/* Data references and dependences detectors.
|
Copyright (C) 2003-2017 Free Software Foundation, Inc.
|
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
|
This file is part of GCC.
|
|
GCC is free software; you can redistribute it and/or modify it under
|
the terms of the GNU General Public License as published by the Free
|
Software Foundation; either version 3, or (at your option) any later
|
version.
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
for more details.
|
|
You should have received a copy of the GNU General Public License
|
along with GCC; see the file COPYING3. If not see
|
<http://www.gnu.org/licenses/>. */
|
|
#ifndef GCC_TREE_DATA_REF_H
|
#define GCC_TREE_DATA_REF_H
|
|
#include "graphds.h"
|
#include "tree-chrec.h"
|
|
/*
|
innermost_loop_behavior describes the evolution of the address of the memory
|
reference in the innermost enclosing loop. The address is expressed as
|
BASE + STEP * # of iteration, and base is further decomposed as the base
|
pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
|
constant offset (INIT). Examples, in loop nest
|
|
for (i = 0; i < 100; i++)
|
for (j = 3; j < 100; j++)
|
|
Example 1 Example 2
|
data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
|
|
|
innermost_loop_behavior
|
base_address &a p
|
offset i * D_i x
|
init 3 * D_j + offsetof (b) 28
|
step D_j 4
|
|
*/
|
struct innermost_loop_behavior
|
{
|
tree base_address;
|
tree offset;
|
tree init;
|
tree step;
|
|
/* Alignment information. ALIGNED_TO is set to the largest power of two
|
that divides OFFSET. */
|
tree aligned_to;
|
};
|
|
/* Describes the evolutions of indices of the memory reference. The indices
|
are indices of the ARRAY_REFs, indexes in artificial dimensions
|
added for member selection of records and the operands of MEM_REFs.
|
BASE_OBJECT is the part of the reference that is loop-invariant
|
(note that this reference does not have to cover the whole object
|
being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
|
not recommended to use BASE_OBJECT in any code generation).
|
For the examples above,
|
|
base_object: a *(p + x + 4B * j_0)
|
indices: {j_0, +, 1}_2 {16, +, 4}_2
|
4
|
{i_0, +, 1}_1
|
{j_0, +, 1}_2
|
*/
|
|
struct indices
|
{
|
/* The object. */
|
tree base_object;
|
|
/* A list of chrecs. Access functions of the indices. */
|
vec<tree> access_fns;
|
|
/* Whether BASE_OBJECT is an access representing the whole object
|
or whether the access could not be constrained. */
|
bool unconstrained_base;
|
};
|
|
struct dr_alias
|
{
|
/* The alias information that should be used for new pointers to this
|
location. */
|
struct ptr_info_def *ptr_info;
|
};
|
|
/* An integer vector. A vector formally consists of an element of a vector
|
space. A vector space is a set that is closed under vector addition
|
and scalar multiplication. In this vector space, an element is a list of
|
integers. */
|
typedef int *lambda_vector;
|
|
/* An integer matrix. A matrix consists of m vectors of length n (IE
|
all vectors are the same length). */
|
typedef lambda_vector *lambda_matrix;
|
|
|
|
struct data_reference
|
{
|
/* A pointer to the statement that contains this DR. */
|
gimple *stmt;
|
|
/* A pointer to the memory reference. */
|
tree ref;
|
|
/* Auxiliary info specific to a pass. */
|
void *aux;
|
|
/* True when the data reference is in RHS of a stmt. */
|
bool is_read;
|
|
/* Behavior of the memory reference in the innermost loop. */
|
struct innermost_loop_behavior innermost;
|
|
/* Subscripts of this data reference. */
|
struct indices indices;
|
|
/* Alias information for the data reference. */
|
struct dr_alias alias;
|
};
|
|
#define DR_STMT(DR) (DR)->stmt
|
#define DR_REF(DR) (DR)->ref
|
#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
|
#define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
|
#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
|
#define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
|
#define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
|
#define DR_IS_READ(DR) (DR)->is_read
|
#define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
|
#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
|
#define DR_OFFSET(DR) (DR)->innermost.offset
|
#define DR_INIT(DR) (DR)->innermost.init
|
#define DR_STEP(DR) (DR)->innermost.step
|
#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
|
#define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
|
#define DR_INNERMOST(DR) (DR)->innermost
|
|
typedef struct data_reference *data_reference_p;
|
|
enum data_dependence_direction {
|
dir_positive,
|
dir_negative,
|
dir_equal,
|
dir_positive_or_negative,
|
dir_positive_or_equal,
|
dir_negative_or_equal,
|
dir_star,
|
dir_independent
|
};
|
|
/* The description of the grid of iterations that overlap. At most
|
two loops are considered at the same time just now, hence at most
|
two functions are needed. For each of the functions, we store
|
the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
|
where x, y, ... are variables. */
|
|
#define MAX_DIM 2
|
|
/* Special values of N. */
|
#define NO_DEPENDENCE 0
|
#define NOT_KNOWN (MAX_DIM + 1)
|
#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
|
#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
|
#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
|
|
typedef vec<tree> affine_fn;
|
|
struct conflict_function
|
{
|
unsigned n;
|
affine_fn fns[MAX_DIM];
|
};
|
|
/* What is a subscript? Given two array accesses a subscript is the
|
tuple composed of the access functions for a given dimension.
|
Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
|
subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
|
are stored in the data_dependence_relation structure under the form
|
of an array of subscripts. */
|
|
struct subscript
|
{
|
/* A description of the iterations for which the elements are
|
accessed twice. */
|
conflict_function *conflicting_iterations_in_a;
|
conflict_function *conflicting_iterations_in_b;
|
|
/* This field stores the information about the iteration domain
|
validity of the dependence relation. */
|
tree last_conflict;
|
|
/* Distance from the iteration that access a conflicting element in
|
A to the iteration that access this same conflicting element in
|
B. The distance is a tree scalar expression, i.e. a constant or a
|
symbolic expression, but certainly not a chrec function. */
|
tree distance;
|
};
|
|
typedef struct subscript *subscript_p;
|
|
#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
|
#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
|
#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
|
#define SUB_DISTANCE(SUB) SUB->distance
|
|
/* A data_dependence_relation represents a relation between two
|
data_references A and B. */
|
|
struct data_dependence_relation
|
{
|
|
struct data_reference *a;
|
struct data_reference *b;
|
|
/* A "yes/no/maybe" field for the dependence relation:
|
|
- when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
|
relation between A and B, and the description of this relation
|
is given in the SUBSCRIPTS array,
|
|
- when "ARE_DEPENDENT == chrec_known", there is no dependence and
|
SUBSCRIPTS is empty,
|
|
- when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
|
but the analyzer cannot be more specific. */
|
tree are_dependent;
|
|
/* For each subscript in the dependence test, there is an element in
|
this array. This is the attribute that labels the edge A->B of
|
the data_dependence_relation. */
|
vec<subscript_p> subscripts;
|
|
/* The analyzed loop nest. */
|
vec<loop_p> loop_nest;
|
|
/* The classic direction vector. */
|
vec<lambda_vector> dir_vects;
|
|
/* The classic distance vector. */
|
vec<lambda_vector> dist_vects;
|
|
/* An index in loop_nest for the innermost loop that varies for
|
this data dependence relation. */
|
unsigned inner_loop;
|
|
/* Is the dependence reversed with respect to the lexicographic order? */
|
bool reversed_p;
|
|
/* When the dependence relation is affine, it can be represented by
|
a distance vector. */
|
bool affine_p;
|
|
/* Set to true when the dependence relation is on the same data
|
access. */
|
bool self_reference_p;
|
};
|
|
typedef struct data_dependence_relation *ddr_p;
|
|
#define DDR_A(DDR) DDR->a
|
#define DDR_B(DDR) DDR->b
|
#define DDR_AFFINE_P(DDR) DDR->affine_p
|
#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
|
#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
|
#define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
|
#define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
|
|
#define DDR_LOOP_NEST(DDR) DDR->loop_nest
|
/* The size of the direction/distance vectors: the number of loops in
|
the loop nest. */
|
#define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
|
#define DDR_INNER_LOOP(DDR) DDR->inner_loop
|
#define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
|
|
#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
|
#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
|
#define DDR_NUM_DIST_VECTS(DDR) \
|
(DDR_DIST_VECTS (DDR).length ())
|
#define DDR_NUM_DIR_VECTS(DDR) \
|
(DDR_DIR_VECTS (DDR).length ())
|
#define DDR_DIR_VECT(DDR, I) \
|
DDR_DIR_VECTS (DDR)[I]
|
#define DDR_DIST_VECT(DDR, I) \
|
DDR_DIST_VECTS (DDR)[I]
|
#define DDR_REVERSED_P(DDR) DDR->reversed_p
|
|
|
bool dr_analyze_innermost (struct data_reference *, struct loop *);
|
extern bool compute_data_dependences_for_loop (struct loop *, bool,
|
vec<loop_p> *,
|
vec<data_reference_p> *,
|
vec<ddr_p> *);
|
extern void debug_ddrs (vec<ddr_p> );
|
extern void dump_data_reference (FILE *, struct data_reference *);
|
extern void debug (data_reference &ref);
|
extern void debug (data_reference *ptr);
|
extern void debug_data_reference (struct data_reference *);
|
extern void debug_data_references (vec<data_reference_p> );
|
extern void debug (vec<data_reference_p> &ref);
|
extern void debug (vec<data_reference_p> *ptr);
|
extern void debug_data_dependence_relation (struct data_dependence_relation *);
|
extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
|
extern void debug (vec<ddr_p> &ref);
|
extern void debug (vec<ddr_p> *ptr);
|
extern void debug_data_dependence_relations (vec<ddr_p> );
|
extern void free_dependence_relation (struct data_dependence_relation *);
|
extern void free_dependence_relations (vec<ddr_p> );
|
extern void free_data_ref (data_reference_p);
|
extern void free_data_refs (vec<data_reference_p> );
|
extern bool find_data_references_in_stmt (struct loop *, gimple *,
|
vec<data_reference_p> *);
|
extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple *,
|
vec<data_reference_p> *);
|
tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
|
bool loop_nest_has_data_refs (loop_p loop);
|
struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple *, bool);
|
extern bool find_loop_nest (struct loop *, vec<loop_p> *);
|
extern struct data_dependence_relation *initialize_data_dependence_relation
|
(struct data_reference *, struct data_reference *, vec<loop_p>);
|
extern void compute_affine_dependence (struct data_dependence_relation *,
|
loop_p);
|
extern void compute_self_dependence (struct data_dependence_relation *);
|
extern bool compute_all_dependences (vec<data_reference_p> ,
|
vec<ddr_p> *,
|
vec<loop_p>, bool);
|
extern tree find_data_references_in_bb (struct loop *, basic_block,
|
vec<data_reference_p> *);
|
|
extern bool dr_may_alias_p (const struct data_reference *,
|
const struct data_reference *, bool);
|
extern bool dr_equal_offsets_p (struct data_reference *,
|
struct data_reference *);
|
|
/* Return true when the base objects of data references A and B are
|
the same memory object. */
|
|
static inline bool
|
same_data_refs_base_objects (data_reference_p a, data_reference_p b)
|
{
|
return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
|
&& operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
|
}
|
|
/* Return true when the data references A and B are accessing the same
|
memory object with the same access functions. */
|
|
static inline bool
|
same_data_refs (data_reference_p a, data_reference_p b)
|
{
|
unsigned int i;
|
|
/* The references are exactly the same. */
|
if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
|
return true;
|
|
if (!same_data_refs_base_objects (a, b))
|
return false;
|
|
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
|
if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
|
return false;
|
|
return true;
|
}
|
|
/* Return true when the DDR contains two data references that have the
|
same access functions. */
|
|
static inline bool
|
same_access_functions (const struct data_dependence_relation *ddr)
|
{
|
unsigned i;
|
|
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
|
DR_ACCESS_FN (DDR_B (ddr), i)))
|
return false;
|
|
return true;
|
}
|
|
/* Returns true when all the dependences are computable. */
|
|
inline bool
|
known_dependences_p (vec<ddr_p> dependence_relations)
|
{
|
ddr_p ddr;
|
unsigned int i;
|
|
FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
return false;
|
|
return true;
|
}
|
|
/* Returns the dependence level for a vector DIST of size LENGTH.
|
LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
|
to the sequence of statements, not carried by any loop. */
|
|
static inline unsigned
|
dependence_level (lambda_vector dist_vect, int length)
|
{
|
int i;
|
|
for (i = 0; i < length; i++)
|
if (dist_vect[i] != 0)
|
return i + 1;
|
|
return 0;
|
}
|
|
/* Return the dependence level for the DDR relation. */
|
|
static inline unsigned
|
ddr_dependence_level (ddr_p ddr)
|
{
|
unsigned vector;
|
unsigned level = 0;
|
|
if (DDR_DIST_VECTS (ddr).exists ())
|
level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
|
|
for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
|
level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
|
DDR_NB_LOOPS (ddr)));
|
return level;
|
}
|
|
/* Return the index of the variable VAR in the LOOP_NEST array. */
|
|
static inline int
|
index_in_loop_nest (int var, vec<loop_p> loop_nest)
|
{
|
struct loop *loopi;
|
int var_index;
|
|
for (var_index = 0; loop_nest.iterate (var_index, &loopi);
|
var_index++)
|
if (loopi->num == var)
|
break;
|
|
return var_index;
|
}
|
|
/* Returns true when the data reference DR the form "A[i] = ..."
|
with a stride equal to its unit type size. */
|
|
static inline bool
|
adjacent_dr_p (struct data_reference *dr)
|
{
|
/* If this is a bitfield store bail out. */
|
if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
|
&& DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
|
return false;
|
|
if (!DR_STEP (dr)
|
|| TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
|
return false;
|
|
return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
|
DR_STEP (dr)),
|
TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
|
}
|
|
void split_constant_offset (tree , tree *, tree *);
|
|
/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
|
|
static inline int
|
lambda_vector_gcd (lambda_vector vector, int size)
|
{
|
int i;
|
int gcd1 = 0;
|
|
if (size > 0)
|
{
|
gcd1 = vector[0];
|
for (i = 1; i < size; i++)
|
gcd1 = gcd (gcd1, vector[i]);
|
}
|
return gcd1;
|
}
|
|
/* Allocate a new vector of given SIZE. */
|
|
static inline lambda_vector
|
lambda_vector_new (int size)
|
{
|
/* ??? We shouldn't abuse the GC allocator here. */
|
return ggc_cleared_vec_alloc<int> (size);
|
}
|
|
/* Clear out vector VEC1 of length SIZE. */
|
|
static inline void
|
lambda_vector_clear (lambda_vector vec1, int size)
|
{
|
memset (vec1, 0, size * sizeof (*vec1));
|
}
|
|
/* Returns true when the vector V is lexicographically positive, in
|
other words, when the first nonzero element is positive. */
|
|
static inline bool
|
lambda_vector_lexico_pos (lambda_vector v,
|
unsigned n)
|
{
|
unsigned i;
|
for (i = 0; i < n; i++)
|
{
|
if (v[i] == 0)
|
continue;
|
if (v[i] < 0)
|
return false;
|
if (v[i] > 0)
|
return true;
|
}
|
return true;
|
}
|
|
/* Return true if vector VEC1 of length SIZE is the zero vector. */
|
|
static inline bool
|
lambda_vector_zerop (lambda_vector vec1, int size)
|
{
|
int i;
|
for (i = 0; i < size; i++)
|
if (vec1[i] != 0)
|
return false;
|
return true;
|
}
|
|
/* Allocate a matrix of M rows x N cols. */
|
|
static inline lambda_matrix
|
lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
|
{
|
lambda_matrix mat;
|
int i;
|
|
mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
|
|
for (i = 0; i < m; i++)
|
mat[i] = XOBNEWVEC (lambda_obstack, int, n);
|
|
return mat;
|
}
|
|
#endif /* GCC_TREE_DATA_REF_H */
|