// Copyright 2010 The Go Authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style
|
// license that can be found in the LICENSE file.
|
|
package runtime
|
|
import (
|
"runtime/internal/atomic"
|
"runtime/internal/sys"
|
"unsafe"
|
)
|
|
const (
|
_EACCES = 13
|
_EINVAL = 22
|
)
|
|
// Don't split the stack as this method may be invoked without a valid G, which
|
// prevents us from allocating more stack.
|
//go:nosplit
|
func sysAlloc(n uintptr, sysStat *uint64) unsafe.Pointer {
|
p, err := mmap(nil, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
|
if err != 0 {
|
if err == _EACCES {
|
print("runtime: mmap: access denied\n")
|
exit(2)
|
}
|
if err == _EAGAIN {
|
print("runtime: mmap: too much locked memory (check 'ulimit -l').\n")
|
exit(2)
|
}
|
return nil
|
}
|
mSysStatInc(sysStat, n)
|
return p
|
}
|
|
var adviseUnused = uint32(_MADV_FREE)
|
|
func sysUnused(v unsafe.Pointer, n uintptr) {
|
// By default, Linux's "transparent huge page" support will
|
// merge pages into a huge page if there's even a single
|
// present regular page, undoing the effects of madvise(adviseUnused)
|
// below. On amd64, that means khugepaged can turn a single
|
// 4KB page to 2MB, bloating the process's RSS by as much as
|
// 512X. (See issue #8832 and Linux kernel bug
|
// https://bugzilla.kernel.org/show_bug.cgi?id=93111)
|
//
|
// To work around this, we explicitly disable transparent huge
|
// pages when we release pages of the heap. However, we have
|
// to do this carefully because changing this flag tends to
|
// split the VMA (memory mapping) containing v in to three
|
// VMAs in order to track the different values of the
|
// MADV_NOHUGEPAGE flag in the different regions. There's a
|
// default limit of 65530 VMAs per address space (sysctl
|
// vm.max_map_count), so we must be careful not to create too
|
// many VMAs (see issue #12233).
|
//
|
// Since huge pages are huge, there's little use in adjusting
|
// the MADV_NOHUGEPAGE flag on a fine granularity, so we avoid
|
// exploding the number of VMAs by only adjusting the
|
// MADV_NOHUGEPAGE flag on a large granularity. This still
|
// gets most of the benefit of huge pages while keeping the
|
// number of VMAs under control. With hugePageSize = 2MB, even
|
// a pessimal heap can reach 128GB before running out of VMAs.
|
if sys.HugePageSize != 0 {
|
var s uintptr = sys.HugePageSize // division by constant 0 is a compile-time error :(
|
|
// If it's a large allocation, we want to leave huge
|
// pages enabled. Hence, we only adjust the huge page
|
// flag on the huge pages containing v and v+n-1, and
|
// only if those aren't aligned.
|
var head, tail uintptr
|
if uintptr(v)%s != 0 {
|
// Compute huge page containing v.
|
head = uintptr(v) &^ (s - 1)
|
}
|
if (uintptr(v)+n)%s != 0 {
|
// Compute huge page containing v+n-1.
|
tail = (uintptr(v) + n - 1) &^ (s - 1)
|
}
|
|
// Note that madvise will return EINVAL if the flag is
|
// already set, which is quite likely. We ignore
|
// errors.
|
if head != 0 && head+sys.HugePageSize == tail {
|
// head and tail are different but adjacent,
|
// so do this in one call.
|
madvise(unsafe.Pointer(head), 2*sys.HugePageSize, _MADV_NOHUGEPAGE)
|
} else {
|
// Advise the huge pages containing v and v+n-1.
|
if head != 0 {
|
madvise(unsafe.Pointer(head), sys.HugePageSize, _MADV_NOHUGEPAGE)
|
}
|
if tail != 0 && tail != head {
|
madvise(unsafe.Pointer(tail), sys.HugePageSize, _MADV_NOHUGEPAGE)
|
}
|
}
|
}
|
|
if uintptr(v)&(physPageSize-1) != 0 || n&(physPageSize-1) != 0 {
|
// madvise will round this to any physical page
|
// *covered* by this range, so an unaligned madvise
|
// will release more memory than intended.
|
throw("unaligned sysUnused")
|
}
|
|
var advise uint32
|
if debug.madvdontneed != 0 {
|
advise = _MADV_DONTNEED
|
} else {
|
advise = atomic.Load(&adviseUnused)
|
}
|
if errno := madvise(v, n, int32(advise)); advise == _MADV_FREE && errno != 0 {
|
// MADV_FREE was added in Linux 4.5. Fall back to MADV_DONTNEED if it is
|
// not supported.
|
atomic.Store(&adviseUnused, _MADV_DONTNEED)
|
madvise(v, n, _MADV_DONTNEED)
|
}
|
}
|
|
func sysUsed(v unsafe.Pointer, n uintptr) {
|
if sys.HugePageSize != 0 {
|
// Partially undo the NOHUGEPAGE marks from sysUnused
|
// for whole huge pages between v and v+n. This may
|
// leave huge pages off at the end points v and v+n
|
// even though allocations may cover these entire huge
|
// pages. We could detect this and undo NOHUGEPAGE on
|
// the end points as well, but it's probably not worth
|
// the cost because when neighboring allocations are
|
// freed sysUnused will just set NOHUGEPAGE again.
|
var s uintptr = sys.HugePageSize
|
|
// Round v up to a huge page boundary.
|
beg := (uintptr(v) + (s - 1)) &^ (s - 1)
|
// Round v+n down to a huge page boundary.
|
end := (uintptr(v) + n) &^ (s - 1)
|
|
if beg < end {
|
madvise(unsafe.Pointer(beg), end-beg, _MADV_HUGEPAGE)
|
}
|
}
|
}
|
|
// Don't split the stack as this function may be invoked without a valid G,
|
// which prevents us from allocating more stack.
|
//go:nosplit
|
func sysFree(v unsafe.Pointer, n uintptr, sysStat *uint64) {
|
mSysStatDec(sysStat, n)
|
munmap(v, n)
|
}
|
|
func sysFault(v unsafe.Pointer, n uintptr) {
|
mmap(v, n, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE|_MAP_FIXED, -1, 0)
|
}
|
|
func sysReserve(v unsafe.Pointer, n uintptr) unsafe.Pointer {
|
p, err := mmap(v, n, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
|
if err != 0 {
|
return nil
|
}
|
return p
|
}
|
|
func sysMap(v unsafe.Pointer, n uintptr, sysStat *uint64) {
|
mSysStatInc(sysStat, n)
|
|
p, err := mmap(v, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_FIXED|_MAP_PRIVATE, -1, 0)
|
if err == _ENOMEM {
|
throw("runtime: out of memory")
|
}
|
if p != v || err != 0 {
|
throw("runtime: cannot map pages in arena address space")
|
}
|
}
|