/*
|
* Copyright (C) 2015 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "environment.h"
|
|
#include <inttypes.h>
|
#include <signal.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
#include <string.h>
|
#include <sys/resource.h>
|
#include <sys/utsname.h>
|
|
#include <limits>
|
#include <set>
|
#include <unordered_map>
|
#include <vector>
|
|
#include <android-base/file.h>
|
#include <android-base/logging.h>
|
#include <android-base/parseint.h>
|
#include <android-base/strings.h>
|
#include <android-base/stringprintf.h>
|
#include <procinfo/process.h>
|
#include <procinfo/process_map.h>
|
|
#if defined(__ANDROID__)
|
#include <android-base/properties.h>
|
#endif
|
|
#include "event_type.h"
|
#include "IOEventLoop.h"
|
#include "read_elf.h"
|
#include "thread_tree.h"
|
#include "utils.h"
|
#include "workload.h"
|
|
class LineReader {
|
public:
|
explicit LineReader(FILE* fp) : fp_(fp), buf_(nullptr), bufsize_(0) {
|
}
|
|
~LineReader() {
|
free(buf_);
|
fclose(fp_);
|
}
|
|
char* ReadLine() {
|
if (getline(&buf_, &bufsize_, fp_) != -1) {
|
return buf_;
|
}
|
return nullptr;
|
}
|
|
size_t MaxLineSize() {
|
return bufsize_;
|
}
|
|
private:
|
FILE* fp_;
|
char* buf_;
|
size_t bufsize_;
|
};
|
|
std::vector<int> GetOnlineCpus() {
|
std::vector<int> result;
|
FILE* fp = fopen("/sys/devices/system/cpu/online", "re");
|
if (fp == nullptr) {
|
PLOG(ERROR) << "can't open online cpu information";
|
return result;
|
}
|
|
LineReader reader(fp);
|
char* line;
|
if ((line = reader.ReadLine()) != nullptr) {
|
result = GetCpusFromString(line);
|
}
|
CHECK(!result.empty()) << "can't get online cpu information";
|
return result;
|
}
|
|
std::vector<int> GetCpusFromString(const std::string& s) {
|
std::set<int> cpu_set;
|
bool have_dash = false;
|
const char* p = s.c_str();
|
char* endp;
|
int last_cpu;
|
int cpu;
|
// Parse line like: 0,1-3, 5, 7-8
|
while ((cpu = static_cast<int>(strtol(p, &endp, 10))) != 0 || endp != p) {
|
if (have_dash && !cpu_set.empty()) {
|
for (int t = last_cpu + 1; t < cpu; ++t) {
|
cpu_set.insert(t);
|
}
|
}
|
have_dash = false;
|
cpu_set.insert(cpu);
|
last_cpu = cpu;
|
p = endp;
|
while (!isdigit(*p) && *p != '\0') {
|
if (*p == '-') {
|
have_dash = true;
|
}
|
++p;
|
}
|
}
|
return std::vector<int>(cpu_set.begin(), cpu_set.end());
|
}
|
|
static std::vector<KernelMmap> GetLoadedModules() {
|
std::vector<KernelMmap> result;
|
FILE* fp = fopen("/proc/modules", "re");
|
if (fp == nullptr) {
|
// There is no /proc/modules on Android devices, so we don't print error if failed to open it.
|
PLOG(DEBUG) << "failed to open file /proc/modules";
|
return result;
|
}
|
LineReader reader(fp);
|
char* line;
|
while ((line = reader.ReadLine()) != nullptr) {
|
// Parse line like: nf_defrag_ipv6 34768 1 nf_conntrack_ipv6, Live 0xffffffffa0fe5000
|
char name[reader.MaxLineSize()];
|
uint64_t addr;
|
uint64_t len;
|
if (sscanf(line, "%s%" PRIu64 "%*u%*s%*s 0x%" PRIx64, name, &len, &addr) == 3) {
|
KernelMmap map;
|
map.name = name;
|
map.start_addr = addr;
|
map.len = len;
|
result.push_back(map);
|
}
|
}
|
bool all_zero = true;
|
for (const auto& map : result) {
|
if (map.start_addr != 0) {
|
all_zero = false;
|
}
|
}
|
if (all_zero) {
|
LOG(DEBUG) << "addresses in /proc/modules are all zero, so ignore kernel modules";
|
return std::vector<KernelMmap>();
|
}
|
return result;
|
}
|
|
static void GetAllModuleFiles(const std::string& path,
|
std::unordered_map<std::string, std::string>* module_file_map) {
|
for (const auto& name : GetEntriesInDir(path)) {
|
std::string entry_path = path + "/" + name;
|
if (IsRegularFile(entry_path) && android::base::EndsWith(name, ".ko")) {
|
std::string module_name = name.substr(0, name.size() - 3);
|
std::replace(module_name.begin(), module_name.end(), '-', '_');
|
module_file_map->insert(std::make_pair(module_name, entry_path));
|
} else if (IsDir(entry_path)) {
|
GetAllModuleFiles(entry_path, module_file_map);
|
}
|
}
|
}
|
|
static std::vector<KernelMmap> GetModulesInUse() {
|
std::vector<KernelMmap> module_mmaps = GetLoadedModules();
|
if (module_mmaps.empty()) {
|
return std::vector<KernelMmap>();
|
}
|
std::unordered_map<std::string, std::string> module_file_map;
|
#if defined(__ANDROID__)
|
// Search directories listed in "File locations" section in
|
// https://source.android.com/devices/architecture/kernel/modular-kernels.
|
for (const auto& path : {"/vendor/lib/modules", "/odm/lib/modules", "/lib/modules"}) {
|
GetAllModuleFiles(path, &module_file_map);
|
}
|
#else
|
utsname uname_buf;
|
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) {
|
PLOG(ERROR) << "uname() failed";
|
return std::vector<KernelMmap>();
|
}
|
std::string linux_version = uname_buf.release;
|
std::string module_dirpath = "/lib/modules/" + linux_version + "/kernel";
|
GetAllModuleFiles(module_dirpath, &module_file_map);
|
#endif
|
for (auto& module : module_mmaps) {
|
auto it = module_file_map.find(module.name);
|
if (it != module_file_map.end()) {
|
module.filepath = it->second;
|
}
|
}
|
return module_mmaps;
|
}
|
|
void GetKernelAndModuleMmaps(KernelMmap* kernel_mmap, std::vector<KernelMmap>* module_mmaps) {
|
kernel_mmap->name = DEFAULT_KERNEL_MMAP_NAME;
|
kernel_mmap->start_addr = 0;
|
kernel_mmap->len = std::numeric_limits<uint64_t>::max();
|
kernel_mmap->filepath = kernel_mmap->name;
|
*module_mmaps = GetModulesInUse();
|
for (auto& map : *module_mmaps) {
|
if (map.filepath.empty()) {
|
map.filepath = "[" + map.name + "]";
|
}
|
}
|
}
|
|
static bool ReadThreadNameAndPid(pid_t tid, std::string* comm, pid_t* pid) {
|
android::procinfo::ProcessInfo procinfo;
|
if (!android::procinfo::GetProcessInfo(tid, &procinfo)) {
|
return false;
|
}
|
if (comm != nullptr) {
|
*comm = procinfo.name;
|
}
|
if (pid != nullptr) {
|
*pid = procinfo.pid;
|
}
|
return true;
|
}
|
|
std::vector<pid_t> GetThreadsInProcess(pid_t pid) {
|
std::vector<pid_t> result;
|
android::procinfo::GetProcessTids(pid, &result);
|
return result;
|
}
|
|
bool IsThreadAlive(pid_t tid) {
|
return IsDir(android::base::StringPrintf("/proc/%d", tid));
|
}
|
|
bool GetProcessForThread(pid_t tid, pid_t* pid) {
|
return ReadThreadNameAndPid(tid, nullptr, pid);
|
}
|
|
bool GetThreadName(pid_t tid, std::string* name) {
|
return ReadThreadNameAndPid(tid, name, nullptr);
|
}
|
|
std::vector<pid_t> GetAllProcesses() {
|
std::vector<pid_t> result;
|
std::vector<std::string> entries = GetEntriesInDir("/proc");
|
for (const auto& entry : entries) {
|
pid_t pid;
|
if (!android::base::ParseInt(entry.c_str(), &pid, 0)) {
|
continue;
|
}
|
result.push_back(pid);
|
}
|
return result;
|
}
|
|
bool GetThreadMmapsInProcess(pid_t pid, std::vector<ThreadMmap>* thread_mmaps) {
|
thread_mmaps->clear();
|
return android::procinfo::ReadProcessMaps(
|
pid, [&](uint64_t start, uint64_t end, uint16_t flags, uint64_t pgoff,
|
ino_t, const char* name) {
|
thread_mmaps->emplace_back(start, end - start, pgoff, name, flags);
|
});
|
}
|
|
bool GetKernelBuildId(BuildId* build_id) {
|
ElfStatus result = GetBuildIdFromNoteFile("/sys/kernel/notes", build_id);
|
if (result != ElfStatus::NO_ERROR) {
|
LOG(DEBUG) << "failed to read /sys/kernel/notes: " << result;
|
}
|
return result == ElfStatus::NO_ERROR;
|
}
|
|
bool GetModuleBuildId(const std::string& module_name, BuildId* build_id) {
|
std::string notefile = "/sys/module/" + module_name + "/notes/.note.gnu.build-id";
|
return GetBuildIdFromNoteFile(notefile, build_id);
|
}
|
|
bool GetValidThreadsFromThreadString(const std::string& tid_str, std::set<pid_t>* tid_set) {
|
std::vector<std::string> strs = android::base::Split(tid_str, ",");
|
for (const auto& s : strs) {
|
int tid;
|
if (!android::base::ParseInt(s.c_str(), &tid, 0)) {
|
LOG(ERROR) << "Invalid tid '" << s << "'";
|
return false;
|
}
|
if (!IsDir(android::base::StringPrintf("/proc/%d", tid))) {
|
LOG(ERROR) << "Non existing thread '" << tid << "'";
|
return false;
|
}
|
tid_set->insert(tid);
|
}
|
return true;
|
}
|
|
/*
|
* perf event paranoia level:
|
* -1 - not paranoid at all
|
* 0 - disallow raw tracepoint access for unpriv
|
* 1 - disallow cpu events for unpriv
|
* 2 - disallow kernel profiling for unpriv
|
* 3 - disallow user profiling for unpriv
|
*/
|
static bool ReadPerfEventParanoid(int* value) {
|
std::string s;
|
if (!android::base::ReadFileToString("/proc/sys/kernel/perf_event_paranoid", &s)) {
|
PLOG(DEBUG) << "failed to read /proc/sys/kernel/perf_event_paranoid";
|
return false;
|
}
|
s = android::base::Trim(s);
|
if (!android::base::ParseInt(s.c_str(), value)) {
|
PLOG(ERROR) << "failed to parse /proc/sys/kernel/perf_event_paranoid: " << s;
|
return false;
|
}
|
return true;
|
}
|
|
bool CanRecordRawData() {
|
int value;
|
return ReadPerfEventParanoid(&value) && value == -1;
|
}
|
|
static const char* GetLimitLevelDescription(int limit_level) {
|
switch (limit_level) {
|
case -1: return "unlimited";
|
case 0: return "disallowing raw tracepoint access for unpriv";
|
case 1: return "disallowing cpu events for unpriv";
|
case 2: return "disallowing kernel profiling for unpriv";
|
case 3: return "disallowing user profiling for unpriv";
|
default: return "unknown level";
|
}
|
}
|
|
bool CheckPerfEventLimit() {
|
// Root is not limited by /proc/sys/kernel/perf_event_paranoid. However, the monitored threads
|
// may create child processes not running as root. To make sure the child processes have
|
// enough permission to create inherited tracepoint events, write -1 to perf_event_paranoid.
|
// See http://b/62230699.
|
if (IsRoot()) {
|
char* env = getenv("PERFPROFD_DISABLE_PERF_EVENT_PARANOID_CHANGE");
|
if (env != nullptr && strcmp(env, "1") == 0) {
|
return true;
|
}
|
return android::base::WriteStringToFile("-1", "/proc/sys/kernel/perf_event_paranoid");
|
}
|
int limit_level;
|
bool can_read_paranoid = ReadPerfEventParanoid(&limit_level);
|
if (can_read_paranoid && limit_level <= 1) {
|
return true;
|
}
|
#if defined(__ANDROID__)
|
const std::string prop_name = "security.perf_harden";
|
std::string prop_value = android::base::GetProperty(prop_name, "");
|
if (prop_value.empty()) {
|
// can't do anything if there is no such property.
|
return true;
|
}
|
if (prop_value == "0") {
|
return true;
|
}
|
// Try to enable perf_event_paranoid by setprop security.perf_harden=0.
|
if (android::base::SetProperty(prop_name, "0")) {
|
sleep(1);
|
if (can_read_paranoid && ReadPerfEventParanoid(&limit_level) && limit_level <= 1) {
|
return true;
|
}
|
if (android::base::GetProperty(prop_name, "") == "0") {
|
return true;
|
}
|
}
|
if (can_read_paranoid) {
|
LOG(WARNING) << "/proc/sys/kernel/perf_event_paranoid is " << limit_level
|
<< ", " << GetLimitLevelDescription(limit_level) << ".";
|
}
|
LOG(WARNING) << "Try using `adb shell setprop security.perf_harden 0` to allow profiling.";
|
return false;
|
#else
|
if (can_read_paranoid) {
|
LOG(WARNING) << "/proc/sys/kernel/perf_event_paranoid is " << limit_level
|
<< ", " << GetLimitLevelDescription(limit_level) << ".";
|
return false;
|
}
|
#endif
|
return true;
|
}
|
|
#if defined(__ANDROID__)
|
static bool SetProperty(const char* prop_name, uint64_t value) {
|
if (!android::base::SetProperty(prop_name, std::to_string(value))) {
|
LOG(ERROR) << "Failed to SetProperty " << prop_name << " to " << value;
|
return false;
|
}
|
return true;
|
}
|
|
bool SetPerfEventLimits(uint64_t sample_freq, size_t cpu_percent, uint64_t mlock_kb) {
|
if (!SetProperty("debug.perf_event_max_sample_rate", sample_freq) ||
|
!SetProperty("debug.perf_cpu_time_max_percent", cpu_percent) ||
|
!SetProperty("debug.perf_event_mlock_kb", mlock_kb) ||
|
!SetProperty("security.perf_harden", 0)) {
|
return false;
|
}
|
// Wait for init process to change perf event limits based on properties.
|
const size_t max_wait_us = 3 * 1000000;
|
int finish_mask = 0;
|
for (size_t i = 0; i < max_wait_us && finish_mask != 7; ++i) {
|
usleep(1); // Wait 1us to avoid busy loop.
|
if ((finish_mask & 1) == 0) {
|
uint64_t freq;
|
if (!GetMaxSampleFrequency(&freq) || freq == sample_freq) {
|
finish_mask |= 1;
|
}
|
}
|
if ((finish_mask & 2) == 0) {
|
size_t percent;
|
if (!GetCpuTimeMaxPercent(&percent) || percent == cpu_percent) {
|
finish_mask |= 2;
|
}
|
}
|
if ((finish_mask & 4) == 0) {
|
uint64_t kb;
|
if (!GetPerfEventMlockKb(&kb) || kb == mlock_kb) {
|
finish_mask |= 4;
|
}
|
}
|
}
|
if (finish_mask != 7) {
|
LOG(WARNING) << "Wait setting perf event limits timeout";
|
}
|
return true;
|
}
|
#else // !defined(__ANDROID__)
|
bool SetPerfEventLimits(uint64_t, size_t, uint64_t) {
|
return true;
|
}
|
#endif
|
|
template <typename T>
|
static bool ReadUintFromProcFile(const std::string& path, T* value) {
|
std::string s;
|
if (!android::base::ReadFileToString(path, &s)) {
|
PLOG(DEBUG) << "failed to read " << path;
|
return false;
|
}
|
s = android::base::Trim(s);
|
if (!android::base::ParseUint(s.c_str(), value)) {
|
LOG(ERROR) << "failed to parse " << path << ": " << s;
|
return false;
|
}
|
return true;
|
}
|
|
template <typename T>
|
static bool WriteUintToProcFile(const std::string& path, T value) {
|
if (IsRoot()) {
|
return android::base::WriteStringToFile(std::to_string(value), path);
|
}
|
return false;
|
}
|
|
bool GetMaxSampleFrequency(uint64_t* max_sample_freq) {
|
return ReadUintFromProcFile("/proc/sys/kernel/perf_event_max_sample_rate", max_sample_freq);
|
}
|
|
bool SetMaxSampleFrequency(uint64_t max_sample_freq) {
|
return WriteUintToProcFile("/proc/sys/kernel/perf_event_max_sample_rate", max_sample_freq);
|
}
|
|
bool GetCpuTimeMaxPercent(size_t* percent) {
|
return ReadUintFromProcFile("/proc/sys/kernel/perf_cpu_time_max_percent", percent);
|
}
|
|
bool SetCpuTimeMaxPercent(size_t percent) {
|
return WriteUintToProcFile("/proc/sys/kernel/perf_cpu_time_max_percent", percent);
|
}
|
|
bool GetPerfEventMlockKb(uint64_t* mlock_kb) {
|
return ReadUintFromProcFile("/proc/sys/kernel/perf_event_mlock_kb", mlock_kb);
|
}
|
|
bool SetPerfEventMlockKb(uint64_t mlock_kb) {
|
return WriteUintToProcFile("/proc/sys/kernel/perf_event_mlock_kb", mlock_kb);
|
}
|
|
bool CheckKernelSymbolAddresses() {
|
const std::string kptr_restrict_file = "/proc/sys/kernel/kptr_restrict";
|
std::string s;
|
if (!android::base::ReadFileToString(kptr_restrict_file, &s)) {
|
PLOG(DEBUG) << "failed to read " << kptr_restrict_file;
|
return false;
|
}
|
s = android::base::Trim(s);
|
int value;
|
if (!android::base::ParseInt(s.c_str(), &value)) {
|
LOG(ERROR) << "failed to parse " << kptr_restrict_file << ": " << s;
|
return false;
|
}
|
// Accessible to everyone?
|
if (value == 0) {
|
return true;
|
}
|
// Accessible to root?
|
if (value == 1 && IsRoot()) {
|
return true;
|
}
|
// Can we make it accessible to us?
|
if (IsRoot() && android::base::WriteStringToFile("1", kptr_restrict_file)) {
|
return true;
|
}
|
LOG(WARNING) << "Access to kernel symbol addresses is restricted. If "
|
<< "possible, please do `echo 0 >/proc/sys/kernel/kptr_restrict` "
|
<< "to fix this.";
|
return false;
|
}
|
|
ArchType GetMachineArch() {
|
utsname uname_buf;
|
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) {
|
PLOG(WARNING) << "uname() failed";
|
return GetBuildArch();
|
}
|
ArchType arch = GetArchType(uname_buf.machine);
|
if (arch != ARCH_UNSUPPORTED) {
|
return arch;
|
}
|
return GetBuildArch();
|
}
|
|
void PrepareVdsoFile() {
|
// vdso is an elf file in memory loaded in each process's user space by the kernel. To read
|
// symbols from it and unwind through it, we need to dump it into a file in storage.
|
// It doesn't affect much when failed to prepare vdso file, so there is no need to return values.
|
std::vector<ThreadMmap> thread_mmaps;
|
if (!GetThreadMmapsInProcess(getpid(), &thread_mmaps)) {
|
return;
|
}
|
const ThreadMmap* vdso_map = nullptr;
|
for (const auto& map : thread_mmaps) {
|
if (map.name == "[vdso]") {
|
vdso_map = ↦
|
break;
|
}
|
}
|
if (vdso_map == nullptr) {
|
return;
|
}
|
std::string s(vdso_map->len, '\0');
|
memcpy(&s[0], reinterpret_cast<void*>(static_cast<uintptr_t>(vdso_map->start_addr)),
|
vdso_map->len);
|
std::unique_ptr<TemporaryFile> tmpfile = ScopedTempFiles::CreateTempFile();
|
if (!android::base::WriteStringToFd(s, tmpfile->fd)) {
|
return;
|
}
|
Dso::SetVdsoFile(tmpfile->path, sizeof(size_t) == sizeof(uint64_t));
|
}
|
|
static bool HasOpenedAppApkFile(int pid) {
|
std::string fd_path = "/proc/" + std::to_string(pid) + "/fd/";
|
std::vector<std::string> files = GetEntriesInDir(fd_path);
|
for (const auto& file : files) {
|
std::string real_path;
|
if (!android::base::Readlink(fd_path + file, &real_path)) {
|
continue;
|
}
|
if (real_path.find("app") != std::string::npos && real_path.find(".apk") != std::string::npos) {
|
return true;
|
}
|
}
|
return false;
|
}
|
|
std::set<pid_t> WaitForAppProcesses(const std::string& package_name) {
|
std::set<pid_t> result;
|
size_t loop_count = 0;
|
while (true) {
|
std::vector<pid_t> pids = GetAllProcesses();
|
for (pid_t pid : pids) {
|
std::string cmdline;
|
if (!android::base::ReadFileToString("/proc/" + std::to_string(pid) + "/cmdline", &cmdline)) {
|
// Maybe we don't have permission to read it.
|
continue;
|
}
|
std::string process_name = android::base::Basename(cmdline);
|
// The app may have multiple processes, with process name like
|
// com.google.android.googlequicksearchbox:search.
|
size_t split_pos = process_name.find(':');
|
if (split_pos != std::string::npos) {
|
process_name = process_name.substr(0, split_pos);
|
}
|
if (process_name != package_name) {
|
continue;
|
}
|
// If a debuggable app with wrap.sh runs on Android O, the app will be started with
|
// logwrapper as below:
|
// 1. Zygote forks a child process, rename it to package_name.
|
// 2. The child process execute sh, which starts a child process running
|
// /system/bin/logwrapper.
|
// 3. logwrapper starts a child process running sh, which interprets wrap.sh.
|
// 4. wrap.sh starts a child process running the app.
|
// The problem here is we want to profile the process started in step 4, but sometimes we
|
// run into the process started in step 1. To solve it, we can check if the process has
|
// opened an apk file in some app dirs.
|
if (!HasOpenedAppApkFile(pid)) {
|
continue;
|
}
|
if (loop_count > 0u) {
|
LOG(INFO) << "Got process " << pid << " for package " << package_name;
|
}
|
result.insert(pid);
|
}
|
if (!result.empty()) {
|
return result;
|
}
|
if (++loop_count == 1u) {
|
LOG(INFO) << "Waiting for process of app " << package_name;
|
}
|
usleep(1000);
|
}
|
}
|
|
bool IsAppDebuggable(const std::string& package_name) {
|
return Workload::RunCmd({"run-as", package_name, "echo", ">/dev/null", "2>/dev/null"}, false);
|
}
|
|
namespace {
|
|
class InAppRunner {
|
public:
|
InAppRunner(const std::string& package_name) : package_name_(package_name) {}
|
virtual ~InAppRunner() {
|
if (!tracepoint_file_.empty()) {
|
unlink(tracepoint_file_.c_str());
|
}
|
}
|
virtual bool Prepare() = 0;
|
bool RunCmdInApp(const std::string& cmd, const std::vector<std::string>& args,
|
size_t workload_args_size, const std::string& output_filepath,
|
bool need_tracepoint_events);
|
protected:
|
virtual std::vector<std::string> GetPrefixArgs(const std::string& cmd) = 0;
|
|
const std::string package_name_;
|
std::string tracepoint_file_;
|
};
|
|
bool InAppRunner::RunCmdInApp(const std::string& cmd, const std::vector<std::string>& cmd_args,
|
size_t workload_args_size, const std::string& output_filepath,
|
bool need_tracepoint_events) {
|
// 1. Build cmd args running in app's context.
|
std::vector<std::string> args = GetPrefixArgs(cmd);
|
args.insert(args.end(), {"--in-app", "--log", GetLogSeverityName()});
|
if (need_tracepoint_events) {
|
// Since we can't read tracepoint events from tracefs in app's context, we need to prepare
|
// them in tracepoint_file in shell's context, and pass the path of tracepoint_file to the
|
// child process using --tracepoint-events option.
|
const std::string tracepoint_file = "/data/local/tmp/tracepoint_events";
|
if (!android::base::WriteStringToFile(GetTracepointEvents(), tracepoint_file)) {
|
PLOG(ERROR) << "Failed to store tracepoint events";
|
return false;
|
}
|
tracepoint_file_ = tracepoint_file;
|
args.insert(args.end(), {"--tracepoint-events", tracepoint_file_});
|
}
|
|
android::base::unique_fd out_fd;
|
if (!output_filepath.empty()) {
|
// A process running in app's context can't open a file outside it's data directory to write.
|
// So pass it a file descriptor to write.
|
out_fd = FileHelper::OpenWriteOnly(output_filepath);
|
if (out_fd == -1) {
|
PLOG(ERROR) << "Failed to open " << output_filepath;
|
return false;
|
}
|
args.insert(args.end(), {"--out-fd", std::to_string(int(out_fd))});
|
}
|
|
// We can't send signal to a process running in app's context. So use a pipe file to send stop
|
// signal.
|
android::base::unique_fd stop_signal_rfd;
|
android::base::unique_fd stop_signal_wfd;
|
if (!android::base::Pipe(&stop_signal_rfd, &stop_signal_wfd, 0)) {
|
PLOG(ERROR) << "pipe";
|
return false;
|
}
|
args.insert(args.end(), {"--stop-signal-fd", std::to_string(int(stop_signal_rfd))});
|
|
for (size_t i = 0; i < cmd_args.size(); ++i) {
|
if (i < cmd_args.size() - workload_args_size) {
|
// Omit "-o output_file". It is replaced by "--out-fd fd".
|
if (cmd_args[i] == "-o" || cmd_args[i] == "--app") {
|
i++;
|
continue;
|
}
|
}
|
args.push_back(cmd_args[i]);
|
}
|
char* argv[args.size() + 1];
|
for (size_t i = 0; i < args.size(); ++i) {
|
argv[i] = &args[i][0];
|
}
|
argv[args.size()] = nullptr;
|
|
// 2. Run child process in app's context.
|
auto ChildProcFn = [&]() {
|
stop_signal_wfd.reset();
|
execvp(argv[0], argv);
|
exit(1);
|
};
|
std::unique_ptr<Workload> workload = Workload::CreateWorkload(ChildProcFn);
|
if (!workload) {
|
return false;
|
}
|
stop_signal_rfd.reset();
|
|
// Wait on signals.
|
IOEventLoop loop;
|
bool need_to_stop_child = false;
|
std::vector<int> stop_signals = {SIGINT, SIGTERM};
|
if (!SignalIsIgnored(SIGHUP)) {
|
stop_signals.push_back(SIGHUP);
|
}
|
if (!loop.AddSignalEvents(stop_signals,
|
[&]() { need_to_stop_child = true; return loop.ExitLoop(); })) {
|
return false;
|
}
|
if (!loop.AddSignalEvent(SIGCHLD, [&]() { return loop.ExitLoop(); })) {
|
return false;
|
}
|
|
if (!workload->Start()) {
|
return false;
|
}
|
if (!loop.RunLoop()) {
|
return false;
|
}
|
if (need_to_stop_child) {
|
stop_signal_wfd.reset();
|
}
|
int exit_code;
|
if (!workload->WaitChildProcess(&exit_code) || exit_code != 0) {
|
return false;
|
}
|
return true;
|
}
|
|
class RunAs : public InAppRunner {
|
public:
|
RunAs(const std::string& package_name) : InAppRunner(package_name) {}
|
virtual ~RunAs() {
|
if (simpleperf_copied_in_app_) {
|
Workload::RunCmd({"run-as", package_name_, "rm", "-rf", "simpleperf"});
|
}
|
}
|
bool Prepare() override;
|
|
protected:
|
std::vector<std::string> GetPrefixArgs(const std::string& cmd) {
|
return {"run-as", package_name_,
|
simpleperf_copied_in_app_ ? "./simpleperf" : simpleperf_path_, cmd,
|
"--app", package_name_};
|
}
|
|
bool simpleperf_copied_in_app_ = false;
|
std::string simpleperf_path_;
|
};
|
|
bool RunAs::Prepare() {
|
// Test if run-as can access the package.
|
if (!IsAppDebuggable(package_name_)) {
|
return false;
|
}
|
// run-as can't run /data/local/tmp/simpleperf directly. So copy simpleperf binary if needed.
|
if (!android::base::Readlink("/proc/self/exe", &simpleperf_path_)) {
|
PLOG(ERROR) << "ReadLink failed";
|
return false;
|
}
|
if (simpleperf_path_.find("CtsSimpleperfTest") != std::string::npos) {
|
simpleperf_path_ = "/system/bin/simpleperf";
|
return true;
|
}
|
if (android::base::StartsWith(simpleperf_path_, "/system")) {
|
return true;
|
}
|
if (!Workload::RunCmd({"run-as", package_name_, "cp", simpleperf_path_, "simpleperf"})) {
|
return false;
|
}
|
simpleperf_copied_in_app_ = true;
|
return true;
|
}
|
|
class SimpleperfAppRunner : public InAppRunner {
|
public:
|
SimpleperfAppRunner(const std::string& package_name) : InAppRunner(package_name) {}
|
bool Prepare() override {
|
return GetAndroidVersion() >= kAndroidVersionP + 1;
|
}
|
|
protected:
|
std::vector<std::string> GetPrefixArgs(const std::string& cmd) {
|
return {"simpleperf_app_runner", package_name_, cmd};
|
}
|
};
|
|
} // namespace
|
|
bool RunInAppContext(const std::string& app_package_name, const std::string& cmd,
|
const std::vector<std::string>& args, size_t workload_args_size,
|
const std::string& output_filepath, bool need_tracepoint_events) {
|
std::unique_ptr<InAppRunner> in_app_runner(new RunAs(app_package_name));
|
if (!in_app_runner->Prepare()) {
|
in_app_runner.reset(new SimpleperfAppRunner(app_package_name));
|
if (!in_app_runner->Prepare()) {
|
LOG(ERROR) << "Package " << app_package_name
|
<< " doesn't exist or isn't debuggable/profileable.";
|
return false;
|
}
|
}
|
return in_app_runner->RunCmdInApp(cmd, args, workload_args_size, output_filepath,
|
need_tracepoint_events);
|
}
|
|
void AllowMoreOpenedFiles() {
|
// On Android <= O, the hard limit is 4096, and the soft limit is 1024.
|
// On Android >= P, both the hard and soft limit are 32768.
|
rlimit limit;
|
if (getrlimit(RLIMIT_NOFILE, &limit) == 0) {
|
limit.rlim_cur = limit.rlim_max;
|
setrlimit(RLIMIT_NOFILE, &limit);
|
}
|
}
|
|
std::string ScopedTempFiles::tmp_dir_;
|
std::vector<std::string> ScopedTempFiles::files_to_delete_;
|
|
ScopedTempFiles::ScopedTempFiles(const std::string& tmp_dir) {
|
CHECK(tmp_dir_.empty()); // No other ScopedTempFiles.
|
tmp_dir_ = tmp_dir;
|
}
|
|
ScopedTempFiles::~ScopedTempFiles() {
|
tmp_dir_.clear();
|
for (auto& file : files_to_delete_) {
|
unlink(file.c_str());
|
}
|
files_to_delete_.clear();
|
}
|
|
std::unique_ptr<TemporaryFile> ScopedTempFiles::CreateTempFile(bool delete_in_destructor) {
|
CHECK(!tmp_dir_.empty());
|
std::unique_ptr<TemporaryFile> tmp_file(new TemporaryFile(tmp_dir_));
|
CHECK_NE(tmp_file->fd, -1);
|
if (delete_in_destructor) {
|
tmp_file->DoNotRemove();
|
files_to_delete_.push_back(tmp_file->path);
|
}
|
return tmp_file;
|
}
|
|
bool SignalIsIgnored(int signo) {
|
struct sigaction act;
|
if (sigaction(signo, nullptr, &act) != 0) {
|
PLOG(FATAL) << "failed to query signal handler for signal " << signo;
|
}
|
|
if ((act.sa_flags & SA_SIGINFO)) {
|
return false;
|
}
|
|
return act.sa_handler == SIG_IGN;
|
}
|
|
int GetAndroidVersion() {
|
#if defined(__ANDROID__)
|
static int android_version = -1;
|
if (android_version == -1) {
|
android_version = 0;
|
std::string s = android::base::GetProperty("ro.build.version.release", "");
|
// The release string can be a list of numbers (like 8.1.0), a character (like Q)
|
// or many characters (like OMR1).
|
if (!s.empty()) {
|
// Each Android version has a version number: L is 5, M is 6, N is 7, O is 8, etc.
|
if (s[0] >= 'A' && s[0] <= 'Z') {
|
android_version = s[0] - 'P' + kAndroidVersionP;
|
} else if (isdigit(s[0])) {
|
sscanf(s.c_str(), "%d", &android_version);
|
}
|
}
|
}
|
return android_version;
|
#else // defined(__ANDROID__)
|
return 0;
|
#endif
|
}
|
|
std::string GetHardwareFromCpuInfo(const std::string& cpu_info) {
|
for (auto& line : android::base::Split(cpu_info, "\n")) {
|
size_t pos = line.find(':');
|
if (pos != std::string::npos) {
|
std::string key = android::base::Trim(line.substr(0, pos));
|
if (key == "Hardware") {
|
return android::base::Trim(line.substr(pos + 1));
|
}
|
}
|
}
|
return "";
|
}
|
|
bool MappedFileOnlyExistInMemory(const char* filename) {
|
// Mapped files only existing in memory:
|
// empty name
|
// [anon:???]
|
// [stack]
|
// /dev/*
|
// //anon: generated by kernel/events/core.c.
|
// /memfd: created by memfd_create.
|
return filename[0] == '\0' ||
|
(filename[0] == '[' && strcmp(filename, "[vdso]") != 0) ||
|
strncmp(filename, "//", 2) == 0 ||
|
strncmp(filename, "/dev/", 5) == 0 ||
|
strncmp(filename, "/memfd:", 7) == 0;
|
}
|
|
std::string GetCompleteProcessName(pid_t pid) {
|
std::string s;
|
if (!android::base::ReadFileToString(android::base::StringPrintf("/proc/%d/cmdline", pid), &s)) {
|
s.clear();
|
}
|
for (size_t i = 0; i < s.size(); ++i) {
|
// /proc/pid/cmdline uses 0 to separate arguments.
|
if (isspace(s[i]) || s[i] == 0) {
|
s.resize(i);
|
break;
|
}
|
}
|
return s;
|
}
|