ronnie
2022-10-23 d7a691c7a2527f2da145355a40a0402c95c67aac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
#ifndef ANDROID_ML_NN_COMMON_CPU_EXECUTOR_H
#define ANDROID_ML_NN_COMMON_CPU_EXECUTOR_H
 
#include "HalInterfaces.h"
#include "OperationResolver.h"
#include "OperationsUtils.h"
#include "Utils.h"
 
#include <android-base/macros.h>
#include <ui/GraphicBuffer.h>
#include <algorithm>
#include <optional>
#include <vector>
 
namespace android {
namespace nn {
 
// Information we maintain about each operand during execution that
// may change during execution.
struct RunTimeOperandInfo {
    // TODO Storing the type here is redundant, as it won't change during execution.
    OperandType type;
    // The type and dimensions of the operand.  The dimensions can
    // change at runtime.  We include the type because it's useful
    // to pass together with the dimension to the functions implementing
    // the operators.
    //
    // A dimension being zero has different meanings for different operands at different stages:
    // - Model inputs:
    //   * Specified in model: implies "dynamic", and must be fully-specified in request.
    //   * Specified in request: illegal.
    // - Constant operands: illegal.
    // - Model outputs and internal operands:
    //   * Before evaluation: implies unknown and to be deduced from execution.
    //   * After evaluation:
    //     - If isSufficient reports true: the tensor is zero-sized.
    //     - Otherwise: implies unknown.
    std::vector<uint32_t> dimensions;
 
    float scale;
    int32_t zeroPoint;
    // Where the operand's data is stored.  Check the corresponding
    // location information in the model to figure out if this points
    // to memory we have allocated for an temporary operand.
    uint8_t* buffer;
    // The length of the buffer.
    uint32_t length;
    // Whether this is a temporary variable, a model input, a constant, etc.
    OperandLifeTime lifetime;
    // Keeps track of how many operations have yet to make use
    // of this temporary variable.  When the count is decremented to 0,
    // we free the buffer.  For non-temporary variables, this count is
    // always 0.
    uint32_t numberOfUsesLeft;
 
    Operand::ExtraParams extraParams;
 
    Shape shape() const {
        return {
                .type = type,
                .dimensions = dimensions,
                .scale = scale,
                .offset = zeroPoint,
                .extraParams = extraParams,
        };
    }
 
    bool isSufficient() const {
        if (isExtensionOperandType(type)) {
            // We don't know sizes of extension types.
            return true;
        }
        return length >= nonExtensionOperandSizeOfData(type, dimensions);
    }
};
 
// Used to keep a pointer to each of the memory pools.
//
// RunTimePoolInfo references a region of memory. Other RunTimePoolInfo objects
// may reference the same region of memory by either:
// (1) copying an existing RunTimePoolInfo object, or
// (2) creating multiple RunTimePoolInfo objects from the same memory resource
//     (e.g., "createFromHidlMemory" or "createFromExistingBuffer")
//
// If the underlying region of memory is mapped by "createFromHidlMemory", the
// mapping will be sustained until it is no longer referenced by any
// RunTimePoolInfo objects.
class RunTimePoolInfo {
   public:
    static std::optional<RunTimePoolInfo> createFromHidlMemory(const hidl_memory& hidlMemory);
    static RunTimePoolInfo createFromExistingBuffer(uint8_t* buffer);
 
    uint8_t* getBuffer() const;
    bool update() const;
    hidl_memory getHidlMemory() const;
 
   private:
    class RunTimePoolInfoImpl;
    RunTimePoolInfo(const std::shared_ptr<const RunTimePoolInfoImpl>& impl);
 
    std::shared_ptr<const RunTimePoolInfoImpl> mImpl;
};
 
bool setRunTimePoolInfosFromHidlMemories(std::vector<RunTimePoolInfo>* poolInfos,
                                         const hidl_vec<hidl_memory>& pools);
 
// This class is used to execute a model on the CPU.
class CpuExecutor {
   public:
    // This constructor allows clients of CpuExecutor to provide custom CPU
    // operation implementations. It is used by a sample driver to test
    // extension support.
    //
    // Note that it is not possible to provide custom CPU implementations for
    // non-OperationResolver operations (b/124041202).
    //
    // The operation resolver must outlive the executor.
    explicit CpuExecutor(const IOperationResolver* operationResolver)
        : mOperationResolver(operationResolver) {}
 
    CpuExecutor() : CpuExecutor(BuiltinOperationResolver::get()) {}
 
    // Executes the model. The results will be stored at the locations
    // specified in the constructor.
    // The model must outlive the executor.  We prevent it from being modified
    // while this is executing.
    int run(const Model& model, const Request& request,
            const std::vector<RunTimePoolInfo>& modelPoolInfos,
            const std::vector<RunTimePoolInfo>& requestPoolInfos);
 
    const std::vector<OutputShape>& getOutputShapes() const {
        CHECK(mFinished) << "getOutputShapes() called by an unfinished CpuExecutor.";
        return mOutputShapes;
    }
 
   private:
    bool initializeRunTimeInfo(const std::vector<RunTimePoolInfo>& modelPoolInfos,
                               const std::vector<RunTimePoolInfo>& requestPoolInfos);
    // Runs one operation of the graph.
    int executeOperation(const Operation& entry);
    // Decrement the usage count for the operands listed.  Frees the memory
    // allocated for any temporary variable with a count of zero.
    void freeNoLongerUsedOperands(const std::vector<uint32_t>& inputs);
 
    // Frees the memory allocated for any temporary variable, and sets the
    // output operand shapes returning to the runtime.
    void finish(int result);
 
    // The model and the request that we'll execute. Only valid while run()
    // is being executed.
    const Model* mModel = nullptr;
    const Request* mRequest = nullptr;
 
    // We're copying the list of all the dimensions from the model, as
    // these may be modified when we run the operations.  Since we're
    // making a full copy, the indexes used in the operand description
    // stay valid.
    //    std::vector<uint32_t> mDimensions;
    // Runtime information about all the operands.
    std::vector<RunTimeOperandInfo> mOperands;
 
    // The output operand shapes returning to the runtime.
    std::vector<OutputShape> mOutputShapes;
 
    // Whether execution is finished and mOutputShapes is ready
    bool mFinished = false;
 
    const IOperationResolver* mOperationResolver;
};
 
// Class for setting reasonable OpenMP threading settings. (OpenMP is used by
// the Eigen matrix library.)
//
// Currently sets a low blocktime: the time OpenMP threads busy-wait for more
// work before going to sleep. See b/79159165, https://reviews.llvm.org/D18577.
// The default is 200ms, we set to 20ms here, see b/109645291. This keeps the
// cores enabled throughout inference computation without too much extra power
// consumption afterwards.
//
// The OpenMP settings are thread-local (applying only to worker threads formed
// from that thread), see https://software.intel.com/en-us/node/522688 and
// http://lists.llvm.org/pipermail/openmp-dev/2016-July/001432.html. This class
// ensures that within the scope in which an object is instantiated we use the
// right settings (scopes may be nested), as long as no other library changes
// them.  (Note that in current NNAPI usage only one instance is used in the
// CpuExecutor thread).
//
// TODO(mikie): consider also setting the number of threads used. Using as many
// threads as there are cores results in more variable performance: if we don't
// get all cores for our threads, the latency is doubled as we wait for one core
// to do twice the amount of work. Reality is complicated though as not all
// cores are the same. Decision to be based on benchmarking against a
// representative set of workloads and devices. I'm keeping the code here for
// reference.
// b/109953668, disable OpenMP
#ifdef NNAPI_OPENMP
class ScopedOpenmpSettings {
public:
    ScopedOpenmpSettings();
    ~ScopedOpenmpSettings();
    DISALLOW_COPY_AND_ASSIGN(ScopedOpenmpSettings);
private:
    int mBlocktimeInitial;
#if NNAPI_LIMIT_CPU_THREADS
    int mMaxThreadsInitial;
#endif
};
#endif  // NNAPI_OPENMP
 
 
namespace {
 
template <typename T>
T getScalarData(const RunTimeOperandInfo& info) {
    // TODO: Check buffer is at least as long as size of data.
    T* data = reinterpret_cast<T*>(info.buffer);
    return data[0];
}
 
inline bool IsNullInput(const RunTimeOperandInfo *input) {
    return input->lifetime == OperandLifeTime::NO_VALUE;
}
 
inline int NumInputsWithValues(const Operation &operation,
                               std::vector<RunTimeOperandInfo> &operands) {
  const std::vector<uint32_t> &inputs = operation.inputs;
  return std::count_if(inputs.begin(), inputs.end(),
                       [&operands](uint32_t i) {
                         return !IsNullInput(&operands[i]);
                       });
}
 
inline int NumOutputs(const Operation &operation) {
  return operation.outputs.size();
}
 
inline size_t NumDimensions(const RunTimeOperandInfo *operand) {
  return operand->shape().dimensions.size();
}
 
inline uint32_t SizeOfDimension(const RunTimeOperandInfo *operand, int i) {
  return operand->shape().dimensions[i];
}
 
inline RunTimeOperandInfo *GetInput(const Operation &operation,
                                    std::vector<RunTimeOperandInfo> &operands,
                                    int index) {
  return &operands[operation.inputs[index]];
}
 
inline RunTimeOperandInfo *GetOutput(const Operation &operation,
                                     std::vector<RunTimeOperandInfo> &operands,
                                     int index) {
  return &operands[operation.outputs[index]];
}
 
}  // anonymous namespace
 
} // namespace nn
} // namespace android
 
#endif // ANDROID_ML_NN_COMMON_CPU_EXECUTOR_H