/*
|
* Copyright 2016 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkNormalMapSource.h"
|
|
#include "SkArenaAlloc.h"
|
#include "SkLightingShader.h"
|
#include "SkMatrix.h"
|
#include "SkNormalSource.h"
|
#include "SkReadBuffer.h"
|
#include "SkWriteBuffer.h"
|
|
#if SK_SUPPORT_GPU
|
#include "GrCoordTransform.h"
|
#include "glsl/GrGLSLFragmentProcessor.h"
|
#include "glsl/GrGLSLFragmentShaderBuilder.h"
|
#include "SkGr.h"
|
|
class NormalMapFP : public GrFragmentProcessor {
|
public:
|
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> mapFP,
|
const SkMatrix& invCTM) {
|
return std::unique_ptr<GrFragmentProcessor>(new NormalMapFP(std::move(mapFP), invCTM));
|
}
|
|
const char* name() const override { return "NormalMapFP"; }
|
|
const SkMatrix& invCTM() const { return fInvCTM; }
|
|
std::unique_ptr<GrFragmentProcessor> clone() const override {
|
return Make(this->childProcessor(0).clone(), fInvCTM);
|
}
|
|
private:
|
class GLSLNormalMapFP : public GrGLSLFragmentProcessor {
|
public:
|
GLSLNormalMapFP() : fColumnMajorInvCTM22{0.0f} {}
|
|
void emitCode(EmitArgs& args) override {
|
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
|
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
|
|
// add uniform
|
const char* xformUniName = nullptr;
|
fXformUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat2x2_GrSLType,
|
"Xform", &xformUniName);
|
|
SkString dstNormalColorName("dstNormalColor");
|
this->emitChild(0, &dstNormalColorName, args);
|
fragBuilder->codeAppendf("float3 normal = normalize(%s.rgb - float3(0.5));",
|
dstNormalColorName.c_str());
|
|
// If there's no x & y components, return (0, 0, +/- 1) instead to avoid division by 0
|
fragBuilder->codeAppend( "if (abs(normal.z) > 0.999) {");
|
fragBuilder->codeAppendf(" %s = normalize(half4(0.0, 0.0, half(normal.z), 0.0));",
|
args.fOutputColor);
|
// Else, Normalizing the transformed X and Y, while keeping constant both Z and the
|
// vector's angle in the XY plane. This maintains the "slope" for the surface while
|
// appropriately rotating the normal regardless of any anisotropic scaling that occurs.
|
// Here, we call 'scaling factor' the number that must divide the transformed X and Y so
|
// that the normal's length remains equal to 1.
|
fragBuilder->codeAppend( "} else {");
|
fragBuilder->codeAppendf(" float2 transformed = %s * normal.xy;",
|
xformUniName);
|
fragBuilder->codeAppend( " float scalingFactorSquared = "
|
"( (transformed.x * transformed.x) "
|
"+ (transformed.y * transformed.y) )"
|
"/(1.0 - (normal.z * normal.z));");
|
fragBuilder->codeAppendf(" %s = half4(half2(transformed * "
|
"inversesqrt(scalingFactorSquared)),"
|
"half(normal.z), 0.0);",
|
args.fOutputColor);
|
fragBuilder->codeAppend( "}");
|
}
|
|
static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
|
b->add32(0x0);
|
}
|
|
private:
|
void onSetData(const GrGLSLProgramDataManager& pdman,
|
const GrFragmentProcessor& proc) override {
|
const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();
|
|
const SkMatrix& invCTM = normalMapFP.invCTM();
|
fColumnMajorInvCTM22[0] = invCTM.get(SkMatrix::kMScaleX);
|
fColumnMajorInvCTM22[1] = invCTM.get(SkMatrix::kMSkewY);
|
fColumnMajorInvCTM22[2] = invCTM.get(SkMatrix::kMSkewX);
|
fColumnMajorInvCTM22[3] = invCTM.get(SkMatrix::kMScaleY);
|
pdman.setMatrix2f(fXformUni, fColumnMajorInvCTM22);
|
}
|
|
private:
|
// Upper-right 2x2 corner of the inverse of the CTM in column-major form
|
float fColumnMajorInvCTM22[4];
|
GrGLSLProgramDataManager::UniformHandle fXformUni;
|
};
|
|
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {
|
GLSLNormalMapFP::GenKey(*this, caps, b);
|
}
|
NormalMapFP(std::unique_ptr<GrFragmentProcessor> mapFP, const SkMatrix& invCTM)
|
: INHERITED(kMappedNormalsFP_ClassID, kNone_OptimizationFlags)
|
, fInvCTM(invCTM) {
|
this->registerChildProcessor(std::move(mapFP));
|
}
|
|
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLSLNormalMapFP; }
|
|
bool onIsEqual(const GrFragmentProcessor& proc) const override {
|
const NormalMapFP& normalMapFP = proc.cast<NormalMapFP>();
|
return fInvCTM == normalMapFP.fInvCTM;
|
}
|
|
SkMatrix fInvCTM;
|
|
typedef GrFragmentProcessor INHERITED;
|
};
|
|
std::unique_ptr<GrFragmentProcessor> SkNormalMapSourceImpl::asFragmentProcessor(
|
const GrFPArgs& args) const {
|
std::unique_ptr<GrFragmentProcessor> mapFP = as_SB(fMapShader)->asFragmentProcessor(args);
|
if (!mapFP) {
|
return nullptr;
|
}
|
|
return NormalMapFP::Make(std::move(mapFP), fInvCTM);
|
}
|
|
#endif // SK_SUPPORT_GPU
|
|
////////////////////////////////////////////////////////////////////////////
|
|
SkNormalMapSourceImpl::Provider::Provider(const SkNormalMapSourceImpl& source,
|
SkShaderBase::Context* mapContext)
|
: fSource(source)
|
, fMapContext(mapContext) {}
|
|
SkNormalSource::Provider* SkNormalMapSourceImpl::asProvider(const SkShaderBase::ContextRec &rec,
|
SkArenaAlloc* alloc) const {
|
SkMatrix normTotalInv;
|
if (!this->computeNormTotalInverse(rec, &normTotalInv)) {
|
return nullptr;
|
}
|
|
// Normals really aren't colors, so to ensure we can always make the context, we ignore
|
// the rec's colorspace
|
SkColorSpace* dstColorSpace = nullptr;
|
|
// Overriding paint's alpha because we need the normal map's RGB channels to be unpremul'd
|
SkPaint overridePaint {*(rec.fPaint)};
|
overridePaint.setAlpha(0xFF);
|
SkShaderBase::ContextRec overrideRec(overridePaint, *(rec.fMatrix), rec.fLocalMatrix,
|
rec.fDstColorType, dstColorSpace);
|
|
auto* context = as_SB(fMapShader)->makeContext(overrideRec, alloc);
|
if (!context) {
|
return nullptr;
|
}
|
|
return alloc->make<Provider>(*this, context);
|
}
|
|
bool SkNormalMapSourceImpl::computeNormTotalInverse(const SkShaderBase::ContextRec& rec,
|
SkMatrix* normTotalInverse) const {
|
SkMatrix total = SkMatrix::Concat(*rec.fMatrix, fMapShader->getLocalMatrix());
|
if (rec.fLocalMatrix) {
|
total.preConcat(*rec.fLocalMatrix);
|
}
|
|
return total.invert(normTotalInverse);
|
}
|
|
#define BUFFER_MAX 16
|
void SkNormalMapSourceImpl::Provider::fillScanLine(int x, int y, SkPoint3 output[],
|
int count) const {
|
SkPMColor tmpNormalColors[BUFFER_MAX];
|
|
do {
|
int n = SkTMin(count, BUFFER_MAX);
|
|
fMapContext->shadeSpan(x, y, tmpNormalColors, n);
|
|
for (int i = 0; i < n; i++) {
|
SkPoint3 tempNorm;
|
|
tempNorm.set(SkIntToScalar(SkGetPackedR32(tmpNormalColors[i])) - 127.0f,
|
SkIntToScalar(SkGetPackedG32(tmpNormalColors[i])) - 127.0f,
|
SkIntToScalar(SkGetPackedB32(tmpNormalColors[i])) - 127.0f);
|
|
tempNorm.normalize();
|
|
|
if (!SkScalarNearlyEqual(SkScalarAbs(tempNorm.fZ), 1.0f)) {
|
SkVector transformed = fSource.fInvCTM.mapVector(tempNorm.fX, tempNorm.fY);
|
|
// Normalizing the transformed X and Y, while keeping constant both Z and the
|
// vector's angle in the XY plane. This maintains the "slope" for the surface while
|
// appropriately rotating the normal for any anisotropic scaling that occurs.
|
// Here, we call scaling factor the number that must divide the transformed X and Y
|
// so that the normal's length remains equal to 1.
|
SkScalar scalingFactorSquared =
|
(SkScalarSquare(transformed.fX) + SkScalarSquare(transformed.fY))
|
/ (1.0f - SkScalarSquare(tempNorm.fZ));
|
SkScalar invScalingFactor = SkScalarInvert(SkScalarSqrt(scalingFactorSquared));
|
|
output[i].fX = transformed.fX * invScalingFactor;
|
output[i].fY = transformed.fY * invScalingFactor;
|
output[i].fZ = tempNorm.fZ;
|
} else {
|
output[i] = {0.0f, 0.0f, tempNorm.fZ};
|
output[i].normalize();
|
}
|
|
SkASSERT(SkScalarNearlyEqual(output[i].length(), 1.0f));
|
}
|
|
output += n;
|
x += n;
|
count -= n;
|
} while (count > 0);
|
}
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
sk_sp<SkFlattenable> SkNormalMapSourceImpl::CreateProc(SkReadBuffer& buf) {
|
|
sk_sp<SkShader> mapShader = buf.readFlattenable<SkShaderBase>();
|
|
SkMatrix invCTM;
|
buf.readMatrix(&invCTM);
|
|
return sk_make_sp<SkNormalMapSourceImpl>(std::move(mapShader), invCTM);
|
}
|
|
void SkNormalMapSourceImpl::flatten(SkWriteBuffer& buf) const {
|
this->INHERITED::flatten(buf);
|
|
buf.writeFlattenable(fMapShader.get());
|
buf.writeMatrix(fInvCTM);
|
}
|
|
////////////////////////////////////////////////////////////////////////////
|
|
sk_sp<SkNormalSource> SkNormalSource::MakeFromNormalMap(sk_sp<SkShader> map, const SkMatrix& ctm) {
|
SkMatrix invCTM;
|
|
if (!ctm.invert(&invCTM) || !map) {
|
return nullptr;
|
}
|
|
return sk_make_sp<SkNormalMapSourceImpl>(std::move(map), invCTM);
|
}
|