/*
|
* Copyright 2012 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#ifndef SkMathPriv_DEFINED
|
#define SkMathPriv_DEFINED
|
|
#include "SkMath.h"
|
|
/**
|
* Return the integer square root of value, with a bias of bitBias
|
*/
|
int32_t SkSqrtBits(int32_t value, int bitBias);
|
|
/** Return the integer square root of n, treated as a SkFixed (16.16)
|
*/
|
static inline int32_t SkSqrt32(int32_t n) { return SkSqrtBits(n, 15); }
|
|
/**
|
* Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches)
|
*/
|
static inline int SkClampPos(int value) {
|
return value & ~(value >> 31);
|
}
|
|
/**
|
* Stores numer/denom and numer%denom into div and mod respectively.
|
*/
|
template <typename In, typename Out>
|
inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) {
|
#ifdef SK_CPU_ARM32
|
// If we wrote this as in the else branch, GCC won't fuse the two into one
|
// divmod call, but rather a div call followed by a divmod. Silly! This
|
// version is just as fast as calling __aeabi_[u]idivmod manually, but with
|
// prettier code.
|
//
|
// This benches as around 2x faster than the code in the else branch.
|
const In d = numer/denom;
|
*div = static_cast<Out>(d);
|
*mod = static_cast<Out>(numer-d*denom);
|
#else
|
// On x86 this will just be a single idiv.
|
*div = static_cast<Out>(numer/denom);
|
*mod = static_cast<Out>(numer%denom);
|
#endif
|
}
|
|
/** Returns -1 if n < 0, else returns 0
|
*/
|
#define SkExtractSign(n) ((int32_t)(n) >> 31)
|
|
/** If sign == -1, returns -n, else sign must be 0, and returns n.
|
Typically used in conjunction with SkExtractSign().
|
*/
|
static inline int32_t SkApplySign(int32_t n, int32_t sign) {
|
SkASSERT(sign == 0 || sign == -1);
|
return (n ^ sign) - sign;
|
}
|
|
/** Return x with the sign of y */
|
static inline int32_t SkCopySign32(int32_t x, int32_t y) {
|
return SkApplySign(x, SkExtractSign(x ^ y));
|
}
|
|
/** Given a positive value and a positive max, return the value
|
pinned against max.
|
Note: only works as long as max - value doesn't wrap around
|
@return max if value >= max, else value
|
*/
|
static inline unsigned SkClampUMax(unsigned value, unsigned max) {
|
if (value > max) {
|
value = max;
|
}
|
return value;
|
}
|
|
// If a signed int holds min_int (e.g. 0x80000000) it is undefined what happens when
|
// we negate it (even though we *know* we're 2's complement and we'll get the same
|
// value back). So we create this helper function that casts to size_t (unsigned) first,
|
// to avoid the complaint.
|
static inline size_t sk_negate_to_size_t(int32_t value) {
|
#if defined(_MSC_VER)
|
#pragma warning(push)
|
#pragma warning(disable : 4146) // Thanks MSVC, we know what we're negating an unsigned
|
#endif
|
return -static_cast<size_t>(value);
|
#if defined(_MSC_VER)
|
#pragma warning(pop)
|
#endif
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
/** Return a*b/255, truncating away any fractional bits. Only valid if both
|
a and b are 0..255
|
*/
|
static inline U8CPU SkMulDiv255Trunc(U8CPU a, U8CPU b) {
|
SkASSERT((uint8_t)a == a);
|
SkASSERT((uint8_t)b == b);
|
unsigned prod = a*b + 1;
|
return (prod + (prod >> 8)) >> 8;
|
}
|
|
/** Return (a*b)/255, taking the ceiling of any fractional bits. Only valid if
|
both a and b are 0..255. The expected result equals (a * b + 254) / 255.
|
*/
|
static inline U8CPU SkMulDiv255Ceiling(U8CPU a, U8CPU b) {
|
SkASSERT((uint8_t)a == a);
|
SkASSERT((uint8_t)b == b);
|
unsigned prod = a*b + 255;
|
return (prod + (prod >> 8)) >> 8;
|
}
|
|
/** Just the rounding step in SkDiv255Round: round(value / 255)
|
*/
|
static inline unsigned SkDiv255Round(unsigned prod) {
|
prod += 128;
|
return (prod + (prod >> 8)) >> 8;
|
}
|
|
static inline float SkPinToUnitFloat(float x) {
|
return SkTMin(SkTMax(x, 0.0f), 1.0f);
|
}
|
|
/**
|
* Swap byte order of a 4-byte value, e.g. 0xaarrggbb -> 0xbbggrraa.
|
*/
|
#if defined(_MSC_VER)
|
#include <stdlib.h>
|
static inline uint32_t SkBSwap32(uint32_t v) { return _byteswap_ulong(v); }
|
#else
|
static inline uint32_t SkBSwap32(uint32_t v) { return __builtin_bswap32(v); }
|
#endif
|
|
//! Returns the number of leading zero bits (0...32)
|
int SkCLZ_portable(uint32_t);
|
|
#ifndef SkCLZ
|
#if defined(SK_BUILD_FOR_WIN)
|
#include <intrin.h>
|
|
static inline int SkCLZ(uint32_t mask) {
|
if (mask) {
|
unsigned long index;
|
_BitScanReverse(&index, mask);
|
// Suppress this bogus /analyze warning. The check for non-zero
|
// guarantees that _BitScanReverse will succeed.
|
#pragma warning(suppress : 6102) // Using 'index' from failed function call
|
return index ^ 0x1F;
|
} else {
|
return 32;
|
}
|
}
|
#elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__)
|
static inline int SkCLZ(uint32_t mask) {
|
// __builtin_clz(0) is undefined, so we have to detect that case.
|
return mask ? __builtin_clz(mask) : 32;
|
}
|
#else
|
#define SkCLZ(x) SkCLZ_portable(x)
|
#endif
|
#endif
|
|
/**
|
* Returns the smallest power-of-2 that is >= the specified value. If value
|
* is already a power of 2, then it is returned unchanged. It is undefined
|
* if value is <= 0.
|
*/
|
static inline int SkNextPow2(int value) {
|
SkASSERT(value > 0);
|
return 1 << (32 - SkCLZ(value - 1));
|
}
|
|
/**
|
* Returns the largest power-of-2 that is <= the specified value. If value
|
* is already a power of 2, then it is returned unchanged. It is undefined
|
* if value is <= 0.
|
*/
|
static inline int SkPrevPow2(int value) {
|
SkASSERT(value > 0);
|
return 1 << (32 - SkCLZ(value >> 1));
|
}
|
|
/**
|
* Returns the log2 of the specified value, were that value to be rounded up
|
* to the next power of 2. It is undefined to pass 0. Examples:
|
* SkNextLog2(1) -> 0
|
* SkNextLog2(2) -> 1
|
* SkNextLog2(3) -> 2
|
* SkNextLog2(4) -> 2
|
* SkNextLog2(5) -> 3
|
*/
|
static inline int SkNextLog2(uint32_t value) {
|
SkASSERT(value != 0);
|
return 32 - SkCLZ(value - 1);
|
}
|
|
/**
|
* Returns the log2 of the specified value, were that value to be rounded down
|
* to the previous power of 2. It is undefined to pass 0. Examples:
|
* SkPrevLog2(1) -> 0
|
* SkPrevLog2(2) -> 1
|
* SkPrevLog2(3) -> 1
|
* SkPrevLog2(4) -> 2
|
* SkPrevLog2(5) -> 2
|
*/
|
static inline int SkPrevLog2(uint32_t value) {
|
SkASSERT(value != 0);
|
return 32 - SkCLZ(value >> 1);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
/**
|
* Return the next power of 2 >= n.
|
*/
|
static inline uint32_t GrNextPow2(uint32_t n) {
|
return n ? (1 << (32 - SkCLZ(n - 1))) : 1;
|
}
|
|
/**
|
* Returns the next power of 2 >= n or n if the next power of 2 can't be represented by size_t.
|
*/
|
static inline size_t GrNextSizePow2(size_t n) {
|
constexpr int kNumSizeTBits = 8 * sizeof(size_t);
|
constexpr size_t kHighBitSet = size_t(1) << (kNumSizeTBits - 1);
|
|
if (!n) {
|
return 1;
|
} else if (n >= kHighBitSet) {
|
return n;
|
}
|
|
n--;
|
uint32_t shift = 1;
|
while (shift < kNumSizeTBits) {
|
n |= n >> shift;
|
shift <<= 1;
|
}
|
return n + 1;
|
}
|
|
// conservative check. will return false for very large values that "could" fit
|
template <typename T> static inline bool SkFitsInFixed(T x) {
|
return SkTAbs(x) <= 32767.0f;
|
}
|
|
#endif
|