tzh
2024-08-22 c7d0944258c7d0943aa7b2211498fd612971ce27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
//===--------------------- DispatchStage.cpp --------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file models the dispatch component of an instruction pipeline.
///
/// The DispatchStage is responsible for updating instruction dependencies
/// and communicating to the simulated instruction scheduler that an instruction
/// is ready to be scheduled for execution.
///
//===----------------------------------------------------------------------===//
 
#include "DispatchStage.h"
#include "HWEventListener.h"
#include "Scheduler.h"
#include "llvm/Support/Debug.h"
 
using namespace llvm;
 
#define DEBUG_TYPE "llvm-mca"
 
namespace mca {
 
void DispatchStage::notifyInstructionDispatched(const InstRef &IR,
                                                ArrayRef<unsigned> UsedRegs) {
  LLVM_DEBUG(dbgs() << "[E] Instruction Dispatched: #" << IR << '\n');
  notifyEvent<HWInstructionEvent>(HWInstructionDispatchedEvent(IR, UsedRegs));
}
 
bool DispatchStage::checkPRF(const InstRef &IR) {
  SmallVector<unsigned, 4> RegDefs;
  for (const std::unique_ptr<WriteState> &RegDef :
       IR.getInstruction()->getDefs())
    RegDefs.emplace_back(RegDef->getRegisterID());
 
  const unsigned RegisterMask = PRF.isAvailable(RegDefs);
  // A mask with all zeroes means: register files are available.
  if (RegisterMask) {
    notifyEvent<HWStallEvent>(
        HWStallEvent(HWStallEvent::RegisterFileStall, IR));
    return false;
  }
 
  return true;
}
 
bool DispatchStage::checkRCU(const InstRef &IR) {
  const unsigned NumMicroOps = IR.getInstruction()->getDesc().NumMicroOps;
  if (RCU.isAvailable(NumMicroOps))
    return true;
  notifyEvent<HWStallEvent>(
      HWStallEvent(HWStallEvent::RetireControlUnitStall, IR));
  return false;
}
 
bool DispatchStage::checkScheduler(const InstRef &IR) {
  HWStallEvent::GenericEventType Event;
  const bool Ready = SC.canBeDispatched(IR, Event);
  if (!Ready)
    notifyEvent<HWStallEvent>(HWStallEvent(Event, IR));
  return Ready;
}
 
void DispatchStage::updateRAWDependencies(ReadState &RS,
                                          const MCSubtargetInfo &STI) {
  SmallVector<WriteRef, 4> DependentWrites;
 
  collectWrites(DependentWrites, RS.getRegisterID());
  RS.setDependentWrites(DependentWrites.size());
  // We know that this read depends on all the writes in DependentWrites.
  // For each write, check if we have ReadAdvance information, and use it
  // to figure out in how many cycles this read becomes available.
  const ReadDescriptor &RD = RS.getDescriptor();
  const MCSchedModel &SM = STI.getSchedModel();
  const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
  for (WriteRef &WR : DependentWrites) {
    WriteState &WS = *WR.getWriteState();
    unsigned WriteResID = WS.getWriteResourceID();
    int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
    WS.addUser(&RS, ReadAdvance);
  }
}
 
void DispatchStage::dispatch(InstRef IR) {
  assert(!CarryOver && "Cannot dispatch another instruction!");
  Instruction &IS = *IR.getInstruction();
  const InstrDesc &Desc = IS.getDesc();
  const unsigned NumMicroOps = Desc.NumMicroOps;
  if (NumMicroOps > DispatchWidth) {
    assert(AvailableEntries == DispatchWidth);
    AvailableEntries = 0;
    CarryOver = NumMicroOps - DispatchWidth;
  } else {
    assert(AvailableEntries >= NumMicroOps);
    AvailableEntries -= NumMicroOps;
  }
 
  // A dependency-breaking instruction doesn't have to wait on the register
  // input operands, and it is often optimized at register renaming stage.
  // Update RAW dependencies if this instruction is not a dependency-breaking
  // instruction. A dependency-breaking instruction is a zero-latency
  // instruction that doesn't consume hardware resources.
  // An example of dependency-breaking instruction on X86 is a zero-idiom XOR.
  bool IsDependencyBreaking = IS.isDependencyBreaking();
  for (std::unique_ptr<ReadState> &RS : IS.getUses())
    if (RS->isImplicitRead() || !IsDependencyBreaking)
      updateRAWDependencies(*RS, STI);
 
  // By default, a dependency-breaking zero-latency instruction is expected to
  // be optimized at register renaming stage. That means, no physical register
  // is allocated to the instruction.
  bool ShouldAllocateRegisters =
      !(Desc.isZeroLatency() && IsDependencyBreaking);
  SmallVector<unsigned, 4> RegisterFiles(PRF.getNumRegisterFiles());
  for (std::unique_ptr<WriteState> &WS : IS.getDefs()) {
    PRF.addRegisterWrite(WriteRef(IR.first, WS.get()), RegisterFiles,
                         ShouldAllocateRegisters);
  }
 
  // Reserve slots in the RCU, and notify the instruction that it has been
  // dispatched to the schedulers for execution.
  IS.dispatch(RCU.reserveSlot(IR, NumMicroOps));
 
  // Notify listeners of the "instruction dispatched" event.
  notifyInstructionDispatched(IR, RegisterFiles);
}
 
void DispatchStage::cycleStart() {
  AvailableEntries = CarryOver >= DispatchWidth ? 0 : DispatchWidth - CarryOver;
  CarryOver = CarryOver >= DispatchWidth ? CarryOver - DispatchWidth : 0U;
}
 
bool DispatchStage::execute(InstRef &IR) {
  const InstrDesc &Desc = IR.getInstruction()->getDesc();
  if (!isAvailable(Desc.NumMicroOps) || !canDispatch(IR))
    return false;
  dispatch(IR);
  return true;
}
 
#ifndef NDEBUG
void DispatchStage::dump() const {
  PRF.dump();
  RCU.dump();
}
#endif
} // namespace mca