/*
|
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
*
|
* Use of this source code is governed by a BSD-style license
|
* that can be found in the LICENSE file in the root of the source
|
* tree. An additional intellectual property rights grant can be found
|
* in the file PATENTS. All contributing project authors may
|
* be found in the AUTHORS file in the root of the source tree.
|
*/
|
|
//
|
// Unit tests for intelligibility utils.
|
//
|
|
#include <math.h>
|
#include <complex>
|
#include <iostream>
|
#include <vector>
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
#include "webrtc/base/arraysize.h"
|
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h"
|
|
using std::complex;
|
using std::vector;
|
|
namespace webrtc {
|
|
namespace intelligibility {
|
|
vector<vector<complex<float>>> GenerateTestData(int freqs, int samples) {
|
vector<vector<complex<float>>> data(samples);
|
for (int i = 0; i < samples; i++) {
|
for (int j = 0; j < freqs; j++) {
|
const float val = 0.99f / ((i + 1) * (j + 1));
|
data[i].push_back(complex<float>(val, val));
|
}
|
}
|
return data;
|
}
|
|
// Tests UpdateFactor.
|
TEST(IntelligibilityUtilsTest, TestUpdateFactor) {
|
EXPECT_EQ(0, intelligibility::UpdateFactor(0, 0, 0));
|
EXPECT_EQ(4, intelligibility::UpdateFactor(4, 2, 3));
|
EXPECT_EQ(3, intelligibility::UpdateFactor(4, 2, 1));
|
EXPECT_EQ(2, intelligibility::UpdateFactor(2, 4, 3));
|
EXPECT_EQ(3, intelligibility::UpdateFactor(2, 4, 1));
|
}
|
|
// Tests zerofudge.
|
TEST(IntelligibilityUtilsTest, TestCplx) {
|
complex<float> t0(1.f, 0.f);
|
t0 = intelligibility::zerofudge(t0);
|
EXPECT_NE(t0.imag(), 0.f);
|
EXPECT_NE(t0.real(), 0.f);
|
}
|
|
// Tests NewMean and AddToMean.
|
TEST(IntelligibilityUtilsTest, TestMeanUpdate) {
|
const complex<float> data[] = {{3, 8}, {7, 6}, {2, 1}, {8, 9}, {0, 6}};
|
const complex<float> means[] = {{3, 8}, {5, 7}, {4, 5}, {5, 6}, {4, 6}};
|
complex<float> mean(3, 8);
|
for (size_t i = 0; i < arraysize(data); i++) {
|
EXPECT_EQ(means[i], NewMean(mean, data[i], i + 1));
|
AddToMean(data[i], i + 1, &mean);
|
EXPECT_EQ(means[i], mean);
|
}
|
}
|
|
// Tests VarianceArray, for all variance step types.
|
TEST(IntelligibilityUtilsTest, TestVarianceArray) {
|
const int kFreqs = 10;
|
const int kSamples = 100;
|
const int kWindowSize = 10; // Should pass for all kWindowSize > 1.
|
const float kDecay = 0.5f;
|
vector<VarianceArray::StepType> step_types;
|
step_types.push_back(VarianceArray::kStepInfinite);
|
step_types.push_back(VarianceArray::kStepDecaying);
|
step_types.push_back(VarianceArray::kStepWindowed);
|
step_types.push_back(VarianceArray::kStepBlocked);
|
step_types.push_back(VarianceArray::kStepBlockBasedMovingAverage);
|
const vector<vector<complex<float>>> test_data(
|
GenerateTestData(kFreqs, kSamples));
|
for (auto step_type : step_types) {
|
VarianceArray variance_array(kFreqs, step_type, kWindowSize, kDecay);
|
EXPECT_EQ(0, variance_array.variance()[0]);
|
EXPECT_EQ(0, variance_array.array_mean());
|
variance_array.ApplyScale(2.0f);
|
EXPECT_EQ(0, variance_array.variance()[0]);
|
EXPECT_EQ(0, variance_array.array_mean());
|
|
// Makes sure Step is doing something.
|
variance_array.Step(&test_data[0][0]);
|
for (int i = 1; i < kSamples; i++) {
|
variance_array.Step(&test_data[i][0]);
|
EXPECT_GE(variance_array.array_mean(), 0.0f);
|
EXPECT_LE(variance_array.array_mean(), 1.0f);
|
for (int j = 0; j < kFreqs; j++) {
|
EXPECT_GE(variance_array.variance()[j], 0.0f);
|
EXPECT_LE(variance_array.variance()[j], 1.0f);
|
}
|
}
|
variance_array.Clear();
|
EXPECT_EQ(0, variance_array.variance()[0]);
|
EXPECT_EQ(0, variance_array.array_mean());
|
}
|
}
|
|
// Tests exact computation on synthetic data.
|
TEST(IntelligibilityUtilsTest, TestMovingBlockAverage) {
|
// Exact, not unbiased estimates.
|
const float kTestVarianceBufferNotFull = 16.5f;
|
const float kTestVarianceBufferFull1 = 66.5f;
|
const float kTestVarianceBufferFull2 = 333.375f;
|
const int kFreqs = 2;
|
const int kSamples = 50;
|
const int kWindowSize = 2;
|
const float kDecay = 0.5f;
|
const float kMaxError = 0.0001f;
|
|
VarianceArray variance_array(
|
kFreqs, VarianceArray::kStepBlockBasedMovingAverage, kWindowSize, kDecay);
|
|
vector<vector<complex<float>>> test_data(kSamples);
|
for (int i = 0; i < kSamples; i++) {
|
for (int j = 0; j < kFreqs; j++) {
|
if (i < 30) {
|
test_data[i].push_back(complex<float>(static_cast<float>(kSamples - i),
|
static_cast<float>(i + 1)));
|
} else {
|
test_data[i].push_back(complex<float>(0.f, 0.f));
|
}
|
}
|
}
|
|
for (int i = 0; i < kSamples; i++) {
|
variance_array.Step(&test_data[i][0]);
|
for (int j = 0; j < kFreqs; j++) {
|
if (i < 9) { // In utils, kWindowBlockSize = 10.
|
EXPECT_EQ(0, variance_array.variance()[j]);
|
} else if (i < 19) {
|
EXPECT_NEAR(kTestVarianceBufferNotFull, variance_array.variance()[j],
|
kMaxError);
|
} else if (i < 39) {
|
EXPECT_NEAR(kTestVarianceBufferFull1, variance_array.variance()[j],
|
kMaxError);
|
} else if (i < 49) {
|
EXPECT_NEAR(kTestVarianceBufferFull2, variance_array.variance()[j],
|
kMaxError);
|
} else {
|
EXPECT_EQ(0, variance_array.variance()[j]);
|
}
|
}
|
}
|
}
|
|
// Tests gain applier.
|
TEST(IntelligibilityUtilsTest, TestGainApplier) {
|
const int kFreqs = 10;
|
const int kSamples = 100;
|
const float kChangeLimit = 0.1f;
|
GainApplier gain_applier(kFreqs, kChangeLimit);
|
const vector<vector<complex<float>>> in_data(
|
GenerateTestData(kFreqs, kSamples));
|
vector<vector<complex<float>>> out_data(GenerateTestData(kFreqs, kSamples));
|
for (int i = 0; i < kSamples; i++) {
|
gain_applier.Apply(&in_data[i][0], &out_data[i][0]);
|
for (int j = 0; j < kFreqs; j++) {
|
EXPECT_GT(out_data[i][j].real(), 0.0f);
|
EXPECT_LT(out_data[i][j].real(), 1.0f);
|
EXPECT_GT(out_data[i][j].imag(), 0.0f);
|
EXPECT_LT(out_data[i][j].imag(), 1.0f);
|
}
|
}
|
}
|
|
} // namespace intelligibility
|
|
} // namespace webrtc
|