmap& dst,
|
const SkPaint& paint,
|
const SkMatrix& ctm,
|
SkArenaAlloc* alloc) {
|
// For legacy/SkColorSpaceXformCanvas to keep working,
|
// we need to sometimes still need to distinguish null dstCS from sRGB.
|
#if 0
|
SkColorSpace* dstCS = dst.colorSpace() ? dst.colorSpace()
|
: sk_srgb_singleton();
|
#else
|
SkColorSpace* dstCS = dst.colorSpace();
|
#endif
|
SkColorType dstCT = dst.colorType();
|
SkColor4f paintColor = paint.getColor4f();
|
SkColorSpaceXformSteps(sk_srgb_singleton(), kUnpremul_SkAlphaType,
|
dstCS, kUnpremul_SkAlphaType).apply(paintColor.vec());
|
|
auto shader = as_SB(paint.getShader());
|
|
SkRasterPipeline_<256> shaderPipeline;
|
if (!shader) {
|
// Having no shader makes things nice and easy... just use the paint color.
|
shaderPipeline.append_constant_color(alloc, paintColor.premul().vec());
|
bool is_opaque = paintColor.fA == 1.0f,
|
is_constant = true;
|
return SkRasterPipelineBlitter::Create(dst, paint, alloc,
|
shaderPipeline, is_opaque, is_constant);
|
}
|
|
bool is_opaque = shader->isOpaque() && paintColor.fA == 1.0f;
|
bool is_constant = shader->isConstant();
|
|
if (shader->appendStages({&shaderPipeline, alloc, dstCT, dstCS, paint, nullptr, ctm})) {
|
if (paintColor.fA != 1.0f) {
|
shaderPipeline.append(SkRasterPipeline::scale_1_float,
|
alloc->make<float>(paintColor.fA));
|
}
|
return SkRasterPipelineBlitter::Create(dst, paint, alloc,
|
shaderPipeline, is_opaque, is_constant);
|
}
|
|
// The shader has opted out of drawing anything.
|
return alloc->make<SkNullBlitter>();
|
}
|
|
SkBlitter* SkCreateRasterPipelineBlitter(const SkPixmap& dst,
|
const SkPaint& paint,
|
const SkRasterPipeline& shaderPipeline,
|
bool is_opaque,
|
SkArenaAlloc* alloc) {
|
bool is_constant = false; // If this were the case, it'd be better to just set a paint color.
|
return SkRasterPipelineBlitter::Create(dst, paint, alloc,
|
shaderPipeline, is_opaque, is_constant);
|
}
|
|
SkBlitter* SkRasterPipelineBlitter::Create(const SkPixmap& dst,
|
const SkPaint& paint,
|
SkArenaAlloc* alloc,
|
const SkRasterPipeline& shaderPipeline,
|
bool is_opaque,
|
bool is_constant) {
|
auto blitter = alloc->make<SkRasterPipelineBlitter>(dst,
|
paint.getBlendMode(),
|
alloc);
|
|
// Our job in this factory is to fill out the blitter's color pipeline.
|
// This is the common front of the full blit pipelines, each constructed lazily on first use.
|
// The full blit pipelines handle reading and writing the dst, blending, coverage, dithering.
|
auto colorPipeline = &blitter->fColorPipeline;
|
|
// Let's get the shader in first.
|
colorPipeline->extend(shaderPipeline);
|
|
// If there's a color filter it comes next.
|
if (auto colorFilter = paint.getColorFilter()) {
|
colorFilter->appendStages(colorPipeline, dst.colorSpace(), alloc, is_opaque);
|
is_opaque = is_opaque && (colorFilter->getFlags() & SkColorFilter::kAlphaUnchanged_Flag);
|
}
|
|
// Not all formats make sense to dither (think, F16). We set their dither rate
|
// to zero. We need to decide if we're going to dither now to keep is_constant accurate.
|
if (paint.isDither()) {
|
switch (dst.info().colorType()) {
|
default: blitter->fDitherRate = 0.0f; break;
|
case kARGB_4444_SkColorType: blitter->fDitherRate = 1/15.0f; break;
|
case kRGB_565_SkColorType: blitter->fDitherRate = 1/63.0f; break;
|
case kGray_8_SkColorType:
|
case kRGB_888x_SkColorType:
|
case kRGBA_8888_SkColorType:
|
case kBGRA_8888_SkColorType: blitter->fDitherRate = 1/255.0f; break;
|
case kRGB_101010x_SkColorType:
|
case kRGBA_1010102_SkColorType: blitter->fDitherRate = 1/1023.0f; break;
|
}
|
// TODO: for constant colors, we could try to measure the effect of dithering, and if
|
// it has no value (i.e. all variations result in the same 32bit color, then we
|
// could disable it (for speed, by not adding the stage).
|
}
|
is_constant = is_constant && (blitter->fDitherRate == 0.0f);
|
|
// We're logically done here. The code between here and return blitter is all optimization.
|
|
// A pipeline that's still constant here can collapse back into a constant color.
|
if (is_constant) {
|
SkColor4f constantColor;
|
SkRasterPipeline_MemoryCtx constantColorPtr = { &constantColor, 0 };
|
colorPipeline->append_gamut_clamp_if_normalized(dst.info());
|
colorPipeline->append(SkRasterPipeline::store_f32, &constantColorPtr);
|
colorPipeline->run(0,0,1,1);
|
colorPipeline->reset();
|
colorPipeline->append_constant_color(alloc, constantColor);
|
|
is_opaque = constantColor.fA == 1.0f;
|
}
|
|
// We can strength-reduce SrcOver into Src when opaque.
|
if (is_opaque && blitter->fBlend == SkBlendMode::kSrcOver) {
|
blitter->fBlend = SkBlendMode::kSrc;
|
}
|
|
// When we're drawing a constant color in Src mode, we can sometimes just memset.
|
// (The previous two optimizations help find more opportunities for this one.)
|
if (is_constant && blitter->fBlend == SkBlendMode::kSrc) {
|
// Run our color pipeline all the way through to produce what we'd memset when we can.
|
// Not all blits can memset, so we need to keep colorPipeline too.
|
SkRasterPipeline_<256> p;
|
p.extend(*colorPipeline);
|
p.append_gamut_clamp_if_normalized(dst.info());
|
blitter->fDstPtr = SkRasterPipeline_MemoryCtx{&blitter->fMemsetColor, 0};
|
blitter->append_store(&p);
|
p.run(0,0,1,1);
|
|
switch (blitter->fDst.shiftPerPixel()) {
|
case 0: blitter->fMemset2D = [](SkPixmap* dst, int x,int y, int w,int h, uint64_t c) {
|
void* p = dst->writable_addr(x,y);
|
while (h --> 0) {
|
memset(p, c, w);
|
p = SkTAddOffset<void>(p, dst->rowBytes());
|
}
|
}; break;
|
|
case 1: blitter->fMemset2D = [](SkPixmap* dst, int x,int y, int w,int h, uint64_t c) {
|
uint16_t* p = dst->writable_addr16(x,y);
|
auto fn = SkOpts::memset16;
|
while (h --> 0) {
|
fn(p, c, w);
|
p = SkTAddOffset<uint16_t>(p, dst->rowBytes());
|
}
|
}; break;
|
|
case 2: blitter->fMemset2D = [](SkPixmap* dst, int x,int y, int w,int h, uint64_t c) {
|
uint32_t* p = dst->writable_addr32(x,y);
|
auto fn = SkOpts::memset32;
|
while (h --> 0) {
|
fn(p, c, w);
|
p = SkTAddOffset<uint32_t>(p, dst->rowBytes());
|
}
|
}; break;
|
|
case 3: blitter->fMemset2D = [](SkPixmap* dst, int x,int y, int w,int h, uint64_t c) {
|
uint64_t* p = dst->writable_addr64(x,y);
|
auto fn = SkOpts::memset64;
|
while (h --> 0) {
|
fn(p, c, w);
|
p = SkTAddOffset<uint64_t>(p, dst->rowBytes());
|
}
|
}; break;
|
|
// TODO(F32)?
|
}
|
}
|
|
blitter->fDstPtr = SkRasterPipeline_MemoryCtx{
|
blitter->fDst.writable_addr(),
|
blitter->fDst.rowBytesAsPixels(),
|
};
|
|
return blitter;
|
}
|
|
void SkRasterPipelineBlitter::append_load_dst(SkRasterPipeline* p) const {
|
p->append_load_dst(fDst.info().colorType(), &fDstPtr);
|
if (fDst.info().alphaType() == kUnpremul_SkAlphaType) {
|
p->append(SkRasterPipeline::premul_dst);
|
}
|
}
|
|
void SkRasterPipelineBlitter::append_store(SkRasterPipeline* p) const {
|
if (fDst.info().alphaType() == kUnpremul_SkAlphaType) {
|
p->append(SkRasterPipeline::unpremul);
|
}
|
if (fDitherRate > 0.0f) {
|
p->append(SkRasterPipeline::dither, &fDitherRate);
|
}
|
|
p->append_store(fDst.info().colorType(), &fDstPtr);
|
}
|
|
void SkRasterPipelineBlitter::blitH(int x, int y, int w) {
|
this->blitRect(x,y,w,1);
|
}
|
|
void SkRasterPipelineBlitter::blitRect(int x, int y, int w, int h) {
|
if (fMemset2D) {
|
fMemset2D(&fDst, x,y, w,h, fMemsetColor);
|
return;
|
}
|
|
if (!fBlitRect) {
|
SkRasterPipeline p(fAlloc);
|
p.extend(fColorPipeline);
|
p.append_gamut_clamp_if_normalized(fDst.info());
|
if (fBlend == SkBlendMode::kSrcOver
|
&& (fDst.info().colorType() == kRGBA_8888_SkColorType ||
|
fDst.info().colorType() == kBGRA_8888_SkColorType)
|
&& !fDst.colorSpace()
|
&& fDst.info().alphaType() != kUnpremul_SkAlphaType
|
&& fDitherRate == 0.0f) {
|
if (fDst.info().colorType() == kBGRA_8888_SkColorType) {
|
p.append(SkRasterPipeline::swap_rb);
|
}
|
p.append(SkRasterPipeline::srcover_rgba_8888, &fDstPtr);
|
} else {
|
if (fBlend != SkBlendMode::kSrc) {
|
this->append_load_dst(&p);
|
SkBlendMode_AppendStages(fBlend, &p);
|
}
|
this->append_store(&p);
|
}
|
fBlitRect = p.compile();
|
}
|
|
fBlitRect(x,y,w,h);
|
}
|
|
void SkRasterPipelineBlitter::blitAntiH(int x, int y, const SkAlpha aa[], const int16_t runs[]) {
|
if (!fBlitAntiH) {
|
SkRasterPipeline p(fAlloc);
|
p.extend(fColorPipeline);
|
p.append_gamut_clamp_if_normalized(fDst.info());
|
if (SkBlendMode_ShouldPreScaleCoverage(fBlend, /*rgb_coverage=*/false)) {
|
p.append(SkRasterPipeline::scale_1_float, &fCurrentCoverage);
|
this->append_load_dst(&p);
|
SkBlendMode_AppendStages(fBlend, &p);
|
} else {
|
this->append_load_dst(&p);
|
SkBlendMode_AppendStages(fBlend, &p);
|
p.append(SkRasterPipeline::lerp_1_float, &fCurrentCoverage);
|
}
|
|
this->append_store(&p);
|
fBlitAntiH = p.compile();
|
}
|
|
for (int16_t run = *runs; run > 0; run = *runs) {
|
switch (*aa) {
|
case 0x00: break;
|
case 0xff: this->blitH(x,y,run); break;
|
default:
|
fCurrentCoverage = *aa * (1/255.0f);
|
fBlitAntiH(x,y,run,1);
|
}
|
x += run;
|
runs += run;
|
aa += run;
|
}
|
}
|
|
void SkRasterPipelineBlitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) {
|
SkIRect clip = {x,y, x+2,y+1};
|
uint8_t coverage[] = { (uint8_t)a0, (uint8_t)a1 };
|
|
SkMask mask;
|
mask.fImage = coverage;
|
mask.fBounds = clip;
|
mask.fRowBytes = 2;
|
mask.fFormat = SkMask::kA8_Format;
|
|
this->blitMask(mask, clip);
|
}
|
|
void SkRasterPipelineBlitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) {
|
SkIRect clip = {x,y, x+1,y+2};
|
uint8_t coverage[] = { (uint8_t)a0, (uint8_t)a1 };
|
|
SkMask mask;
|
mask.fImage = coverage;
|
mask.fBounds = clip;
|
mask.fRowBytes = 1;
|
mask.fFormat = SkMask::kA8_Format;
|
|
this->blitMask(mask, clip);
|
}
|
|
void SkRasterPipelineBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
|
SkIRect clip = {x,y, x+1,y+height};
|
|
SkMask mask;
|
mask.fImage = α
|
mask.fBounds = clip;
|
mask.fRowBytes = 0; // so we reuse the 1 "row" for all of height
|
mask.fFormat = SkMask::kA8_Format;
|
|
this->blitMask(mask, clip);
|
}
|
|
void SkRasterPipelineBlitter::blitMask(const SkMask& mask, const SkIRect& clip) {
|
if (mask.fFormat == SkMask::kBW_Format) {
|
// TODO: native BW masks?
|
return INHERITED::blitMask(mask, clip);
|
}
|
|
// ARGB and SDF masks shouldn't make it here.
|
SkASSERT(mask.fFormat == SkMask::kA8_Format
|
|| mask.fFormat == SkMask::kLCD16_Format
|
|| mask.fFormat == SkMask::k3D_Format);
|
|
auto extract_mask_plane = [&mask](int plane, SkRasterPipeline_MemoryCtx* ctx) {
|
// LCD is 16-bit per pixel; A8 and 3D are 8-bit per pixel.
|
size_t bpp = mask.fFormat == SkMask::kLCD16_Format ? 2 : 1;
|
|
// Select the right mask plane. Usually plane == 0 and this is just mask.fImage.
|
auto ptr = (uintptr_t)mask.fImage
|
+ plane * mask.computeImageSize();
|
|
// Update ctx to point "into" this current mask, but lined up with fDstPtr at (0,0).
|
// This sort of trickery upsets UBSAN (pointer-overflow) so our ptr must be a uintptr_t.
|
// mask.fRowBytes is a uint32_t, which would break our addressing math on 64-bit builds.
|
size_t rowBytes = mask.fRowBytes;
|
ctx->stride = rowBytes / bpp;
|
ctx->pixels = (void*)(ptr - mask.fBounds.left() * bpp
|
- mask.fBounds.top() * rowBytes);
|
};
|
|
extract_mask_plane(0, &fMaskPtr);
|
if (mask.fFormat == SkMask::k3D_Format) {
|
extract_mask_plane(1, &fEmbossCtx.mul);
|
extract_mask_plane(2, &fEmbossCtx.add);
|
}
|
|
// Lazily build whichever pipeline we need, specialized for each mask format.
|
if (mask.fFormat == SkMask::kA8_Format && !fBlitMaskA8) {
|
SkRasterPipeline p(fAlloc);
|
p.extend(fColorPipeline);
|
p.append_gamut_clamp_if_normalized(fDst.info());
|
if (SkBlendMode_ShouldPreScaleCoverage(fBlend, /*rgb_coverage=*/false)) {
|
p.append(SkRasterPipeline::scale_u8, &fMaskPtr);
|
this->append_load_dst(&p);
|
SkBlendMode_AppendStages(fBlend, &p);
|
} else {
|
this->append_load_dst(&p);
|
SkBlendMode_AppendStages(fBlend, &p);
|
p.append(SkRasterPipeline::lerp_u8, &fMaskPtr);
|
}
|
this->append_store(&p);
|
fBlitMaskA8 = p.compile();
|
}
|
if (mask.fFormat == SkMask::kLCD16_Format && !fBlitMaskLCD16) {
|
SkRasterPipeline p(fAlloc);
|
p.extend(fColorPipeline);
|
p.append_gamut_clamp_if_normalized(fDst.info());
|
if (SkBlendMode_ShouldPreScaleCoverage(fBlend, /*rgb_coverage=*/true)) {
|
// Somewhat unusually, scale_565 needs dst loaded first.
|
this->append_load_dst(&p);
|
p.append(SkRasterPipeline::scale_565, &fMaskPtr);
|
SkBlendMode_AppendStages(fBlend, &p);
|
} else {
|
this->append_load_dst(&p);
|
SkBlendMode_AppendStages(fBlend, &p);
|
p.append(SkRasterPipeline::lerp_565, &fMaskPtr);
|
}
|
this->append_store(&p);
|
fBlitMaskLCD16 = p.compile();
|
}
|
if (mask.fFormat == SkMask::k3D_Format && !fBlitMask3D) {
|
SkRasterPipeline p(fAlloc);
|
p.extend(fColorPipeline);
|
// This bit is where we differ from kA8_Format:
|
p.append(SkRasterPipeline::emboss, &fEmbossCtx);
|
// Now onward just as kA8.
|
p.append_gamut_clamp_if_normalized(fDst.info());
|
if (SkBlendMode_ShouldPreScaleCoverage(fBlend, /*rgb_coverage=*/false)) {
|
p.append(SkRasterPipeline::scale_u8, &fMaskPtr);
|
this->append_load_dst(&p);
|
SkBlendMode_AppendStages(fBlend, &p);
|
} else {
|
this->append_load_dst(&p);
|
SkBlendMode_AppendStages(fBlend, &p);
|
p.append(SkRasterPipeline::lerp_u8, &fMaskPtr);
|
}
|
this->append_store(&p);
|
fBlitMask3D = p.compile();
|
}
|
|
std::function<void(size_t,size_t,size_t,size_t)>* blitter = nullptr;
|
switch (mask.fFormat) {
|
case SkMask::kA8_Format: blitter = &fBlitMaskA8; break;
|
case SkMask::kLCD16_Format: blitter = &fBlitMaskLCD16; break;
|
case SkMask::k3D_Format: blitter = &fBlitMask3D; break;
|
default:
|
SkASSERT(false);
|
return;
|
}
|
|
SkASSERT(blitter);
|
(*blitter)(clip.left(),clip.top(), clip.width(),clip.height());
|
}
|