Google's data interchange format.
Copyright 2010 The Go Authors.
https://github.com/golang/protobuf
This package and the code it generates requires at least Go 1.9.
This software implements Go bindings for protocol buffers. For
information about protocol buffers themselves, see
https://developers.google.com/protocol-buffers/
To use this software, you must:
- Install the standard C++ implementation of protocol buffers from
https://developers.google.com/protocol-buffers/
- Of course, install the Go compiler and tools from
https://golang.org/
See
https://golang.org/doc/install
for details or, if you are using gccgo, follow the instructions at
https://golang.org/doc/install/gccgo
- Grab the code from the repository and install the proto
package.
The simplest way is to run go get -u github.com/golang/protobuf/protoc-gen-go
.
The compiler plugin, protoc-gen-go
, will be installed in $GOPATH/bin
unless $GOBIN
is set. It must be in your $PATH
for the protocol
compiler, protoc
, to find it.
- If you need a particular version of protoc-gen-go
(e.g., to match your
proto
package version), one option is
shell GIT_TAG="v1.2.0" # change as needed go get -d -u github.com/golang/protobuf/protoc-gen-go git -C "$(go env GOPATH)"/src/github.com/golang/protobuf checkout $GIT_TAG go install github.com/golang/protobuf/protoc-gen-go
This software has two parts: a 'protocol compiler plugin' that
generates Go source files that, once compiled, can access and manage
protocol buffers; and a library that implements run-time support for
encoding (marshaling), decoding (unmarshaling), and accessing protocol
buffers.
There is support for gRPC in Go using protocol buffers.
See the note at the bottom of this file for details.
There are no insertion points in the plugin.
Once the software is installed, there are two steps to using it.
First you must compile the protocol buffer definitions and then import
them, with the support library, into your program.
To compile the protocol buffer definition, run protoc with the --go_out
parameter set to the directory you want to output the Go code to.
protoc --go_out=. *.proto
The generated files will be suffixed .pb.go. See the Test code below
for an example using such a file.
The protocol buffer language has a concept of "packages" which does not
correspond well to the Go notion of packages. In generated Go code,
each source .proto
file is associated with a single Go package. The
name and import path for this package is specified with the go_package
proto option:
option go_package = "github.com/golang/protobuf/ptypes/any";
The protocol buffer compiler will attempt to derive a package name and
import path if a go_package
option is not present, but it is
best to always specify one explicitly.
There is a one-to-one relationship between source .proto
files and
generated .pb.go
files, but any number of .pb.go
files may be
contained in the same Go package.
The output name of a generated file is produced by replacing the.proto
suffix with .pb.go
(e.g., foo.proto
produces foo.pb.go
).
However, the output directory is selected in one of two ways. Let
us say we have inputs/x.proto
with a go_package
option ofgithub.com/golang/protobuf/p
. The corresponding output file may
be:
protoc --go_out=. inputs/x.proto
# writes ./github.com/golang/protobuf/p/x.pb.go
(This can work well with --go_out=$GOPATH
.)
protoc --go_out=paths=source_relative:. inputs/x.proto
# generate ./inputs/x.pb.go
The package comment for the proto library contains text describing
the interface provided in Go for protocol buffers. Here is an edited
version.
The proto package converts data structures to and from the
wire format of protocol buffers. It works in concert with the
Go source code generated for .proto files by the protocol compiler.
A summary of the properties of the protocol buffer interface
for a protocol buffer variable v:
When the .proto file specifies syntax="proto3"
, there are some differences:
Consider file test.proto, containing
syntax = "proto2";
package example;
enum FOO { X = 17; };
message Test {
required string label = 1;
optional int32 type = 2 [default=77];
repeated int64 reps = 3;
}
To create and play with a Test object from the example package,
package main
import (
"log"
"github.com/golang/protobuf/proto"
"path/to/example"
)
func main() {
test := &example.Test{
Label: proto.String("hello"),
Type: proto.Int32(17),
Reps: []int64{1, 2, 3},
}
data, err := proto.Marshal(test)
if err != nil {
log.Fatal("marshaling error: ", err)
}
newTest := &example.Test{}
err = proto.Unmarshal(data, newTest)
if err != nil {
log.Fatal("unmarshaling error: ", err)
}
// Now test and newTest contain the same data.
if test.GetLabel() != newTest.GetLabel() {
log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
}
// etc.
}
To pass extra parameters to the plugin, use a comma-separated
parameter list separated from the output directory by a colon:
protoc --go_out=plugins=grpc,import_path=mypackage:. *.proto
paths=(import | source_relative)
- specifies how the paths ofimport
.plugins=plugin1+plugin2
- specifies the list of sub-plugins togrpc
.Mfoo/bar.proto=quux/shme
- declares that foo/bar.proto isThe following parameters are deprecated and should not be used:
import_prefix=xxx
- a prefix that is added onto the beginning ofimport_path=foo/bar
- used as the package if no input filesgo_package
. If it contains slashes, everything up to theIf a proto file specifies RPC services, protoc-gen-go can be instructed to
generate code compatible with gRPC (http://www.grpc.io/). To do this, pass
the plugins
parameter to protoc-gen-go; the usual way is to insert it into
the --go_out argument to protoc:
protoc --go_out=plugins=grpc:. *.proto
The library and the generated code are expected to be stable over time.
However, we reserve the right to make breaking changes without notice for the
following reasons:
XXX
. These parts of the generated code are exported out ofAny breaking changes outside of these will be announced 6 months in advance to
protobuf@googlegroups.com.
You should, whenever possible, use generated code created by the protoc-gen-go
tool built at the same commit as the proto
package. The proto
package
declares package-level constants in the form ProtoPackageIsVersionX
.
Application code and generated code may depend on one of these constants to
ensure that compilation will fail if the available version of the proto library
is too old. Whenever we make a change to the generated code that requires newer
library support, in the same commit we will increment the version number of the
generated code and declare a new package-level constant whose name incorporates
the latest version number. Removing a compatibility constant is considered a
breaking change and would be subject to the announcement policy stated above.
The protoc-gen-go/generator
package exposes a plugin interface,
which is used by the gRPC code generation. This interface is not
supported and is subject to incompatible changes without notice.