/*
|
* Copyright 2013 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkPathRef.h"
|
|
#include "SkBuffer.h"
|
#include "SkNx.h"
|
#include "SkOnce.h"
|
#include "SkPath.h"
|
#include "SkPathPriv.h"
|
#include "SkSafeMath.h"
|
#include "SkTo.h"
|
|
// Conic weights must be 0 < weight <= finite
|
static bool validate_conic_weights(const SkScalar weights[], int count) {
|
for (int i = 0; i < count; ++i) {
|
if (weights[i] <= 0 || !SkScalarIsFinite(weights[i])) {
|
return false;
|
}
|
}
|
return true;
|
}
|
|
//////////////////////////////////////////////////////////////////////////////
|
SkPathRef::Editor::Editor(sk_sp<SkPathRef>* pathRef,
|
int incReserveVerbs,
|
int incReservePoints)
|
{
|
SkASSERT(incReserveVerbs >= 0);
|
SkASSERT(incReservePoints >= 0);
|
|
if ((*pathRef)->unique()) {
|
(*pathRef)->incReserve(incReserveVerbs, incReservePoints);
|
} else {
|
SkPathRef* copy = new SkPathRef;
|
copy->copy(**pathRef, incReserveVerbs, incReservePoints);
|
pathRef->reset(copy);
|
}
|
fPathRef = pathRef->get();
|
fPathRef->callGenIDChangeListeners();
|
fPathRef->fGenerationID = 0;
|
fPathRef->fBoundsIsDirty = true;
|
SkDEBUGCODE(fPathRef->fEditorsAttached++;)
|
}
|
|
// Sort of like makeSpace(0) but the the additional requirement that we actively shrink the
|
// allocations to just fit the current needs. makeSpace() will only grow, but never shrinks.
|
//
|
void SkPath::shrinkToFit() {
|
const size_t kMinFreeSpaceForShrink = 8; // just made up a small number
|
|
if (fPathRef->fFreeSpace <= kMinFreeSpaceForShrink) {
|
return;
|
}
|
|
if (fPathRef->unique()) {
|
int pointCount = fPathRef->fPointCnt;
|
int verbCount = fPathRef->fVerbCnt;
|
|
size_t ptsSize = sizeof(SkPoint) * pointCount;
|
size_t vrbSize = sizeof(uint8_t) * verbCount;
|
size_t minSize = ptsSize + vrbSize;
|
|
void* newAlloc = sk_malloc_canfail(minSize);
|
if (!newAlloc) {
|
return; // couldn't allocate the smaller buffer, but that's ok
|
}
|
|
sk_careful_memcpy(newAlloc, fPathRef->fPoints, ptsSize);
|
sk_careful_memcpy((char*)newAlloc + minSize - vrbSize, fPathRef->verbsMemBegin(), vrbSize);
|
|
sk_free(fPathRef->fPoints);
|
fPathRef->fPoints = static_cast<SkPoint*>(newAlloc);
|
fPathRef->fVerbs = (uint8_t*)newAlloc + minSize;
|
fPathRef->fFreeSpace = 0;
|
fPathRef->fConicWeights.shrinkToFit();
|
} else {
|
sk_sp<SkPathRef> pr(new SkPathRef);
|
pr->copy(*fPathRef, 0, 0);
|
fPathRef = std::move(pr);
|
}
|
|
SkDEBUGCODE(fPathRef->validate();)
|
}
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
SkPathRef::~SkPathRef() {
|
// Deliberately don't validate() this path ref, otherwise there's no way
|
// to read one that's not valid and then free its memory without asserting.
|
this->callGenIDChangeListeners();
|
SkASSERT(fGenIDChangeListeners.empty()); // These are raw ptrs.
|
sk_free(fPoints);
|
|
SkDEBUGCODE(fPoints = nullptr;)
|
SkDEBUGCODE(fVerbs = nullptr;)
|
SkDEBUGCODE(fVerbCnt = 0x9999999;)
|
SkDEBUGCODE(fPointCnt = 0xAAAAAAA;)
|
SkDEBUGCODE(fPointCnt = 0xBBBBBBB;)
|
SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;)
|
SkDEBUGCODE(fEditorsAttached.store(0x7777777);)
|
}
|
|
static SkPathRef* gEmpty = nullptr;
|
|
SkPathRef* SkPathRef::CreateEmpty() {
|
static SkOnce once;
|
once([]{
|
gEmpty = new SkPathRef;
|
gEmpty->computeBounds(); // Avoids races later to be the first to do this.
|
});
|
return SkRef(gEmpty);
|
}
|
|
static void transform_dir_and_start(const SkMatrix& matrix, bool isRRect, bool* isCCW,
|
unsigned* start) {
|
int inStart = *start;
|
int rm = 0;
|
if (isRRect) {
|
// Degenerate rrect indices to oval indices and remember the remainder.
|
// Ovals have one index per side whereas rrects have two.
|
rm = inStart & 0b1;
|
inStart /= 2;
|
}
|
// Is the antidiagonal non-zero (otherwise the diagonal is zero)
|
int antiDiag;
|
// Is the non-zero value in the top row (either kMScaleX or kMSkewX) negative
|
int topNeg;
|
// Are the two non-zero diagonal or antidiagonal values the same sign.
|
int sameSign;
|
if (matrix.get(SkMatrix::kMScaleX) != 0) {
|
antiDiag = 0b00;
|
if (matrix.get(SkMatrix::kMScaleX) > 0) {
|
topNeg = 0b00;
|
sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b01 : 0b00;
|
} else {
|
topNeg = 0b10;
|
sameSign = matrix.get(SkMatrix::kMScaleY) > 0 ? 0b00 : 0b01;
|
}
|
} else {
|
antiDiag = 0b01;
|
if (matrix.get(SkMatrix::kMSkewX) > 0) {
|
topNeg = 0b00;
|
sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b01 : 0b00;
|
} else {
|
topNeg = 0b10;
|
sameSign = matrix.get(SkMatrix::kMSkewY) > 0 ? 0b00 : 0b01;
|
}
|
}
|
if (sameSign != antiDiag) {
|
// This is a rotation (and maybe scale). The direction is unchanged.
|
// Trust me on the start computation (or draw yourself some pictures)
|
*start = (inStart + 4 - (topNeg | antiDiag)) % 4;
|
SkASSERT(*start < 4);
|
if (isRRect) {
|
*start = 2 * *start + rm;
|
}
|
} else {
|
// This is a mirror (and maybe scale). The direction is reversed.
|
*isCCW = !*isCCW;
|
// Trust me on the start computation (or draw yourself some pictures)
|
*start = (6 + (topNeg | antiDiag) - inStart) % 4;
|
SkASSERT(*start < 4);
|
if (isRRect) {
|
*start = 2 * *start + (rm ? 0 : 1);
|
}
|
}
|
}
|
|
void SkPathRef::CreateTransformedCopy(sk_sp<SkPathRef>* dst,
|
const SkPathRef& src,
|
const SkMatrix& matrix) {
|
SkDEBUGCODE(src.validate();)
|
if (matrix.isIdentity()) {
|
if (dst->get() != &src) {
|
src.ref();
|
dst->reset(const_cast<SkPathRef*>(&src));
|
SkDEBUGCODE((*dst)->validate();)
|
}
|
return;
|
}
|
|
if (!(*dst)->unique()) {
|
dst->reset(new SkPathRef);
|
}
|
|
if (dst->get() != &src) {
|
(*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count());
|
sk_careful_memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(),
|
src.fVerbCnt * sizeof(uint8_t));
|
(*dst)->fConicWeights = src.fConicWeights;
|
}
|
|
SkASSERT((*dst)->countPoints() == src.countPoints());
|
SkASSERT((*dst)->countVerbs() == src.countVerbs());
|
SkASSERT((*dst)->fConicWeights.count() == src.fConicWeights.count());
|
|
// Need to check this here in case (&src == dst)
|
bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1;
|
|
matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt);
|
|
/*
|
* Here we optimize the bounds computation, by noting if the bounds are
|
* already known, and if so, we just transform those as well and mark
|
* them as "known", rather than force the transformed path to have to
|
* recompute them.
|
*
|
* Special gotchas if the path is effectively empty (<= 1 point) or
|
* if it is non-finite. In those cases bounds need to stay empty,
|
* regardless of the matrix.
|
*/
|
if (canXformBounds) {
|
(*dst)->fBoundsIsDirty = false;
|
if (src.fIsFinite) {
|
matrix.mapRect(&(*dst)->fBounds, src.fBounds);
|
if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) {
|
(*dst)->fBounds.setEmpty();
|
}
|
} else {
|
(*dst)->fIsFinite = false;
|
(*dst)->fBounds.setEmpty();
|
}
|
} else {
|
(*dst)->fBoundsIsDirty = true;
|
}
|
|
(*dst)->fSegmentMask = src.fSegmentMask;
|
|
// It's an oval only if it stays a rect.
|
bool rectStaysRect = matrix.rectStaysRect();
|
(*dst)->fIsOval = src.fIsOval && rectStaysRect;
|
(*dst)->fIsRRect = src.fIsRRect && rectStaysRect;
|
if ((*dst)->fIsOval || (*dst)->fIsRRect) {
|
unsigned start = src.fRRectOrOvalStartIdx;
|
bool isCCW = SkToBool(src.fRRectOrOvalIsCCW);
|
transform_dir_and_start(matrix, (*dst)->fIsRRect, &isCCW, &start);
|
(*dst)->fRRectOrOvalIsCCW = isCCW;
|
(*dst)->fRRectOrOvalStartIdx = start;
|
}
|
|
if (dst->get() == &src) {
|
(*dst)->callGenIDChangeListeners();
|
(*dst)->fGenerationID = 0;
|
}
|
|
SkDEBUGCODE((*dst)->validate();)
|
}
|
|
static bool validate_verb_sequence(const uint8_t verbs[], int vCount) {
|
// verbs are stored backwards, but we need to visit them in logical order to determine if
|
// they form a valid sequence.
|
|
bool needsMoveTo = true;
|
bool invalidSequence = false;
|
|
for (int i = vCount - 1; i >= 0; --i) {
|
switch (verbs[i]) {
|
case SkPath::kMove_Verb:
|
needsMoveTo = false;
|
break;
|
case SkPath::kLine_Verb:
|
case SkPath::kQuad_Verb:
|
case SkPath::kConic_Verb:
|
case SkPath::kCubic_Verb:
|
invalidSequence |= needsMoveTo;
|
break;
|
case SkPath::kClose_Verb:
|
needsMoveTo = true;
|
break;
|
default:
|
return false; // unknown verb
|
}
|
}
|
return !invalidSequence;
|
}
|
|
// Given the verb array, deduce the required number of pts and conics,
|
// or if an invalid verb is encountered, return false.
|
static bool deduce_pts_conics(const uint8_t verbs[], int vCount, int* ptCountPtr,
|
int* conicCountPtr) {
|
// When there is at least one verb, the first is required to be kMove_Verb.
|
if (0 < vCount && verbs[vCount-1] != SkPath::kMove_Verb) {
|
return false;
|
}
|
|
SkSafeMath safe;
|
int ptCount = 0;
|
int conicCount = 0;
|
for (int i = 0; i < vCount; ++i) {
|
switch (verbs[i]) {
|
case SkPath::kMove_Verb:
|
case SkPath::kLine_Verb:
|
ptCount = safe.addInt(ptCount, 1);
|
break;
|
case SkPath::kConic_Verb:
|
conicCount += 1;
|
// fall-through
|
case SkPath::kQuad_Verb:
|
ptCount = safe.addInt(ptCount, 2);
|
break;
|
case SkPath::kCubic_Verb:
|
ptCount = safe.addInt(ptCount, 3);
|
break;
|
case SkPath::kClose_Verb:
|
break;
|
default:
|
return false;
|
}
|
}
|
if (!safe) {
|
return false;
|
}
|
*ptCountPtr = ptCount;
|
*conicCountPtr = conicCount;
|
return true;
|
}
|
|
SkPathRef* SkPathRef::CreateFromBuffer(SkRBuffer* buffer) {
|
std::unique_ptr<SkPathRef> ref(new SkPathRef);
|
|
int32_t packed;
|
if (!buffer->readS32(&packed)) {
|
return nullptr;
|
}
|
|
ref->fIsFinite = (packed >> kIsFinite_SerializationShift) & 1;
|
|
int32_t verbCount, pointCount, conicCount;
|
if (!buffer->readU32(&(ref->fGenerationID)) ||
|
!buffer->readS32(&verbCount) || (verbCount < 0) ||
|
!buffer->readS32(&pointCount) || (pointCount < 0) ||
|
!buffer->readS32(&conicCount) || (conicCount < 0))
|
{
|
return nullptr;
|
}
|
|
uint64_t pointSize64 = sk_64_mul(pointCount, sizeof(SkPoint));
|
uint64_t conicSize64 = sk_64_mul(conicCount, sizeof(SkScalar));
|
if (!SkTFitsIn<size_t>(pointSize64) || !SkTFitsIn<size_t>(conicSize64)) {
|
return nullptr;
|
}
|
|
size_t verbSize = verbCount * sizeof(uint8_t);
|
size_t pointSize = SkToSizeT(pointSize64);
|
size_t conicSize = SkToSizeT(conicSize64);
|
|
{
|
uint64_t requiredBufferSize = sizeof(SkRect);
|
requiredBufferSize += verbSize;
|
requiredBufferSize += pointSize;
|
requiredBufferSize += conicSize;
|
if (buffer->available() < requiredBufferSize) {
|
return nullptr;
|
}
|
}
|
|
ref->resetToSize(verbCount, pointCount, conicCount);
|
SkASSERT(verbCount == ref->countVerbs());
|
SkASSERT(pointCount == ref->countPoints());
|
SkASSERT(conicCount == ref->fConicWeights.count());
|
|
if (!buffer->read(ref->verbsMemWritable(), verbSize) ||
|
!buffer->read(ref->fPoints, pointSize) ||
|
!buffer->read(ref->fConicWeights.begin(), conicSize) ||
|
!buffer->read(&ref->fBounds, sizeof(SkRect))) {
|
return nullptr;
|
}
|
|
// Check that the verbs are valid, and imply the correct number of pts and conics
|
{
|
int pCount, cCount;
|
if (!validate_verb_sequence(ref->verbsMemBegin(), ref->countVerbs())) {
|
return nullptr;
|
}
|
if (!deduce_pts_conics(ref->verbsMemBegin(), ref->countVerbs(), &pCount, &cCount) ||
|
pCount != ref->countPoints() || cCount != ref->fConicWeights.count()) {
|
return nullptr;
|
}
|
if (!validate_conic_weights(ref->fConicWeights.begin(), ref->fConicWeights.count())) {
|
return nullptr;
|
}
|
// Check that the bounds match the serialized bounds.
|
SkRect bounds;
|
if (ComputePtBounds(&bounds, *ref) != SkToBool(ref->fIsFinite) || bounds != ref->fBounds) {
|
return nullptr;
|
}
|
|
// call this after validate_verb_sequence, since it relies on valid verbs
|
ref->fSegmentMask = ref->computeSegmentMask();
|
}
|
|
ref->fBoundsIsDirty = false;
|
|
return ref.release();
|
}
|
|
void SkPathRef::Rewind(sk_sp<SkPathRef>* pathRef) {
|
if ((*pathRef)->unique()) {
|
SkDEBUGCODE((*pathRef)->validate();)
|
(*pathRef)->callGenIDChangeListeners();
|
(*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite
|
(*pathRef)->fVerbCnt = 0;
|
(*pathRef)->fPointCnt = 0;
|
(*pathRef)->fFreeSpace = (*pathRef)->currSize();
|
(*pathRef)->fGenerationID = 0;
|
(*pathRef)->fConicWeights.rewind();
|
(*pathRef)->fSegmentMask = 0;
|
(*pathRef)->fIsOval = false;
|
(*pathRef)->fIsRRect = false;
|
SkDEBUGCODE((*pathRef)->validate();)
|
} else {
|
int oldVCnt = (*pathRef)->countVerbs();
|
int oldPCnt = (*pathRef)->countPoints();
|
pathRef->reset(new SkPathRef);
|
(*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt);
|
}
|
}
|
|
bool SkPathRef::operator== (const SkPathRef& ref) const {
|
SkDEBUGCODE(this->validate();)
|
SkDEBUGCODE(ref.validate();)
|
|
// We explicitly check fSegmentMask as a quick-reject. We could skip it,
|
// since it is only a cache of info in the fVerbs, but its a fast way to
|
// notice a difference
|
if (fSegmentMask != ref.fSegmentMask) {
|
return false;
|
}
|
|
bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID;
|
#ifdef SK_RELEASE
|
if (genIDMatch) {
|
return true;
|
}
|
#endif
|
if (fPointCnt != ref.fPointCnt ||
|
fVerbCnt != ref.fVerbCnt) {
|
SkASSERT(!genIDMatch);
|
return false;
|
}
|
if (0 == ref.fVerbCnt) {
|
SkASSERT(0 == ref.fPointCnt);
|
return true;
|
}
|
SkASSERT(this->verbsMemBegin() && ref.verbsMemBegin());
|
if (0 != memcmp(this->verbsMemBegin(),
|
ref.verbsMemBegin(),
|
ref.fVerbCnt * sizeof(uint8_t))) {
|
SkASSERT(!genIDMatch);
|
return false;
|
}
|
SkASSERT(this->points() && ref.points());
|
if (0 != memcmp(this->points(),
|
ref.points(),
|
ref.fPointCnt * sizeof(SkPoint))) {
|
SkASSERT(!genIDMatch);
|
return false;
|
}
|
if (fConicWeights != ref.fConicWeights) {
|
SkASSERT(!genIDMatch);
|
return false;
|
}
|
return true;
|
}
|
|
void SkPathRef::writeToBuffer(SkWBuffer* buffer) const {
|
SkDEBUGCODE(this->validate();)
|
SkDEBUGCODE(size_t beforePos = buffer->pos();)
|
|
// Call getBounds() to ensure (as a side-effect) that fBounds
|
// and fIsFinite are computed.
|
const SkRect& bounds = this->getBounds();
|
|
// We store fSegmentMask for older readers, but current readers can't trust it, so they
|
// don't read it.
|
int32_t packed = ((fIsFinite & 1) << kIsFinite_SerializationShift) |
|
(fSegmentMask << kSegmentMask_SerializationShift);
|
buffer->write32(packed);
|
|
// TODO: write gen ID here. Problem: We don't know if we're cross process or not from
|
// SkWBuffer. Until this is fixed we write 0.
|
buffer->write32(0);
|
buffer->write32(fVerbCnt);
|
buffer->write32(fPointCnt);
|
buffer->write32(fConicWeights.count());
|
buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t));
|
buffer->write(fPoints, fPointCnt * sizeof(SkPoint));
|
buffer->write(fConicWeights.begin(), fConicWeights.bytes());
|
buffer->write(&bounds, sizeof(bounds));
|
|
SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize());
|
}
|
|
uint32_t SkPathRef::writeSize() const {
|
return uint32_t(5 * sizeof(uint32_t) +
|
fVerbCnt * sizeof(uint8_t) +
|
fPointCnt * sizeof(SkPoint) +
|
fConicWeights.bytes() +
|
sizeof(SkRect));
|
}
|
|
void SkPathRef::copy(const SkPathRef& ref,
|
int additionalReserveVerbs,
|
int additionalReservePoints) {
|
SkDEBUGCODE(this->validate();)
|
this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(),
|
additionalReserveVerbs, additionalReservePoints);
|
sk_careful_memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt*sizeof(uint8_t));
|
sk_careful_memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint));
|
fConicWeights = ref.fConicWeights;
|
fBoundsIsDirty = ref.fBoundsIsDirty;
|
if (!fBoundsIsDirty) {
|
fBounds = ref.fBounds;
|
fIsFinite = ref.fIsFinite;
|
}
|
fSegmentMask = ref.fSegmentMask;
|
fIsOval = ref.fIsOval;
|
fIsRRect = ref.fIsRRect;
|
fRRectOrOvalIsCCW = ref.fRRectOrOvalIsCCW;
|
fRRectOrOvalStartIdx = ref.fRRectOrOvalStartIdx;
|
SkDEBUGCODE(this->validate();)
|
}
|
|
unsigned SkPathRef::computeSegmentMask() const {
|
const uint8_t* verbs = this->verbsMemBegin();
|
unsigned mask = 0;
|
for (int i = this->countVerbs() - 1; i >= 0; --i) {
|
switch (verbs[i]) {
|
case SkPath::kLine_Verb: mask |= SkPath::kLine_SegmentMask; break;
|
case SkPath::kQuad_Verb: mask |= SkPath::kQuad_SegmentMask; break;
|
case SkPath::kConic_Verb: mask |= SkPath::kConic_SegmentMask; break;
|
case SkPath::kCubic_Verb: mask |= SkPath::kCubic_SegmentMask; break;
|
default: break;
|
}
|
}
|
return mask;
|
}
|
|
void SkPathRef::interpolate(const SkPathRef& ending, SkScalar weight, SkPathRef* out) const {
|
const SkScalar* inValues = &ending.getPoints()->fX;
|
SkScalar* outValues = &out->getPoints()->fX;
|
int count = out->countPoints() * 2;
|
for (int index = 0; index < count; ++index) {
|
outValues[index] = outValues[index] * weight + inValues[index] * (1 - weight);
|
}
|
out->fBoundsIsDirty = true;
|
out->fIsOval = false;
|
out->fIsRRect = false;
|
}
|
|
SkPoint* SkPathRef::growForRepeatedVerb(int /*SkPath::Verb*/ verb,
|
int numVbs,
|
SkScalar** weights) {
|
// This value is just made-up for now. When count is 4, calling memset was much
|
// slower than just writing the loop. This seems odd, and hopefully in the
|
// future this will appear to have been a fluke...
|
static const unsigned int kMIN_COUNT_FOR_MEMSET_TO_BE_FAST = 16;
|
|
SkDEBUGCODE(this->validate();)
|
int pCnt;
|
switch (verb) {
|
case SkPath::kMove_Verb:
|
pCnt = numVbs;
|
break;
|
case SkPath::kLine_Verb:
|
fSegmentMask |= SkPath::kLine_SegmentMask;
|
pCnt = numVbs;
|
break;
|
case SkPath::kQuad_Verb:
|
fSegmentMask |= SkPath::kQuad_SegmentMask;
|
pCnt = 2 * numVbs;
|
break;
|
case SkPath::kConic_Verb:
|
fSegmentMask |= SkPath::kConic_SegmentMask;
|
pCnt = 2 * numVbs;
|
break;
|
case SkPath::kCubic_Verb:
|
fSegmentMask |= SkPath::kCubic_SegmentMask;
|
pCnt = 3 * numVbs;
|
break;
|
case SkPath::kClose_Verb:
|
SkDEBUGFAIL("growForRepeatedVerb called for kClose_Verb");
|
pCnt = 0;
|
break;
|
case SkPath::kDone_Verb:
|
SkDEBUGFAIL("growForRepeatedVerb called for kDone");
|
// fall through
|
default:
|
SkDEBUGFAIL("default should not be reached");
|
pCnt = 0;
|
}
|
|
size_t space = numVbs * sizeof(uint8_t) + pCnt * sizeof (SkPoint);
|
this->makeSpace(space);
|
|
SkPoint* ret = fPoints + fPointCnt;
|
uint8_t* vb = fVerbs - fVerbCnt;
|
|
// cast to unsigned, so if kMIN_COUNT_FOR_MEMSET_TO_BE_FAST is defined to
|
// be 0, the compiler will remove the test/branch entirely.
|
if ((unsigned)numVbs >= kMIN_COUNT_FOR_MEMSET_TO_BE_FAST) {
|
memset(vb - numVbs, verb, numVbs);
|
} else {
|
for (int i = 0; i < numVbs; ++i) {
|
vb[~i] = verb;
|
}
|
}
|
|
SkSafeMath safe;
|
fVerbCnt = safe.addInt(fVerbCnt, numVbs);
|
fPointCnt = safe.addInt(fPointCnt, pCnt);
|
if (!safe) {
|
SK_ABORT("cannot grow path");
|
}
|
fFreeSpace -= space;
|
fBoundsIsDirty = true; // this also invalidates fIsFinite
|
fIsOval = false;
|
fIsRRect = false;
|
|
if (SkPath::kConic_Verb == verb) {
|
SkASSERT(weights);
|
*weights = fConicWeights.append(numVbs);
|
}
|
|
SkDEBUGCODE(this->validate();)
|
return ret;
|
}
|
|
SkPoint* SkPathRef::growForVerb(int /* SkPath::Verb*/ verb, SkScalar weight) {
|
SkDEBUGCODE(this->validate();)
|
int pCnt;
|
unsigned mask = 0;
|
switch (verb) {
|
case SkPath::kMove_Verb:
|
pCnt = 1;
|
break;
|
case SkPath::kLine_Verb:
|
mask = SkPath::kLine_SegmentMask;
|
pCnt = 1;
|
break;
|
case SkPath::kQuad_Verb:
|
mask = SkPath::kQuad_SegmentMask;
|
pCnt = 2;
|
break;
|
case SkPath::kConic_Verb:
|
mask = SkPath::kConic_SegmentMask;
|
pCnt = 2;
|
break;
|
case SkPath::kCubic_Verb:
|
mask = SkPath::kCubic_SegmentMask;
|
pCnt = 3;
|
break;
|
case SkPath::kClose_Verb:
|
pCnt = 0;
|
break;
|
case SkPath::kDone_Verb:
|
SkDEBUGFAIL("growForVerb called for kDone");
|
// fall through
|
default:
|
SkDEBUGFAIL("default is not reached");
|
pCnt = 0;
|
}
|
SkSafeMath safe;
|
int newPointCnt = safe.addInt(fPointCnt, pCnt);
|
int newVerbCnt = safe.addInt(fVerbCnt, 1);
|
if (!safe) {
|
SK_ABORT("cannot grow path");
|
}
|
size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint);
|
this->makeSpace(space);
|
this->fVerbs[~fVerbCnt] = verb;
|
SkPoint* ret = fPoints + fPointCnt;
|
fVerbCnt = newVerbCnt;
|
fPointCnt = newPointCnt;
|
fSegmentMask |= mask;
|
fFreeSpace -= space;
|
fBoundsIsDirty = true; // this also invalidates fIsFinite
|
fIsOval = false;
|
fIsRRect = false;
|
|
if (SkPath::kConic_Verb == verb) {
|
*fConicWeights.append() = weight;
|
}
|
|
SkDEBUGCODE(this->validate();)
|
return ret;
|
}
|
|
uint32_t SkPathRef::genID() const {
|
SkASSERT(fEditorsAttached.load() == 0);
|
static const uint32_t kMask = (static_cast<int64_t>(1) << SkPathPriv::kPathRefGenIDBitCnt) - 1;
|
|
if (fGenerationID == 0) {
|
if (fPointCnt == 0 && fVerbCnt == 0) {
|
fGenerationID = kEmptyGenID;
|
} else {
|
static std::atomic<uint32_t> nextID{kEmptyGenID + 1};
|
do {
|
fGenerationID = nextID.fetch_add(1, std::memory_order_relaxed) & kMask;
|
} while (fGenerationID == 0 || fGenerationID == kEmptyGenID);
|
}
|
}
|
return fGenerationID;
|
}
|
|
void SkPathRef::addGenIDChangeListener(sk_sp<GenIDChangeListener> listener) {
|
if (nullptr == listener || this == gEmpty) {
|
return;
|
}
|
|
SkAutoMutexAcquire lock(fGenIDChangeListenersMutex);
|
|
// Clean out any stale listeners before we append the new one.
|
for (int i = 0; i < fGenIDChangeListeners.count(); ++i) {
|
if (fGenIDChangeListeners[i]->shouldUnregisterFromPath()) {
|
fGenIDChangeListeners[i]->unref();
|
fGenIDChangeListeners.removeShuffle(i--); // No need to preserve the order after i.
|
}
|
}
|
|
SkASSERT(!listener->shouldUnregisterFromPath());
|
*fGenIDChangeListeners.append() = listener.release();
|
}
|
|
// we need to be called *before* the genID gets changed or zerod
|
void SkPathRef::callGenIDChangeListeners() {
|
SkAutoMutexAcquire lock(fGenIDChangeListenersMutex);
|
for (GenIDChangeListener* listener : fGenIDChangeListeners) {
|
if (!listener->shouldUnregisterFromPath()) {
|
listener->onChange();
|
}
|
// Listeners get at most one shot, so whether these triggered or not, blow them away.
|
listener->unref();
|
}
|
|
fGenIDChangeListeners.reset();
|
}
|
|
SkRRect SkPathRef::getRRect() const {
|
const SkRect& bounds = this->getBounds();
|
SkVector radii[4] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
|
Iter iter(*this);
|
SkPoint pts[4];
|
uint8_t verb = iter.next(pts);
|
SkASSERT(SkPath::kMove_Verb == verb);
|
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
|
if (SkPath::kConic_Verb == verb) {
|
SkVector v1_0 = pts[1] - pts[0];
|
SkVector v2_1 = pts[2] - pts[1];
|
SkVector dxdy;
|
if (v1_0.fX) {
|
SkASSERT(!v2_1.fX && !v1_0.fY);
|
dxdy.set(SkScalarAbs(v1_0.fX), SkScalarAbs(v2_1.fY));
|
} else if (!v1_0.fY) {
|
SkASSERT(!v2_1.fX || !v2_1.fY);
|
dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v2_1.fY));
|
} else {
|
SkASSERT(!v2_1.fY);
|
dxdy.set(SkScalarAbs(v2_1.fX), SkScalarAbs(v1_0.fY));
|
}
|
SkRRect::Corner corner =
|
pts[1].fX == bounds.fLeft ?
|
pts[1].fY == bounds.fTop ?
|
SkRRect::kUpperLeft_Corner : SkRRect::kLowerLeft_Corner :
|
pts[1].fY == bounds.fTop ?
|
SkRRect::kUpperRight_Corner : SkRRect::kLowerRight_Corner;
|
SkASSERT(!radii[corner].fX && !radii[corner].fY);
|
radii[corner] = dxdy;
|
} else {
|
SkASSERT((verb == SkPath::kLine_Verb
|
&& (!(pts[1].fX - pts[0].fX) || !(pts[1].fY - pts[0].fY)))
|
|| verb == SkPath::kClose_Verb);
|
}
|
}
|
SkRRect rrect;
|
rrect.setRectRadii(bounds, radii);
|
return rrect;
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
SkPathRef::Iter::Iter() {
|
#ifdef SK_DEBUG
|
fPts = nullptr;
|
fConicWeights = nullptr;
|
#endif
|
// need to init enough to make next() harmlessly return kDone_Verb
|
fVerbs = nullptr;
|
fVerbStop = nullptr;
|
}
|
|
SkPathRef::Iter::Iter(const SkPathRef& path) {
|
this->setPathRef(path);
|
}
|
|
void SkPathRef::Iter::setPathRef(const SkPathRef& path) {
|
fPts = path.points();
|
fVerbs = path.verbs();
|
fVerbStop = path.verbsMemBegin();
|
fConicWeights = path.conicWeights();
|
if (fConicWeights) {
|
fConicWeights -= 1; // begin one behind
|
}
|
|
// Don't allow iteration through non-finite points.
|
if (!path.isFinite()) {
|
fVerbStop = fVerbs;
|
}
|
}
|
|
uint8_t SkPathRef::Iter::next(SkPoint pts[4]) {
|
SkASSERT(pts);
|
|
SkDEBUGCODE(unsigned peekResult = this->peek();)
|
|
if (fVerbs == fVerbStop) {
|
SkASSERT(peekResult == SkPath::kDone_Verb);
|
return (uint8_t) SkPath::kDone_Verb;
|
}
|
|
// fVerbs points one beyond next verb so decrement first.
|
unsigned verb = *(--fVerbs);
|
const SkPoint* srcPts = fPts;
|
|
switch (verb) {
|
case SkPath::kMove_Verb:
|
pts[0] = srcPts[0];
|
srcPts += 1;
|
break;
|
case SkPath::kLine_Verb:
|
pts[0] = srcPts[-1];
|
pts[1] = srcPts[0];
|
srcPts += 1;
|
break;
|
case SkPath::kConic_Verb:
|
fConicWeights += 1;
|
// fall-through
|
case SkPath::kQuad_Verb:
|
pts[0] = srcPts[-1];
|
pts[1] = srcPts[0];
|
pts[2] = srcPts[1];
|
srcPts += 2;
|
break;
|
case SkPath::kCubic_Verb:
|
pts[0] = srcPts[-1];
|
pts[1] = srcPts[0];
|
pts[2] = srcPts[1];
|
pts[3] = srcPts[2];
|
srcPts += 3;
|
break;
|
case SkPath::kClose_Verb:
|
break;
|
case SkPath::kDone_Verb:
|
SkASSERT(fVerbs == fVerbStop);
|
break;
|
}
|
fPts = srcPts;
|
SkASSERT(peekResult == verb);
|
return (uint8_t) verb;
|
}
|
|
uint8_t SkPathRef::Iter::peek() const {
|
const uint8_t* next = fVerbs;
|
return next <= fVerbStop ? (uint8_t) SkPath::kDone_Verb : next[-1];
|
}
|
|
|
bool SkPathRef::isValid() const {
|
if (static_cast<ptrdiff_t>(fFreeSpace) < 0) {
|
return false;
|
}
|
if (reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) < 0) {
|
return false;
|
}
|
if ((nullptr == fPoints) != (nullptr == fVerbs)) {
|
return false;
|
}
|
if (nullptr == fPoints && 0 != fFreeSpace) {
|
return false;
|
}
|
if (nullptr == fPoints && fPointCnt) {
|
return false;
|
}
|
if (nullptr == fVerbs && fVerbCnt) {
|
return false;
|
}
|
if (this->currSize() !=
|
fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt) {
|
return false;
|
}
|
|
if (fIsOval || fIsRRect) {
|
// Currently we don't allow both of these to be set, even though ovals are ro
|
if (fIsOval == fIsRRect) {
|
return false;
|
}
|
if (fIsOval) {
|
if (fRRectOrOvalStartIdx >= 4) {
|
return false;
|
}
|
} else {
|
if (fRRectOrOvalStartIdx >= 8) {
|
return false;
|
}
|
}
|
}
|
|
if (!fBoundsIsDirty && !fBounds.isEmpty()) {
|
bool isFinite = true;
|
Sk2s leftTop = Sk2s(fBounds.fLeft, fBounds.fTop);
|
Sk2s rightBot = Sk2s(fBounds.fRight, fBounds.fBottom);
|
for (int i = 0; i < fPointCnt; ++i) {
|
Sk2s point = Sk2s(fPoints[i].fX, fPoints[i].fY);
|
#ifdef SK_DEBUG
|
if (fPoints[i].isFinite() &&
|
((point < leftTop).anyTrue() || (point > rightBot).anyTrue())) {
|
SkDebugf("bad SkPathRef bounds: %g %g %g %g\n",
|
fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
|
for (int j = 0; j < fPointCnt; ++j) {
|
if (i == j) {
|
SkDebugf("*** bounds do not contain: ");
|
}
|
SkDebugf("%g %g\n", fPoints[j].fX, fPoints[j].fY);
|
}
|
return false;
|
}
|
#endif
|
|
if (fPoints[i].isFinite() && (point < leftTop).anyTrue() && !(point > rightBot).anyTrue())
|
return false;
|
if (!fPoints[i].isFinite()) {
|
isFinite = false;
|
}
|
}
|
if (SkToBool(fIsFinite) != isFinite) {
|
return false;
|
}
|
}
|
return true;
|
}
|