/*
|
* Copyright 2017 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkExecutor.h"
|
#include "SkMakeUnique.h"
|
#include "SkMutex.h"
|
#include "SkSemaphore.h"
|
#include "SkSpinlock.h"
|
#include "SkTArray.h"
|
#include <deque>
|
#include <thread>
|
|
#if defined(SK_BUILD_FOR_WIN)
|
#include "SkLeanWindows.h"
|
static int num_cores() {
|
SYSTEM_INFO sysinfo;
|
GetNativeSystemInfo(&sysinfo);
|
return (int)sysinfo.dwNumberOfProcessors;
|
}
|
#else
|
#include <unistd.h>
|
static int num_cores() {
|
return (int)sysconf(_SC_NPROCESSORS_ONLN);
|
}
|
#endif
|
|
SkExecutor::~SkExecutor() {}
|
|
// The default default SkExecutor is an SkTrivialExecutor, which just runs the work right away.
|
class SkTrivialExecutor final : public SkExecutor {
|
void add(std::function<void(void)> work) override {
|
work();
|
}
|
};
|
|
static SkTrivialExecutor gTrivial;
|
static SkExecutor* gDefaultExecutor = &gTrivial;
|
|
SkExecutor& SkExecutor::GetDefault() {
|
return *gDefaultExecutor;
|
}
|
void SkExecutor::SetDefault(SkExecutor* executor) {
|
gDefaultExecutor = executor ? executor : &gTrivial;
|
}
|
|
// We'll always push_back() new work, but pop from the front of deques or the back of SkTArray.
|
static inline std::function<void(void)> pop(std::deque<std::function<void(void)>>* list) {
|
std::function<void(void)> fn = std::move(list->front());
|
list->pop_front();
|
return fn;
|
}
|
static inline std::function<void(void)> pop(SkTArray<std::function<void(void)>>* list) {
|
std::function<void(void)> fn = std::move(list->back());
|
list->pop_back();
|
return fn;
|
}
|
|
// An SkThreadPool is an executor that runs work on a fixed pool of OS threads.
|
template <typename WorkList>
|
class SkThreadPool final : public SkExecutor {
|
public:
|
explicit SkThreadPool(int threads) {
|
for (int i = 0; i < threads; i++) {
|
fThreads.emplace_back(&Loop, this);
|
}
|
}
|
|
~SkThreadPool() override {
|
// Signal each thread that it's time to shut down.
|
for (int i = 0; i < fThreads.count(); i++) {
|
this->add(nullptr);
|
}
|
// Wait for each thread to shut down.
|
for (int i = 0; i < fThreads.count(); i++) {
|
fThreads[i].join();
|
}
|
}
|
|
virtual void add(std::function<void(void)> work) override {
|
// Add some work to our pile of work to do.
|
{
|
SkAutoExclusive lock(fWorkLock);
|
fWork.emplace_back(std::move(work));
|
}
|
// Tell the Loop() threads to pick it up.
|
fWorkAvailable.signal(1);
|
}
|
|
virtual void borrow() override {
|
// If there is work waiting, do it.
|
if (fWorkAvailable.try_wait()) {
|
SkAssertResult(this->do_work());
|
}
|
}
|
|
private:
|
// This method should be called only when fWorkAvailable indicates there's work to do.
|
bool do_work() {
|
std::function<void(void)> work;
|
{
|
SkAutoExclusive lock(fWorkLock);
|
SkASSERT(!fWork.empty()); // TODO: if (fWork.empty()) { return true; } ?
|
work = pop(&fWork);
|
}
|
|
if (!work) {
|
return false; // This is Loop()'s signal to shut down.
|
}
|
|
work();
|
return true;
|
}
|
|
static void Loop(void* ctx) {
|
auto pool = (SkThreadPool*)ctx;
|
do {
|
pool->fWorkAvailable.wait();
|
} while (pool->do_work());
|
}
|
|
// Both SkMutex and SkSpinlock can work here.
|
using Lock = SkMutex;
|
|
SkTArray<std::thread> fThreads;
|
WorkList fWork;
|
Lock fWorkLock;
|
SkSemaphore fWorkAvailable;
|
};
|
|
std::unique_ptr<SkExecutor> SkExecutor::MakeFIFOThreadPool(int threads) {
|
using WorkList = std::deque<std::function<void(void)>>;
|
return skstd::make_unique<SkThreadPool<WorkList>>(threads > 0 ? threads : num_cores());
|
}
|
std::unique_ptr<SkExecutor> SkExecutor::MakeLIFOThreadPool(int threads) {
|
using WorkList = SkTArray<std::function<void(void)>>;
|
return skstd::make_unique<SkThreadPool<WorkList>>(threads > 0 ? threads : num_cores());
|
}
|