/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
you may not use this file except in compliance with the License.
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
distributed under the License is distributed on an "AS IS" BASIS,
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
See the License for the specific language governing permissions and
|
limitations under the License.
|
==============================================================================*/
|
|
#include <vector>
|
#include <gmock/gmock.h>
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/c/c_api_internal.h"
|
#include "tensorflow/lite/util.h"
|
|
namespace tflite {
|
namespace {
|
|
TEST(ConvertVectorToTfLiteIntArray, TestWithVector) {
|
std::vector<int> input = {1, 2};
|
TfLiteIntArray* output = ConvertVectorToTfLiteIntArray(input);
|
ASSERT_NE(output, nullptr);
|
EXPECT_EQ(output->size, 2);
|
EXPECT_EQ(output->data[0], 1);
|
EXPECT_EQ(output->data[1], 2);
|
TfLiteIntArrayFree(output);
|
}
|
|
TEST(ConvertVectorToTfLiteIntArray, TestWithEmptyVector) {
|
std::vector<int> input;
|
TfLiteIntArray* output = ConvertVectorToTfLiteIntArray(input);
|
ASSERT_NE(output, nullptr);
|
EXPECT_EQ(output->size, 0);
|
TfLiteIntArrayFree(output);
|
}
|
|
TEST(UtilTest, IsFlexOp) {
|
EXPECT_TRUE(IsFlexOp("Flex"));
|
EXPECT_TRUE(IsFlexOp("FlexOp"));
|
EXPECT_FALSE(IsFlexOp("flex"));
|
EXPECT_FALSE(IsFlexOp("Fle"));
|
EXPECT_FALSE(IsFlexOp("OpFlex"));
|
EXPECT_FALSE(IsFlexOp(nullptr));
|
EXPECT_FALSE(IsFlexOp(""));
|
}
|
|
} // namespace
|
} // namespace tflite
|
|
int main(int argc, char** argv) {
|
::testing::InitGoogleTest(&argc, argv);
|
return RUN_ALL_TESTS();
|
}
|