tzh
2024-08-22 c7d0944258c7d0943aa7b2211498fd612971ce27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""TFLite SavedModel conversion test cases.
 
  - Tests converting simple SavedModel graph to TFLite FlatBuffer.
  - Tests converting simple SavedModel graph to frozen graph.
  - Tests converting MNIST SavedModel to TFLite FlatBuffer.
"""
 
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
 
import os
from tensorflow.lite.python import convert_saved_model
from tensorflow.python.client import session
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import test
from tensorflow.python.saved_model import saved_model
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants
 
 
class TensorFunctionsTest(test_util.TensorFlowTestCase):
 
  @test_util.run_v1_only("b/120545219")
  def testGetTensorsValid(self):
    in_tensor = array_ops.placeholder(
        shape=[1, 16, 16, 3], dtype=dtypes.float32)
    _ = in_tensor + in_tensor
    sess = session.Session()
 
    tensors = convert_saved_model.get_tensors_from_tensor_names(
        sess.graph, ["Placeholder"])
    self.assertEqual("Placeholder:0", tensors[0].name)
 
  @test_util.run_v1_only("b/120545219")
  def testGetTensorsInvalid(self):
    in_tensor = array_ops.placeholder(
        shape=[1, 16, 16, 3], dtype=dtypes.float32)
    _ = in_tensor + in_tensor
    sess = session.Session()
 
    with self.assertRaises(ValueError) as error:
      convert_saved_model.get_tensors_from_tensor_names(sess.graph,
                                                        ["invalid-input"])
    self.assertEqual("Invalid tensors 'invalid-input' were found.",
                     str(error.exception))
 
  @test_util.run_v1_only("b/120545219")
  def testSetTensorShapeValid(self):
    tensor = array_ops.placeholder(shape=[None, 3, 5], dtype=dtypes.float32)
    self.assertEqual([None, 3, 5], tensor.shape.as_list())
 
    convert_saved_model.set_tensor_shapes([tensor], {"Placeholder": [5, 3, 5]})
    self.assertEqual([5, 3, 5], tensor.shape.as_list())
 
  @test_util.run_v1_only("b/120545219")
  def testSetTensorShapeNoneValid(self):
    tensor = array_ops.placeholder(dtype=dtypes.float32)
    self.assertEqual(None, tensor.shape)
 
    convert_saved_model.set_tensor_shapes([tensor], {"Placeholder": [1, 3, 5]})
    self.assertEqual([1, 3, 5], tensor.shape.as_list())
 
  @test_util.run_v1_only("b/120545219")
  def testSetTensorShapeArrayInvalid(self):
    # Tests set_tensor_shape where the tensor name passed in doesn't exist.
    tensor = array_ops.placeholder(shape=[None, 3, 5], dtype=dtypes.float32)
    self.assertEqual([None, 3, 5], tensor.shape.as_list())
 
    with self.assertRaises(ValueError) as error:
      convert_saved_model.set_tensor_shapes([tensor],
                                            {"invalid-input": [5, 3, 5]})
    self.assertEqual(
        "Invalid tensor 'invalid-input' found in tensor shapes map.",
        str(error.exception))
    self.assertEqual([None, 3, 5], tensor.shape.as_list())
 
  @test_util.run_deprecated_v1
  def testSetTensorShapeDimensionInvalid(self):
    # Tests set_tensor_shape where the shape passed in is incompatiable.
    tensor = array_ops.placeholder(shape=[None, 3, 5], dtype=dtypes.float32)
    self.assertEqual([None, 3, 5], tensor.shape.as_list())
 
    with self.assertRaises(ValueError) as error:
      convert_saved_model.set_tensor_shapes([tensor],
                                            {"Placeholder": [1, 5, 5]})
    self.assertIn("The shape of tensor 'Placeholder' cannot be changed",
                  str(error.exception))
    self.assertEqual([None, 3, 5], tensor.shape.as_list())
 
  @test_util.run_v1_only("b/120545219")
  def testSetTensorShapeEmpty(self):
    tensor = array_ops.placeholder(shape=[None, 3, 5], dtype=dtypes.float32)
    self.assertEqual([None, 3, 5], tensor.shape.as_list())
 
    convert_saved_model.set_tensor_shapes([tensor], {})
    self.assertEqual([None, 3, 5], tensor.shape.as_list())
 
 
class FreezeSavedModelTest(test_util.TensorFlowTestCase):
 
  def _createSimpleSavedModel(self, shape):
    """Create a simple SavedModel on the fly."""
    saved_model_dir = os.path.join(self.get_temp_dir(), "simple_savedmodel")
    with session.Session() as sess:
      in_tensor = array_ops.placeholder(shape=shape, dtype=dtypes.float32)
      out_tensor = in_tensor + in_tensor
      inputs = {"x": in_tensor}
      outputs = {"y": out_tensor}
      saved_model.simple_save(sess, saved_model_dir, inputs, outputs)
    return saved_model_dir
 
  def _createSavedModelTwoInputArrays(self, shape):
    """Create a simple SavedModel."""
    saved_model_dir = os.path.join(self.get_temp_dir(), "simple_savedmodel")
    with session.Session() as sess:
      in_tensor_1 = array_ops.placeholder(
          shape=shape, dtype=dtypes.float32, name="inputB")
      in_tensor_2 = array_ops.placeholder(
          shape=shape, dtype=dtypes.float32, name="inputA")
      out_tensor = in_tensor_1 + in_tensor_2
      inputs = {"x": in_tensor_1, "y": in_tensor_2}
      outputs = {"z": out_tensor}
      saved_model.simple_save(sess, saved_model_dir, inputs, outputs)
    return saved_model_dir
 
  def _getArrayNames(self, tensors):
    return [tensor.name for tensor in tensors]
 
  def _getArrayShapes(self, tensors):
    dims = []
    for tensor in tensors:
      dim_tensor = []
      for dim in tensor.shape:
        if isinstance(dim, tensor_shape.Dimension):
          dim_tensor.append(dim.value)
        else:
          dim_tensor.append(dim)
      dims.append(dim_tensor)
    return dims
 
  def _convertSavedModel(self,
                         saved_model_dir,
                         input_arrays=None,
                         input_shapes=None,
                         output_arrays=None,
                         tag_set=None,
                         signature_key=None):
    if tag_set is None:
      tag_set = set([tag_constants.SERVING])
    if signature_key is None:
      signature_key = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
    graph_def, in_tensors, out_tensors = convert_saved_model.freeze_saved_model(
        saved_model_dir=saved_model_dir,
        input_arrays=input_arrays,
        input_shapes=input_shapes,
        output_arrays=output_arrays,
        tag_set=tag_set,
        signature_key=signature_key)
    return graph_def, in_tensors, out_tensors
 
  def testSimpleSavedModel(self):
    """Test a SavedModel."""
    saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
    _, in_tensors, out_tensors = self._convertSavedModel(saved_model_dir)
 
    self.assertEqual(self._getArrayNames(out_tensors), ["add:0"])
    self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"])
    self.assertEqual(self._getArrayShapes(in_tensors), [[1, 16, 16, 3]])
 
  def testSimpleSavedModelWithNoneBatchSizeInShape(self):
    """Test a SavedModel with None in input tensor's shape."""
    saved_model_dir = self._createSimpleSavedModel(shape=[None, 16, 16, 3])
    _, in_tensors, out_tensors = self._convertSavedModel(saved_model_dir)
 
    self.assertEqual(self._getArrayNames(out_tensors), ["add:0"])
    self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"])
    self.assertEqual(self._getArrayShapes(in_tensors), [[None, 16, 16, 3]])
 
  def testSimpleSavedModelWithInvalidSignatureKey(self):
    """Test a SavedModel that fails due to an invalid signature_key."""
    saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
    with self.assertRaises(ValueError) as error:
      self._convertSavedModel(saved_model_dir, signature_key="invalid-key")
    self.assertEqual(
        "No 'invalid-key' in the SavedModel's SignatureDefs. "
        "Possible values are 'serving_default'.", str(error.exception))
 
  def testSimpleSavedModelWithInvalidOutputArray(self):
    """Test a SavedModel that fails due to invalid output arrays."""
    saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
    with self.assertRaises(ValueError) as error:
      self._convertSavedModel(saved_model_dir, output_arrays=["invalid-output"])
    self.assertEqual("Invalid tensors 'invalid-output' were found.",
                     str(error.exception))
 
  def testSimpleSavedModelWithWrongInputArrays(self):
    """Test a SavedModel that fails due to invalid input arrays."""
    saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
 
    # Check invalid input_arrays.
    with self.assertRaises(ValueError) as error:
      self._convertSavedModel(saved_model_dir, input_arrays=["invalid-input"])
    self.assertEqual("Invalid tensors 'invalid-input' were found.",
                     str(error.exception))
 
    # Check valid and invalid input_arrays.
    with self.assertRaises(ValueError) as error:
      self._convertSavedModel(
          saved_model_dir, input_arrays=["Placeholder", "invalid-input"])
    self.assertEqual("Invalid tensors 'invalid-input' were found.",
                     str(error.exception))
 
  def testSimpleSavedModelWithCorrectArrays(self):
    """Test a SavedModel with correct input_arrays and output_arrays."""
    saved_model_dir = self._createSimpleSavedModel(shape=[None, 16, 16, 3])
    _, in_tensors, out_tensors = self._convertSavedModel(
        saved_model_dir=saved_model_dir,
        input_arrays=["Placeholder"],
        output_arrays=["add"])
 
    self.assertEqual(self._getArrayNames(out_tensors), ["add:0"])
    self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"])
    self.assertEqual(self._getArrayShapes(in_tensors), [[None, 16, 16, 3]])
 
  def testSimpleSavedModelWithCorrectInputArrays(self):
    """Test a SavedModel with correct input_arrays and input_shapes."""
    saved_model_dir = self._createSimpleSavedModel(shape=[1, 16, 16, 3])
    _, in_tensors, out_tensors = self._convertSavedModel(
        saved_model_dir=saved_model_dir,
        input_arrays=["Placeholder"],
        input_shapes={"Placeholder": [1, 16, 16, 3]})
 
    self.assertEqual(self._getArrayNames(out_tensors), ["add:0"])
    self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"])
    self.assertEqual(self._getArrayShapes(in_tensors), [[1, 16, 16, 3]])
 
  def testTwoInputArrays(self):
    """Test a simple SavedModel."""
    saved_model_dir = self._createSavedModelTwoInputArrays(shape=[1, 16, 16, 3])
 
    _, in_tensors, out_tensors = self._convertSavedModel(
        saved_model_dir=saved_model_dir, input_arrays=["inputB", "inputA"])
 
    self.assertEqual(self._getArrayNames(out_tensors), ["add:0"])
    self.assertEqual(self._getArrayNames(in_tensors), ["inputA:0", "inputB:0"])
    self.assertEqual(
        self._getArrayShapes(in_tensors), [[1, 16, 16, 3], [1, 16, 16, 3]])
 
  def testSubsetInputArrays(self):
    """Test a SavedModel with a subset of the input array names of the model."""
    saved_model_dir = self._createSavedModelTwoInputArrays(shape=[1, 16, 16, 3])
 
    # Check case where input shape is given.
    _, in_tensors, out_tensors = self._convertSavedModel(
        saved_model_dir=saved_model_dir,
        input_arrays=["inputA"],
        input_shapes={"inputA": [1, 16, 16, 3]})
 
    self.assertEqual(self._getArrayNames(out_tensors), ["add:0"])
    self.assertEqual(self._getArrayNames(in_tensors), ["inputA:0"])
    self.assertEqual(self._getArrayShapes(in_tensors), [[1, 16, 16, 3]])
 
    # Check case where input shape is None.
    _, in_tensors, out_tensors = self._convertSavedModel(
        saved_model_dir=saved_model_dir, input_arrays=["inputA"])
 
    self.assertEqual(self._getArrayNames(out_tensors), ["add:0"])
    self.assertEqual(self._getArrayNames(in_tensors), ["inputA:0"])
    self.assertEqual(self._getArrayShapes(in_tensors), [[1, 16, 16, 3]])
 
  def testMultipleMetaGraphDef(self):
    """Test saved model with multiple MetaGraphDefs."""
    saved_model_dir = os.path.join(self.get_temp_dir(), "savedmodel_two_mgd")
    builder = saved_model.builder.SavedModelBuilder(saved_model_dir)
    with session.Session(graph=ops.Graph()) as sess:
      # MetaGraphDef 1
      in_tensor = array_ops.placeholder(shape=[1, 28, 28], dtype=dtypes.float32)
      out_tensor = in_tensor + in_tensor
      sig_input_tensor = saved_model.utils.build_tensor_info(in_tensor)
      sig_input_tensor_signature = {"x": sig_input_tensor}
      sig_output_tensor = saved_model.utils.build_tensor_info(out_tensor)
      sig_output_tensor_signature = {"y": sig_output_tensor}
      predict_signature_def = (
          saved_model.signature_def_utils.build_signature_def(
              sig_input_tensor_signature, sig_output_tensor_signature,
              saved_model.signature_constants.PREDICT_METHOD_NAME))
      signature_def_map = {
          saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
              predict_signature_def
      }
      builder.add_meta_graph_and_variables(
          sess,
          tags=[saved_model.tag_constants.SERVING, "additional_test_tag"],
          signature_def_map=signature_def_map)
 
      # MetaGraphDef 2
      builder.add_meta_graph(tags=["tflite"])
      builder.save(True)
 
    # Convert to tflite
    _, in_tensors, out_tensors = self._convertSavedModel(
        saved_model_dir=saved_model_dir,
        tag_set=set([saved_model.tag_constants.SERVING, "additional_test_tag"]))
 
    self.assertEqual(self._getArrayNames(out_tensors), ["add:0"])
    self.assertEqual(self._getArrayNames(in_tensors), ["Placeholder:0"])
    self.assertEqual(self._getArrayShapes(in_tensors), [[1, 28, 28]])
 
 
if __name__ == "__main__":
  test.main()