/*
|
* Copyright (C) 2018 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
// Contains the implementation of the operations.
|
|
#define LOG_TAG "Operations"
|
|
#include "CpuOperationUtils.h"
|
#include "Operations.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h"
|
|
#include "Tracing.h"
|
|
namespace android {
|
namespace nn {
|
|
bool stridedSliceGeneric(const uint8_t* inputData, const Shape& inputShape,
|
const int32_t* beginData, const int32_t* endData,
|
const int32_t* stridesData, int32_t beginMask, int32_t endMask,
|
int32_t shrinkAxisMask, uint8_t* outputData, const Shape& outputShape) {
|
NNTRACE_TRANS("stridedSliceGeneric");
|
// This Op only supports 1-4D cases and since we use the reference 4D
|
// implementation, the 1-3D tensors are mapped to 4D.
|
const int kMaxDim = 4;
|
|
std::vector<int> starts;
|
std::vector<int> stops;
|
std::vector<int> strides;
|
|
int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape));
|
for (int32_t idx = numInputDims - 1; idx >= 0; --idx) {
|
starts.emplace_back(beginData[idx]);
|
stops.emplace_back(endData[idx]);
|
strides.emplace_back(stridesData[idx]);
|
}
|
|
for (int i = numInputDims; i < kMaxDim; i++) {
|
starts.emplace_back(0);
|
stops.emplace_back(1);
|
strides.emplace_back(1);
|
}
|
|
beginMask = ReverseMaskBits(beginMask, numInputDims);
|
endMask = ReverseMaskBits(endMask, numInputDims);
|
shrinkAxisMask = ReverseMaskBits(shrinkAxisMask, numInputDims);
|
|
if (inputShape.type == OperandType::TENSOR_FLOAT32) {
|
NNTRACE_COMP_SWITCH("reference_ops::StridedSlice::float");
|
tflite::reference_ops::StridedSlice(
|
reinterpret_cast<const float*>(inputData), convertShapeToDims(inputShape),
|
beginMask, endMask, shrinkAxisMask, starts, stops, strides,
|
reinterpret_cast<float*>(outputData), convertShapeToDims(outputShape));
|
} else if (inputShape.type == OperandType::TENSOR_FLOAT16) {
|
NNTRACE_COMP_SWITCH("reference_ops::StridedSlice::float16");
|
tflite::reference_ops::StridedSlice(
|
reinterpret_cast<const _Float16*>(inputData), convertShapeToDims(inputShape),
|
beginMask, endMask, shrinkAxisMask, starts, stops, strides,
|
reinterpret_cast<_Float16*>(outputData), convertShapeToDims(outputShape));
|
} else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) {
|
NNTRACE_COMP_SWITCH("reference_ops::StridedSlice::uint8");
|
tflite::reference_ops::StridedSlice(
|
reinterpret_cast<const uint8_t*>(inputData), convertShapeToDims(inputShape),
|
beginMask, endMask, shrinkAxisMask, starts, stops, strides,
|
reinterpret_cast<uint8_t*>(outputData), convertShapeToDims(outputShape));
|
} else {
|
LOG(ERROR) << "Unsupported data type";
|
return false;
|
}
|
|
return true;
|
}
|
|
} // namespace nn
|
} // namespace android
|