ronnie
2022-10-23 d7a691c7a2527f2da145355a40a0402c95c67aac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
#include "CpuOperationUtils.h"
#include "OperationResolver.h"
 
#include "tensorflow/lite/kernels/internal/optimized/legacy_optimized_ops.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
 
#include "Tracing.h"
 
namespace android {
namespace nn {
namespace fully_connected {
 
constexpr char kOperationName[] = "FULLY_CONNECTED";
 
constexpr uint32_t kNumInputs = 4;
constexpr uint32_t kInputTensor = 0;
constexpr uint32_t kWeightsTensor = 1;
constexpr uint32_t kBiasTensor = 2;
constexpr uint32_t kActivationScalar = 3;
 
constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;
 
namespace {
 
// executionMutex is used to protect concurrent access of non-threadsafe resources
// like gemmlowp::GemmContext.
// std::mutex is safe for pthreads on Android.
static std::mutex executionMutex;
 
bool fullyConnectedFloat32(const float* inputData, const Shape& inputShape,
                           const float* weightsData, const Shape& weightsShape,
                           const float* biasData, const Shape& biasShape, int32_t activation,
                           float* outputData, const Shape& outputShape) {
    NNTRACE_TRANS("fullyConnectedFloat32");
    float output_activation_min, output_activation_max;
    CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max);
 
    // b/80425683, optimized implementation produces incorrect results when the
    // number of input elements is the squre of batch_size.
    uint32_t batch_size = getSizeOfDimension(outputShape, 0);
    uint32_t input_n_elements = getNumberOfElements(inputShape);
    if (batch_size * batch_size == input_n_elements) {
        NNTRACE_COMP_SWITCH("reference_ops::FullyConnected");
        tflite::reference_ops::FullyConnected(inputData, convertShapeToDims(inputShape),
                                              weightsData, convertShapeToDims(weightsShape),
                                              biasData, convertShapeToDims(biasShape),
                                              output_activation_min, output_activation_max,
                                              outputData, convertShapeToDims(outputShape));
    } else {
        NNTRACE_COMP_SWITCH("optimized_ops::FullyConnected");
        tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape),
                                              weightsData, convertShapeToDims(weightsShape),
                                              biasData, convertShapeToDims(biasShape),
                                              output_activation_min, output_activation_max,
                                              outputData, convertShapeToDims(outputShape));
    }
    return true;
}
 
bool fullyConnectedFloat16(const _Float16* inputData, const Shape& inputShape,
                           const _Float16* weightsData, const Shape& weightsShape,
                           const _Float16* biasData, const Shape& biasShape, int32_t activation,
                           _Float16* outputData, const Shape& outputShape) {
    NNTRACE_TRANS("fullyConnectedFloat16");
    std::vector<float> inputDataFloat32(getNumberOfElements(inputShape));
    convertFloat16ToFloat32(inputData, &inputDataFloat32);
    std::vector<float> weightsDataFloat32(getNumberOfElements(weightsShape));
    convertFloat16ToFloat32(weightsData, &weightsDataFloat32);
    std::vector<float> biasDataFloat32(getNumberOfElements(biasShape));
    convertFloat16ToFloat32(biasData, &biasDataFloat32);
 
    std::vector<float> outputDataFloat32(getNumberOfElements(outputShape));
    fullyConnectedFloat32(inputDataFloat32.data(), inputShape, weightsDataFloat32.data(),
                          weightsShape, biasDataFloat32.data(), biasShape, activation,
                          outputDataFloat32.data(), outputShape);
    convertFloat32ToFloat16(outputDataFloat32, outputData);
 
    return true;
}
 
bool fullyConnectedQuant8(const uint8_t* inputData, const Shape& inputShape,
                          const uint8_t* weightsData, const Shape& weightsShape,
                          const int32_t* biasData, const Shape& biasShape, int32_t activation,
                          uint8_t* outputData, const Shape& outputShape) {
    NNTRACE_TRANS("fullyConnectedQuant8");
    int32_t inputOffset = -inputShape.offset;
    int32_t weightsOffset = -weightsShape.offset;
    int32_t outputOffset = outputShape.offset;
 
    double realMultiplier = 0.0;
    int32_t outputMultiplier = 0;
    int32_t outputShift = 0;
    int32_t outputActivationMin = 0;
    int32_t outputActivationMax = 0;
 
    NN_RET_CHECK(GetQuantizedConvolutionMultipler(inputShape, weightsShape, biasShape, outputShape,
                                                  &realMultiplier));
    int exponent;
    NN_RET_CHECK(QuantizeMultiplier(realMultiplier, &outputMultiplier, &exponent));
    outputShift = -exponent;
    CalculateActivationRangeUint8(activation, outputShape, &outputActivationMin,
                                  &outputActivationMax);
 
    static gemmlowp::GemmContext gemmContext;
 
    // Prevent concurrent executions that access gemmContext.
    std::unique_lock<std::mutex> lock(executionMutex);
    // Alow gemmlowp automatically decide how many threads to use.
    gemmContext.set_max_num_threads(0);
 
    NNTRACE_COMP_SWITCH("optimized_ops::FullyConnected");
    tflite::optimized_ops::FullyConnected(inputData, convertShapeToDims(inputShape), inputOffset,
                                          weightsData, convertShapeToDims(weightsShape),
                                          weightsOffset, biasData, convertShapeToDims(biasShape),
                                          outputOffset, outputMultiplier, outputShift,
                                          outputActivationMin, outputActivationMax, outputData,
                                          convertShapeToDims(outputShape), &gemmContext);
 
    return true;
}
 
}  // namespace
 
bool validate(const IOperationValidationContext* context) {
    NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
    NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
    auto inputType = context->getInputType(kInputTensor);
    std::vector<OperandType> inExpectedTypes;
    std::vector<OperandType> outExpectedTypes;
    if (inputType == OperandType::TENSOR_FLOAT32) {
        NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
        inExpectedTypes = {
                OperandType::TENSOR_FLOAT32,
                OperandType::TENSOR_FLOAT32,
                OperandType::TENSOR_FLOAT32,
                OperandType::INT32,
        };
    } else if (inputType == OperandType::TENSOR_FLOAT16) {
        NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
        inExpectedTypes = {
                OperandType::TENSOR_FLOAT16,
                OperandType::TENSOR_FLOAT16,
                OperandType::TENSOR_FLOAT16,
                OperandType::INT32,
        };
    } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
        // NeuralNetworks.h specifies that ANEURALNETWORKS_FULLY_CONNECTED's output must
        // meet "outputScale > inputScale * weightsScale" for the operand type
        // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM before API level 29.
        const float inputScale = context->getInputShape(kInputTensor).scale;
        const float weightsScale = context->getInputShape(kWeightsTensor).scale;
        const float outputScale = context->getOutputShape(kOutputTensor).scale;
        bool meetsQuantizedScaleConstraintBeforeV1_2 = (outputScale > inputScale * weightsScale);
 
        if (!meetsQuantizedScaleConstraintBeforeV1_2) {
            NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
        } else {
            NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_0));
        }
 
        inExpectedTypes = {
                OperandType::TENSOR_QUANT8_ASYMM,
                OperandType::TENSOR_QUANT8_ASYMM,
                OperandType::TENSOR_INT32,
                OperandType::INT32,
        };
    } else {
        NN_RET_CHECK_FAIL() << "Unsupported input tensor type for operation " << kOperationName;
        return false;
    }
    NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
    NN_RET_CHECK(validateOutputTypes(context, {inputType}));
    return true;
}
 
bool prepare(IOperationExecutionContext* context) {
    Shape input = context->getInputShape(kInputTensor);
    Shape weights = context->getInputShape(kWeightsTensor);
    Shape bias = context->getInputShape(kBiasTensor);
 
    // Check all the parameters of tensor match within themselves and match the
    // input configuration.
    NN_RET_CHECK(input.type == weights.type);
    if (input.type == OperandType::TENSOR_QUANT8_ASYMM) {
        NN_RET_CHECK(bias.type == OperandType::TENSOR_INT32);
    } else {
        NN_RET_CHECK(input.type == bias.type);
    }
    // The Tensorflow fully connected layer specification says that input should
    // be of at least rank 2, so we check. Tflite doesn't check.
    NN_RET_CHECK_GE(getNumberOfDimensions(input), 2);
    NN_RET_CHECK_EQ(getNumberOfDimensions(weights), 2);
    uint32_t input_n_elements = getNumberOfElements(input);
    uint32_t num_units = getSizeOfDimension(weights, 0);
    uint32_t input_size = getSizeOfDimension(weights, 1);
    // Only batch_size can be 0.
    NN_RET_CHECK_GT(num_units, 0);
    NN_RET_CHECK_GT(input_size, 0);
    uint32_t batch_size = input_n_elements / input_size;
    NN_RET_CHECK_EQ(getSizeOfDimension(bias, 0), num_units);
    NN_RET_CHECK_EQ(input_size * batch_size, input_n_elements);
 
    Shape output = context->getOutputShape(kOutputTensor);
    output.type = input.type;
    output.dimensions = {batch_size, num_units};
    return context->setOutputShape(kOutputTensor, output);
}
 
bool execute(IOperationExecutionContext* context) {
    // Bypass execution in the case of zero-sized input.
    if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
    switch (context->getInputType(kInputTensor)) {
        case OperandType::TENSOR_FLOAT32:
            return fullyConnectedFloat32(context->getInputBuffer<float>(kInputTensor),
                                         context->getInputShape(kInputTensor),
                                         context->getInputBuffer<float>(kWeightsTensor),
                                         context->getInputShape(kWeightsTensor),
                                         context->getInputBuffer<float>(kBiasTensor),
                                         context->getInputShape(kBiasTensor),
                                         context->getInputValue<int32_t>(kActivationScalar),
                                         context->getOutputBuffer<float>(kOutputTensor),
                                         context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_FLOAT16:
            return fullyConnectedFloat16(context->getInputBuffer<_Float16>(kInputTensor),
                                         context->getInputShape(kInputTensor),
                                         context->getInputBuffer<_Float16>(kWeightsTensor),
                                         context->getInputShape(kWeightsTensor),
                                         context->getInputBuffer<_Float16>(kBiasTensor),
                                         context->getInputShape(kBiasTensor),
                                         context->getInputValue<int32_t>(kActivationScalar),
                                         context->getOutputBuffer<_Float16>(kOutputTensor),
                                         context->getOutputShape(kOutputTensor));
        case OperandType::TENSOR_QUANT8_ASYMM:
            return fullyConnectedQuant8(context->getInputBuffer<uint8_t>(kInputTensor),
                                        context->getInputShape(kInputTensor),
                                        context->getInputBuffer<uint8_t>(kWeightsTensor),
                                        context->getInputShape(kWeightsTensor),
                                        context->getInputBuffer<int32_t>(kBiasTensor),
                                        context->getInputShape(kBiasTensor),
                                        context->getInputValue<int32_t>(kActivationScalar),
                                        context->getOutputBuffer<uint8_t>(kOutputTensor),
                                        context->getOutputShape(kOutputTensor));
        default:
            NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
    }
}
 
}  // namespace fully_connected
 
NN_REGISTER_OPERATION(FULLY_CONNECTED, fully_connected::kOperationName, fully_connected::validate,
                      fully_connected::prepare, fully_connected::execute,
                      .allowZeroSizedInput = true);
 
}  // namespace nn
}  // namespace android