/*
|
* Copyright 2011 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkGpuDevice.h"
|
|
#include "../private/SkShadowFlags.h"
|
#include "GrBitmapTextureMaker.h"
|
#include "GrBlurUtils.h"
|
#include "GrColorSpaceXform.h"
|
#include "GrContext.h"
|
#include "GrContextPriv.h"
|
#include "GrGpu.h"
|
#include "GrImageTextureMaker.h"
|
#include "GrRenderTargetContextPriv.h"
|
#include "GrShape.h"
|
#include "GrStyle.h"
|
#include "GrSurfaceProxyPriv.h"
|
#include "GrTextureAdjuster.h"
|
#include "GrTextureProxy.h"
|
#include "GrTracing.h"
|
#include "SkCanvasPriv.h"
|
#include "SkDraw.h"
|
#include "SkGr.h"
|
#include "SkImageFilter.h"
|
#include "SkImageFilterCache.h"
|
#include "SkImageInfoPriv.h"
|
#include "SkImage_Base.h"
|
#include "SkLatticeIter.h"
|
#include "SkMakeUnique.h"
|
#include "SkMaskFilterBase.h"
|
#include "SkPathEffect.h"
|
#include "SkPicture.h"
|
#include "SkPictureData.h"
|
#include "SkRRectPriv.h"
|
#include "SkRasterClip.h"
|
#include "SkReadPixelsRec.h"
|
#include "SkRecord.h"
|
#include "SkSpecialImage.h"
|
#include "SkStroke.h"
|
#include "SkSurface.h"
|
#include "SkSurface_Gpu.h"
|
#include "SkTLazy.h"
|
#include "SkTo.h"
|
#include "SkUTF.h"
|
#include "SkVertState.h"
|
#include "SkVertices.h"
|
#include "SkWritePixelsRec.h"
|
#include "SkYUVAIndex.h"
|
#include "effects/GrBicubicEffect.h"
|
#include "effects/GrSimpleTextureEffect.h"
|
#include "effects/GrTextureDomain.h"
|
#include "text/GrTextTarget.h"
|
|
#define ASSERT_SINGLE_OWNER \
|
SkDEBUGCODE(GrSingleOwner::AutoEnforce debug_SingleOwner(fContext->contextPriv().debugSingleOwner());)
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
/** Checks that the alpha type is legal and gets constructor flags. Returns false if device creation
|
should fail. */
|
bool SkGpuDevice::CheckAlphaTypeAndGetFlags(
|
const SkImageInfo* info, SkGpuDevice::InitContents init, unsigned* flags) {
|
*flags = 0;
|
if (info) {
|
switch (info->alphaType()) {
|
case kPremul_SkAlphaType:
|
break;
|
case kOpaque_SkAlphaType:
|
*flags |= SkGpuDevice::kIsOpaque_Flag;
|
break;
|
default: // If it is unpremul or unknown don't try to render
|
return false;
|
}
|
}
|
if (kClear_InitContents == init) {
|
*flags |= kNeedClear_Flag;
|
}
|
return true;
|
}
|
|
sk_sp<SkGpuDevice> SkGpuDevice::Make(GrContext* context,
|
sk_sp<GrRenderTargetContext> renderTargetContext,
|
int width, int height,
|
InitContents init) {
|
if (!renderTargetContext || renderTargetContext->wasAbandoned()) {
|
return nullptr;
|
}
|
unsigned flags;
|
if (!CheckAlphaTypeAndGetFlags(nullptr, init, &flags)) {
|
return nullptr;
|
}
|
return sk_sp<SkGpuDevice>(new SkGpuDevice(context, std::move(renderTargetContext),
|
width, height, flags));
|
}
|
|
sk_sp<SkGpuDevice> SkGpuDevice::Make(GrContext* context, SkBudgeted budgeted,
|
const SkImageInfo& info, int sampleCount,
|
GrSurfaceOrigin origin, const SkSurfaceProps* props,
|
GrMipMapped mipMapped, InitContents init) {
|
unsigned flags;
|
if (!CheckAlphaTypeAndGetFlags(&info, init, &flags)) {
|
return nullptr;
|
}
|
|
sk_sp<GrRenderTargetContext> renderTargetContext(MakeRenderTargetContext(context, budgeted,
|
info, sampleCount,
|
origin, props,
|
mipMapped));
|
if (!renderTargetContext) {
|
return nullptr;
|
}
|
|
return sk_sp<SkGpuDevice>(new SkGpuDevice(context, std::move(renderTargetContext),
|
info.width(), info.height(), flags));
|
}
|
|
static SkImageInfo make_info(GrRenderTargetContext* context, int w, int h, bool opaque) {
|
SkColorType colorType;
|
if (!GrPixelConfigToColorType(context->colorSpaceInfo().config(), &colorType)) {
|
colorType = kUnknown_SkColorType;
|
}
|
return SkImageInfo::Make(w, h, colorType, opaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType,
|
context->colorSpaceInfo().refColorSpace());
|
}
|
|
SkGpuDevice::SkGpuDevice(GrContext* context, sk_sp<GrRenderTargetContext> renderTargetContext,
|
int width, int height, unsigned flags)
|
: INHERITED(make_info(renderTargetContext.get(), width, height,
|
SkToBool(flags & kIsOpaque_Flag)), renderTargetContext->surfaceProps())
|
, fContext(SkRef(context))
|
, fRenderTargetContext(std::move(renderTargetContext))
|
{
|
fSize.set(width, height);
|
|
if (flags & kNeedClear_Flag) {
|
this->clearAll();
|
}
|
}
|
|
sk_sp<GrRenderTargetContext> SkGpuDevice::MakeRenderTargetContext(
|
GrContext* context,
|
SkBudgeted budgeted,
|
const SkImageInfo& origInfo,
|
int sampleCount,
|
GrSurfaceOrigin origin,
|
const SkSurfaceProps* surfaceProps,
|
GrMipMapped mipMapped) {
|
if (kUnknown_SkColorType == origInfo.colorType() ||
|
origInfo.width() < 0 || origInfo.height() < 0) {
|
return nullptr;
|
}
|
|
if (!context) {
|
return nullptr;
|
}
|
|
GrPixelConfig config = SkImageInfo2GrPixelConfig(origInfo);
|
if (kUnknown_GrPixelConfig == config) {
|
return nullptr;
|
}
|
GrBackendFormat format =
|
context->contextPriv().caps()->getBackendFormatFromColorType(origInfo.colorType());
|
// This method is used to create SkGpuDevice's for SkSurface_Gpus. In this case
|
// they need to be exact.
|
return context->contextPriv().makeDeferredRenderTargetContext(
|
format, SkBackingFit::kExact,
|
origInfo.width(), origInfo.height(),
|
config, origInfo.refColorSpace(), sampleCount,
|
mipMapped, origin, surfaceProps, budgeted);
|
}
|
|
sk_sp<SkSpecialImage> SkGpuDevice::filterTexture(SkSpecialImage* srcImg,
|
int left, int top,
|
SkIPoint* offset,
|
const SkImageFilter* filter) {
|
SkASSERT(srcImg->isTextureBacked());
|
SkASSERT(filter);
|
|
SkMatrix matrix = this->ctm();
|
matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top));
|
const SkIRect clipBounds = this->devClipBounds().makeOffset(-left, -top);
|
sk_sp<SkImageFilterCache> cache(this->getImageFilterCache());
|
SkColorType colorType;
|
if (!GrPixelConfigToColorType(fRenderTargetContext->colorSpaceInfo().config(), &colorType)) {
|
colorType = kN32_SkColorType;
|
}
|
SkImageFilter::OutputProperties outputProperties(
|
colorType, fRenderTargetContext->colorSpaceInfo().colorSpace());
|
SkImageFilter::Context ctx(matrix, clipBounds, cache.get(), outputProperties);
|
|
return filter->filterImage(srcImg, ctx, offset);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
bool SkGpuDevice::onReadPixels(const SkPixmap& pm, int x, int y) {
|
ASSERT_SINGLE_OWNER
|
|
if (!SkImageInfoValidConversion(pm.info(), this->imageInfo())) {
|
return false;
|
}
|
|
SkReadPixelsRec rec(pm, x, y);
|
if (!rec.trim(this->width(), this->height())) {
|
return false;
|
}
|
|
return fRenderTargetContext->readPixels(rec.fInfo, rec.fPixels, rec.fRowBytes, rec.fX, rec.fY);
|
}
|
|
bool SkGpuDevice::onWritePixels(const SkPixmap& pm, int x, int y) {
|
ASSERT_SINGLE_OWNER
|
|
if (!SkImageInfoValidConversion(this->imageInfo(), pm.info())) {
|
return false;
|
}
|
|
SkWritePixelsRec rec(pm, x, y);
|
if (!rec.trim(this->width(), this->height())) {
|
return false;
|
}
|
|
return fRenderTargetContext->writePixels(rec.fInfo, rec.fPixels, rec.fRowBytes, rec.fX, rec.fY);
|
}
|
|
bool SkGpuDevice::onAccessPixels(SkPixmap* pmap) {
|
ASSERT_SINGLE_OWNER
|
return false;
|
}
|
|
GrRenderTargetContext* SkGpuDevice::accessRenderTargetContext() {
|
ASSERT_SINGLE_OWNER
|
return fRenderTargetContext.get();
|
}
|
|
void SkGpuDevice::clearAll() {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "clearAll", fContext.get());
|
|
SkIRect rect = SkIRect::MakeWH(this->width(), this->height());
|
fRenderTargetContext->clear(&rect, SK_PMColor4fTRANSPARENT,
|
GrRenderTargetContext::CanClearFullscreen::kYes);
|
}
|
|
void SkGpuDevice::replaceRenderTargetContext(bool shouldRetainContent) {
|
ASSERT_SINGLE_OWNER
|
|
SkBudgeted budgeted = fRenderTargetContext->priv().isBudgeted();
|
|
// This entry point is used by SkSurface_Gpu::onCopyOnWrite so it must create a
|
// kExact-backed render target context.
|
sk_sp<GrRenderTargetContext> newRTC(MakeRenderTargetContext(
|
this->context(),
|
budgeted,
|
this->imageInfo(),
|
fRenderTargetContext->numColorSamples(),
|
fRenderTargetContext->origin(),
|
&this->surfaceProps(),
|
fRenderTargetContext->mipMapped()));
|
if (!newRTC) {
|
return;
|
}
|
SkASSERT(newRTC->asSurfaceProxy()->priv().isExact());
|
|
if (shouldRetainContent) {
|
if (fRenderTargetContext->wasAbandoned()) {
|
return;
|
}
|
newRTC->copy(fRenderTargetContext->asSurfaceProxy());
|
}
|
|
fRenderTargetContext = newRTC;
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkGpuDevice::drawPaint(const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPaint", fContext.get());
|
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
|
fRenderTargetContext->drawPaint(this->clip(), std::move(grPaint), this->ctm());
|
}
|
|
static inline GrPrimitiveType point_mode_to_primitive_type(SkCanvas::PointMode mode) {
|
switch (mode) {
|
case SkCanvas::kPoints_PointMode:
|
return GrPrimitiveType::kPoints;
|
case SkCanvas::kLines_PointMode:
|
return GrPrimitiveType::kLines;
|
case SkCanvas::kPolygon_PointMode:
|
return GrPrimitiveType::kLineStrip;
|
}
|
SK_ABORT("Unexpected mode");
|
return GrPrimitiveType::kPoints;
|
}
|
|
void SkGpuDevice::drawPoints(SkCanvas::PointMode mode,
|
size_t count, const SkPoint pts[], const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPoints", fContext.get());
|
SkScalar width = paint.getStrokeWidth();
|
if (width < 0) {
|
return;
|
}
|
|
if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) {
|
GrStyle style(paint, SkPaint::kStroke_Style);
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
SkPath path;
|
path.setIsVolatile(true);
|
path.moveTo(pts[0]);
|
path.lineTo(pts[1]);
|
fRenderTargetContext->drawPath(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()),
|
this->ctm(), path, style);
|
return;
|
}
|
|
SkScalar scales[2];
|
bool isHairline = (0 == width) || (1 == width && this->ctm().getMinMaxScales(scales) &&
|
SkScalarNearlyEqual(scales[0], 1.f) &&
|
SkScalarNearlyEqual(scales[1], 1.f));
|
// we only handle non-antialiased hairlines and paints without path effects or mask filters,
|
// else we let the SkDraw call our drawPath()
|
if (!isHairline || paint.getPathEffect() || paint.getMaskFilter() || paint.isAntiAlias()) {
|
SkRasterClip rc(this->devClipBounds());
|
SkDraw draw;
|
draw.fDst = SkPixmap(SkImageInfo::MakeUnknown(this->width(), this->height()), nullptr, 0);
|
draw.fMatrix = &this->ctm();
|
draw.fRC = &rc;
|
draw.drawPoints(mode, count, pts, paint, this);
|
return;
|
}
|
|
GrPrimitiveType primitiveType = point_mode_to_primitive_type(mode);
|
|
const SkMatrix* viewMatrix = &this->ctm();
|
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
|
// This offsetting in device space matches the expectations of the Android framework for non-AA
|
// points and lines.
|
SkMatrix tempMatrix;
|
if (GrIsPrimTypeLines(primitiveType) || GrPrimitiveType::kPoints == primitiveType) {
|
tempMatrix = *viewMatrix;
|
static const SkScalar kOffset = 0.063f; // Just greater than 1/16.
|
tempMatrix.postTranslate(kOffset, kOffset);
|
viewMatrix = &tempMatrix;
|
}
|
#endif
|
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
*viewMatrix, &grPaint)) {
|
return;
|
}
|
|
static constexpr SkVertices::VertexMode kIgnoredMode = SkVertices::kTriangles_VertexMode;
|
sk_sp<SkVertices> vertices = SkVertices::MakeCopy(kIgnoredMode, SkToS32(count), pts, nullptr,
|
nullptr);
|
|
fRenderTargetContext->drawVertices(this->clip(), std::move(grPaint), *viewMatrix,
|
std::move(vertices), nullptr, 0, &primitiveType);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkGpuDevice::drawRect(const SkRect& rect, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawRect", fContext.get());
|
|
GrStyle style(paint);
|
|
// A couple reasons we might need to call drawPath.
|
if (paint.getMaskFilter() || paint.getPathEffect()) {
|
GrShape shape(rect, style);
|
|
GrBlurUtils::drawShapeWithMaskFilter(fContext.get(), fRenderTargetContext.get(),
|
this->clip(), paint, this->ctm(), shape);
|
return;
|
}
|
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
|
fRenderTargetContext->drawRect(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()),
|
this->ctm(), rect, &style);
|
}
|
|
void SkGpuDevice::drawEdgeAARect(const SkRect& r, SkCanvas::QuadAAFlags aa, SkColor color,
|
SkBlendMode mode) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawEdgeAARect", fContext.get());
|
|
SkPMColor4f dstColor = SkColor4fPrepForDst(SkColor4f::FromColor(color),
|
fRenderTargetContext->colorSpaceInfo(),
|
*fContext->contextPriv().caps())
|
.premul();
|
|
GrPaint grPaint;
|
grPaint.setColor4f(dstColor);
|
if (mode != SkBlendMode::kSrcOver) {
|
grPaint.setXPFactory(SkBlendMode_AsXPFactory(mode));
|
}
|
|
fRenderTargetContext->fillRectWithEdgeAA(this->clip(), std::move(grPaint),
|
SkToGrQuadAAFlags(aa), this->ctm(), r);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkGpuDevice::drawRRect(const SkRRect& rrect, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawRRect", fContext.get());
|
|
SkMaskFilterBase* mf = as_MFB(paint.getMaskFilter());
|
if (mf) {
|
if (mf->hasFragmentProcessor()) {
|
mf = nullptr; // already handled in SkPaintToGrPaint
|
}
|
}
|
|
GrStyle style(paint);
|
|
if (mf || style.pathEffect()) {
|
// A path effect will presumably transform this rrect into something else.
|
GrShape shape(rrect, style);
|
|
GrBlurUtils::drawShapeWithMaskFilter(fContext.get(), fRenderTargetContext.get(),
|
this->clip(), paint, this->ctm(), shape);
|
return;
|
}
|
|
SkASSERT(!style.pathEffect());
|
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
|
fRenderTargetContext->drawRRect(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()),
|
this->ctm(), rrect, style);
|
}
|
|
|
void SkGpuDevice::drawDRRect(const SkRRect& outer, const SkRRect& inner, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawDRRect", fContext.get());
|
if (outer.isEmpty()) {
|
return;
|
}
|
|
if (inner.isEmpty()) {
|
return this->drawRRect(outer, paint);
|
}
|
|
SkStrokeRec stroke(paint);
|
|
if (stroke.isFillStyle() && !paint.getMaskFilter() && !paint.getPathEffect()) {
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
|
fRenderTargetContext->drawDRRect(this->clip(), std::move(grPaint),
|
GrAA(paint.isAntiAlias()), this->ctm(), outer, inner);
|
return;
|
}
|
|
SkPath path;
|
path.setIsVolatile(true);
|
path.addRRect(outer);
|
path.addRRect(inner);
|
path.setFillType(SkPath::kEvenOdd_FillType);
|
|
// TODO: We are losing the possible mutability of the path here but this should probably be
|
// fixed by upgrading GrShape to handle DRRects.
|
GrShape shape(path, paint);
|
|
GrBlurUtils::drawShapeWithMaskFilter(fContext.get(), fRenderTargetContext.get(), this->clip(),
|
paint, this->ctm(), shape);
|
}
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
void SkGpuDevice::drawRegion(const SkRegion& region, const SkPaint& paint) {
|
if (paint.getMaskFilter()) {
|
SkPath path;
|
region.getBoundaryPath(&path);
|
path.setIsVolatile(true);
|
return this->drawPath(path, paint, true);
|
}
|
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
|
fRenderTargetContext->drawRegion(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()),
|
this->ctm(), region, GrStyle(paint));
|
}
|
|
void SkGpuDevice::drawOval(const SkRect& oval, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawOval", fContext.get());
|
|
if (paint.getMaskFilter()) {
|
// The RRect path can handle special case blurring
|
SkRRect rr = SkRRect::MakeOval(oval);
|
return this->drawRRect(rr, paint);
|
}
|
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
|
fRenderTargetContext->drawOval(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()),
|
this->ctm(), oval, GrStyle(paint));
|
}
|
|
void SkGpuDevice::drawArc(const SkRect& oval, SkScalar startAngle,
|
SkScalar sweepAngle, bool useCenter, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawArc", fContext.get());
|
if (paint.getMaskFilter()) {
|
this->INHERITED::drawArc(oval, startAngle, sweepAngle, useCenter, paint);
|
return;
|
}
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
|
fRenderTargetContext->drawArc(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()),
|
this->ctm(), oval, startAngle, sweepAngle, useCenter,
|
GrStyle(paint));
|
}
|
|
#include "SkMaskFilter.h"
|
|
///////////////////////////////////////////////////////////////////////////////
|
void SkGpuDevice::drawStrokedLine(const SkPoint points[2],
|
const SkPaint& origPaint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawStrokedLine", fContext.get());
|
// Adding support for round capping would require a
|
// GrRenderTargetContext::fillRRectWithLocalMatrix entry point
|
SkASSERT(SkPaint::kRound_Cap != origPaint.getStrokeCap());
|
SkASSERT(SkPaint::kStroke_Style == origPaint.getStyle());
|
SkASSERT(!origPaint.getPathEffect());
|
SkASSERT(!origPaint.getMaskFilter());
|
|
const SkScalar halfWidth = 0.5f * origPaint.getStrokeWidth();
|
SkASSERT(halfWidth > 0);
|
|
SkVector v = points[1] - points[0];
|
|
SkScalar length = SkPoint::Normalize(&v);
|
if (!length) {
|
v.fX = 1.0f;
|
v.fY = 0.0f;
|
}
|
|
SkPaint newPaint(origPaint);
|
newPaint.setStyle(SkPaint::kFill_Style);
|
|
SkScalar xtraLength = 0.0f;
|
if (SkPaint::kButt_Cap != origPaint.getStrokeCap()) {
|
xtraLength = halfWidth;
|
}
|
|
SkPoint mid = points[0] + points[1];
|
mid.scale(0.5f);
|
|
SkRect rect = SkRect::MakeLTRB(mid.fX-halfWidth, mid.fY - 0.5f*length - xtraLength,
|
mid.fX+halfWidth, mid.fY + 0.5f*length + xtraLength);
|
SkMatrix m;
|
m.setSinCos(v.fX, -v.fY, mid.fX, mid.fY);
|
|
SkMatrix local = m;
|
|
m.postConcat(this->ctm());
|
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), newPaint, m,
|
&grPaint)) {
|
return;
|
}
|
|
fRenderTargetContext->fillRectWithLocalMatrix(
|
this->clip(), std::move(grPaint), GrAA(newPaint.isAntiAlias()), m, rect, local);
|
}
|
|
void SkGpuDevice::drawPath(const SkPath& origSrcPath, const SkPaint& paint, bool pathIsMutable) {
|
ASSERT_SINGLE_OWNER
|
if (!origSrcPath.isInverseFillType() && !paint.getPathEffect()) {
|
SkPoint points[2];
|
if (SkPaint::kStroke_Style == paint.getStyle() && paint.getStrokeWidth() > 0 &&
|
!paint.getMaskFilter() && SkPaint::kRound_Cap != paint.getStrokeCap() &&
|
this->ctm().preservesRightAngles() && origSrcPath.isLine(points)) {
|
// Path-based stroking looks better for thin rects
|
SkScalar strokeWidth = this->ctm().getMaxScale() * paint.getStrokeWidth();
|
if (strokeWidth >= 1.0f) {
|
// Round capping support is currently disabled b.c. it would require a RRect
|
// GrDrawOp that takes a localMatrix.
|
this->drawStrokedLine(points, paint);
|
return;
|
}
|
}
|
}
|
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawPath", fContext.get());
|
if (!paint.getMaskFilter()) {
|
GrPaint grPaint;
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
fRenderTargetContext->drawPath(this->clip(), std::move(grPaint), GrAA(paint.isAntiAlias()),
|
this->ctm(), origSrcPath, GrStyle(paint));
|
return;
|
}
|
|
// TODO: losing possible mutability of 'origSrcPath' here
|
GrShape shape(origSrcPath, paint);
|
|
GrBlurUtils::drawShapeWithMaskFilter(fContext.get(), fRenderTargetContext.get(), this->clip(),
|
paint, this->ctm(), shape);
|
}
|
|
static const int kBmpSmallTileSize = 1 << 10;
|
|
static inline int get_tile_count(const SkIRect& srcRect, int tileSize) {
|
int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1;
|
int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1;
|
return tilesX * tilesY;
|
}
|
|
static int determine_tile_size(const SkIRect& src, int maxTileSize) {
|
if (maxTileSize <= kBmpSmallTileSize) {
|
return maxTileSize;
|
}
|
|
size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize);
|
size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize);
|
|
maxTileTotalTileSize *= maxTileSize * maxTileSize;
|
smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize;
|
|
if (maxTileTotalTileSize > 2 * smallTotalTileSize) {
|
return kBmpSmallTileSize;
|
} else {
|
return maxTileSize;
|
}
|
}
|
|
// Given a bitmap, an optional src rect, and a context with a clip and matrix determine what
|
// pixels from the bitmap are necessary.
|
static void determine_clipped_src_rect(int width, int height,
|
const GrClip& clip,
|
const SkMatrix& viewMatrix,
|
const SkMatrix& srcToDstRect,
|
const SkISize& imageSize,
|
const SkRect* srcRectPtr,
|
SkIRect* clippedSrcIRect) {
|
clip.getConservativeBounds(width, height, clippedSrcIRect, nullptr);
|
SkMatrix inv = SkMatrix::Concat(viewMatrix, srcToDstRect);
|
if (!inv.invert(&inv)) {
|
clippedSrcIRect->setEmpty();
|
return;
|
}
|
SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect);
|
inv.mapRect(&clippedSrcRect);
|
if (srcRectPtr) {
|
if (!clippedSrcRect.intersect(*srcRectPtr)) {
|
clippedSrcIRect->setEmpty();
|
return;
|
}
|
}
|
clippedSrcRect.roundOut(clippedSrcIRect);
|
SkIRect bmpBounds = SkIRect::MakeSize(imageSize);
|
if (!clippedSrcIRect->intersect(bmpBounds)) {
|
clippedSrcIRect->setEmpty();
|
}
|
}
|
|
bool SkGpuDevice::shouldTileImageID(uint32_t imageID,
|
const SkIRect& imageRect,
|
const SkMatrix& viewMatrix,
|
const SkMatrix& srcToDstRect,
|
const GrSamplerState& params,
|
const SkRect* srcRectPtr,
|
int maxTileSize,
|
int* tileSize,
|
SkIRect* clippedSubset) const {
|
ASSERT_SINGLE_OWNER
|
// if it's larger than the max tile size, then we have no choice but tiling.
|
if (imageRect.width() > maxTileSize || imageRect.height() > maxTileSize) {
|
determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(),
|
this->clip(), viewMatrix, srcToDstRect, imageRect.size(),
|
srcRectPtr, clippedSubset);
|
*tileSize = determine_tile_size(*clippedSubset, maxTileSize);
|
return true;
|
}
|
|
// If the image would only produce 4 tiles of the smaller size, don't bother tiling it.
|
const size_t area = imageRect.width() * imageRect.height();
|
if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) {
|
return false;
|
}
|
|
// At this point we know we could do the draw by uploading the entire bitmap
|
// as a texture. However, if the texture would be large compared to the
|
// cache size and we don't require most of it for this draw then tile to
|
// reduce the amount of upload and cache spill.
|
|
// assumption here is that sw bitmap size is a good proxy for its size as
|
// a texture
|
size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels
|
size_t cacheSize;
|
fContext->getResourceCacheLimits(nullptr, &cacheSize);
|
if (bmpSize < cacheSize / 2) {
|
return false;
|
}
|
|
// Figure out how much of the src we will need based on the src rect and clipping. Reject if
|
// tiling memory savings would be < 50%.
|
determine_clipped_src_rect(fRenderTargetContext->width(), fRenderTargetContext->height(),
|
this->clip(), viewMatrix, srcToDstRect, imageRect.size(), srcRectPtr,
|
clippedSubset);
|
*tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile.
|
size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) *
|
kBmpSmallTileSize * kBmpSmallTileSize *
|
sizeof(SkPMColor); // assume 32bit pixels;
|
|
return usedTileBytes * 2 < bmpSize;
|
}
|
|
bool SkGpuDevice::shouldTileImage(const SkImage* image, const SkRect* srcRectPtr,
|
SkCanvas::SrcRectConstraint constraint, SkFilterQuality quality,
|
const SkMatrix& viewMatrix,
|
const SkMatrix& srcToDstRect) const {
|
ASSERT_SINGLE_OWNER
|
// If image is explicitly texture backed then we shouldn't get here.
|
SkASSERT(!image->isTextureBacked());
|
|
GrSamplerState samplerState;
|
bool doBicubic;
|
GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode(
|
quality, viewMatrix, srcToDstRect, fContext->contextPriv().sharpenMipmappedTextures(),
|
&doBicubic);
|
|
int tileFilterPad;
|
if (doBicubic) {
|
tileFilterPad = GrBicubicEffect::kFilterTexelPad;
|
} else if (GrSamplerState::Filter::kNearest == textureFilterMode) {
|
tileFilterPad = 0;
|
} else {
|
tileFilterPad = 1;
|
}
|
samplerState.setFilterMode(textureFilterMode);
|
|
int maxTileSize = this->caps()->maxTileSize() - 2 * tileFilterPad;
|
|
// these are output, which we safely ignore, as we just want to know the predicate
|
int outTileSize;
|
SkIRect outClippedSrcRect;
|
|
return this->shouldTileImageID(image->unique(), image->bounds(), viewMatrix, srcToDstRect,
|
samplerState, srcRectPtr, maxTileSize, &outTileSize,
|
&outClippedSrcRect);
|
}
|
|
void SkGpuDevice::drawBitmap(const SkBitmap& bitmap,
|
SkScalar x,
|
SkScalar y,
|
const SkPaint& paint) {
|
SkMatrix m = SkMatrix::MakeTrans(x, y);
|
ASSERT_SINGLE_OWNER
|
SkMatrix viewMatrix;
|
viewMatrix.setConcat(this->ctm(), m);
|
|
int maxTileSize = this->caps()->maxTileSize();
|
|
// The tile code path doesn't currently support AA, so if the paint asked for aa and we could
|
// draw untiled, then we bypass checking for tiling purely for optimization reasons.
|
bool drawAA = GrFSAAType::kUnifiedMSAA != fRenderTargetContext->fsaaType() &&
|
paint.isAntiAlias() && bitmap.width() <= maxTileSize &&
|
bitmap.height() <= maxTileSize;
|
|
bool skipTileCheck = drawAA || paint.getMaskFilter();
|
|
if (!skipTileCheck) {
|
SkRect srcRect = SkRect::MakeIWH(bitmap.width(), bitmap.height());
|
int tileSize;
|
SkIRect clippedSrcRect;
|
|
GrSamplerState samplerState;
|
bool doBicubic;
|
GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode(
|
paint.getFilterQuality(), viewMatrix, SkMatrix::I(),
|
fContext->contextPriv().sharpenMipmappedTextures(), &doBicubic);
|
|
int tileFilterPad;
|
|
if (doBicubic) {
|
tileFilterPad = GrBicubicEffect::kFilterTexelPad;
|
} else if (GrSamplerState::Filter::kNearest == textureFilterMode) {
|
tileFilterPad = 0;
|
} else {
|
tileFilterPad = 1;
|
}
|
samplerState.setFilterMode(textureFilterMode);
|
|
int maxTileSizeForFilter = this->caps()->maxTileSize() - 2 * tileFilterPad;
|
if (this->shouldTileImageID(bitmap.getGenerationID(), bitmap.getSubset(), viewMatrix,
|
SkMatrix::I(), samplerState, &srcRect, maxTileSizeForFilter,
|
&tileSize, &clippedSrcRect)) {
|
this->drawTiledBitmap(bitmap, viewMatrix, SkMatrix::I(), srcRect, clippedSrcRect,
|
samplerState, paint, SkCanvas::kStrict_SrcRectConstraint,
|
tileSize, doBicubic);
|
return;
|
}
|
}
|
GrBitmapTextureMaker maker(fContext.get(), bitmap);
|
this->drawTextureProducer(&maker, nullptr, nullptr, SkCanvas::kStrict_SrcRectConstraint,
|
viewMatrix, paint, true);
|
}
|
|
// This method outsets 'iRect' by 'outset' all around and then clamps its extents to
|
// 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner
|
// of 'iRect' for all possible outsets/clamps.
|
static inline void clamped_outset_with_offset(SkIRect* iRect,
|
int outset,
|
SkPoint* offset,
|
const SkIRect& clamp) {
|
iRect->outset(outset, outset);
|
|
int leftClampDelta = clamp.fLeft - iRect->fLeft;
|
if (leftClampDelta > 0) {
|
offset->fX -= outset - leftClampDelta;
|
iRect->fLeft = clamp.fLeft;
|
} else {
|
offset->fX -= outset;
|
}
|
|
int topClampDelta = clamp.fTop - iRect->fTop;
|
if (topClampDelta > 0) {
|
offset->fY -= outset - topClampDelta;
|
iRect->fTop = clamp.fTop;
|
} else {
|
offset->fY -= outset;
|
}
|
|
if (iRect->fRight > clamp.fRight) {
|
iRect->fRight = clamp.fRight;
|
}
|
if (iRect->fBottom > clamp.fBottom) {
|
iRect->fBottom = clamp.fBottom;
|
}
|
}
|
|
// Break 'bitmap' into several tiles to draw it since it has already
|
// been determined to be too large to fit in VRAM
|
void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap,
|
const SkMatrix& viewMatrix,
|
const SkMatrix& dstMatrix,
|
const SkRect& srcRect,
|
const SkIRect& clippedSrcIRect,
|
const GrSamplerState& params,
|
const SkPaint& origPaint,
|
SkCanvas::SrcRectConstraint constraint,
|
int tileSize,
|
bool bicubic) {
|
ASSERT_SINGLE_OWNER
|
|
// This is the funnel for all paths that draw tiled bitmaps/images. Log histogram entries.
|
SK_HISTOGRAM_BOOLEAN("DrawTiled", true);
|
LogDrawScaleFactor(viewMatrix, origPaint.getFilterQuality());
|
|
const SkPaint* paint = &origPaint;
|
SkPaint tempPaint;
|
if (origPaint.isAntiAlias() && GrFSAAType::kUnifiedMSAA != fRenderTargetContext->fsaaType()) {
|
// Drop antialiasing to avoid seams at tile boundaries.
|
tempPaint = origPaint;
|
tempPaint.setAntiAlias(false);
|
paint = &tempPaint;
|
}
|
SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect);
|
|
int nx = bitmap.width() / tileSize;
|
int ny = bitmap.height() / tileSize;
|
for (int x = 0; x <= nx; x++) {
|
for (int y = 0; y <= ny; y++) {
|
SkRect tileR;
|
tileR.set(SkIntToScalar(x * tileSize),
|
SkIntToScalar(y * tileSize),
|
SkIntToScalar((x + 1) * tileSize),
|
SkIntToScalar((y + 1) * tileSize));
|
|
if (!SkRect::Intersects(tileR, clippedSrcRect)) {
|
continue;
|
}
|
|
if (!tileR.intersect(srcRect)) {
|
continue;
|
}
|
|
SkIRect iTileR;
|
tileR.roundOut(&iTileR);
|
SkVector offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft),
|
SkIntToScalar(iTileR.fTop));
|
SkRect rectToDraw = tileR;
|
dstMatrix.mapRect(&rectToDraw);
|
if (GrSamplerState::Filter::kNearest != params.filter() || bicubic) {
|
SkIRect iClampRect;
|
|
if (SkCanvas::kFast_SrcRectConstraint == constraint) {
|
// In bleed mode we want to always expand the tile on all edges
|
// but stay within the bitmap bounds
|
iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height());
|
} else {
|
// In texture-domain/clamp mode we only want to expand the
|
// tile on edges interior to "srcRect" (i.e., we want to
|
// not bleed across the original clamped edges)
|
srcRect.roundOut(&iClampRect);
|
}
|
int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1;
|
clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect);
|
}
|
|
SkBitmap tmpB;
|
if (bitmap.extractSubset(&tmpB, iTileR)) {
|
// now offset it to make it "local" to our tmp bitmap
|
tileR.offset(-offset.fX, -offset.fY);
|
// de-optimized this determination
|
bool needsTextureDomain = true;
|
this->drawBitmapTile(tmpB,
|
viewMatrix,
|
rectToDraw,
|
tileR,
|
params,
|
*paint,
|
constraint,
|
bicubic,
|
needsTextureDomain);
|
}
|
}
|
}
|
}
|
|
void SkGpuDevice::drawBitmapTile(const SkBitmap& bitmap,
|
const SkMatrix& viewMatrix,
|
const SkRect& dstRect,
|
const SkRect& srcRect,
|
const GrSamplerState& samplerState,
|
const SkPaint& paint,
|
SkCanvas::SrcRectConstraint constraint,
|
bool bicubic,
|
bool needsTextureDomain) {
|
// We should have already handled bitmaps larger than the max texture size.
|
SkASSERT(bitmap.width() <= this->caps()->maxTextureSize() &&
|
bitmap.height() <= this->caps()->maxTextureSize());
|
// We should be respecting the max tile size by the time we get here.
|
SkASSERT(bitmap.width() <= this->caps()->maxTileSize() &&
|
bitmap.height() <= this->caps()->maxTileSize());
|
SkASSERT(!samplerState.isRepeated());
|
|
SkScalar scales[2] = {1.f, 1.f};
|
sk_sp<GrTextureProxy> proxy =
|
GrRefCachedBitmapTextureProxy(fContext.get(), bitmap, samplerState, scales);
|
if (!proxy) {
|
return;
|
}
|
|
// Compute a matrix that maps the rect we will draw to the src rect.
|
SkMatrix texMatrix = SkMatrix::MakeRectToRect(dstRect, srcRect, SkMatrix::kFill_ScaleToFit);
|
texMatrix.postScale(scales[0], scales[1]);
|
|
// Construct a GrPaint by setting the bitmap texture as the first effect and then configuring
|
// the rest from the SkPaint.
|
std::unique_ptr<GrFragmentProcessor> fp;
|
|
if (needsTextureDomain && (SkCanvas::kStrict_SrcRectConstraint == constraint)) {
|
// Use a constrained texture domain to avoid color bleeding
|
SkRect domain;
|
if (srcRect.width() > SK_Scalar1) {
|
domain.fLeft = srcRect.fLeft + 0.5f;
|
domain.fRight = srcRect.fRight - 0.5f;
|
} else {
|
domain.fLeft = domain.fRight = srcRect.centerX();
|
}
|
if (srcRect.height() > SK_Scalar1) {
|
domain.fTop = srcRect.fTop + 0.5f;
|
domain.fBottom = srcRect.fBottom - 0.5f;
|
} else {
|
domain.fTop = domain.fBottom = srcRect.centerY();
|
}
|
if (bicubic) {
|
fp = GrBicubicEffect::Make(std::move(proxy), texMatrix, domain);
|
} else {
|
fp = GrTextureDomainEffect::Make(std::move(proxy), texMatrix, domain,
|
GrTextureDomain::kClamp_Mode, samplerState.filter());
|
}
|
} else if (bicubic) {
|
SkASSERT(GrSamplerState::Filter::kNearest == samplerState.filter());
|
GrSamplerState::WrapMode wrapMode[2] = {samplerState.wrapModeX(), samplerState.wrapModeY()};
|
fp = GrBicubicEffect::Make(std::move(proxy), texMatrix, wrapMode);
|
} else {
|
fp = GrSimpleTextureEffect::Make(std::move(proxy), texMatrix, samplerState);
|
}
|
|
fp = GrColorSpaceXformEffect::Make(std::move(fp), bitmap.colorSpace(), bitmap.alphaType(),
|
fRenderTargetContext->colorSpaceInfo().colorSpace());
|
GrPaint grPaint;
|
if (!SkPaintToGrPaintWithTexture(this->context(), fRenderTargetContext->colorSpaceInfo(), paint,
|
viewMatrix, std::move(fp),
|
kAlpha_8_SkColorType == bitmap.colorType(), &grPaint)) {
|
return;
|
}
|
|
// Coverage-based AA would cause seams between tiles.
|
GrAA aa = GrAA(paint.isAntiAlias() &&
|
GrFSAAType::kNone != fRenderTargetContext->fsaaType());
|
fRenderTargetContext->drawRect(this->clip(), std::move(grPaint), aa, viewMatrix, dstRect);
|
}
|
|
void SkGpuDevice::drawSprite(const SkBitmap& bitmap,
|
int left, int top, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawSprite", fContext.get());
|
|
if (fContext->abandoned()) {
|
return;
|
}
|
|
sk_sp<SkSpecialImage> srcImg = this->makeSpecial(bitmap);
|
if (!srcImg) {
|
return;
|
}
|
|
this->drawSpecial(srcImg.get(), left, top, paint, nullptr, SkMatrix::I());
|
}
|
|
|
void SkGpuDevice::drawSpecial(SkSpecialImage* special, int left, int top, const SkPaint& paint,
|
SkImage* clipImage, const SkMatrix& clipMatrix) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawSpecial", fContext.get());
|
|
// TODO: clipImage support.
|
|
sk_sp<SkSpecialImage> result;
|
if (paint.getImageFilter()) {
|
SkIPoint offset = { 0, 0 };
|
|
result = this->filterTexture(special, left, top, &offset, paint.getImageFilter());
|
if (!result) {
|
return;
|
}
|
|
left += offset.fX;
|
top += offset.fY;
|
} else {
|
result = sk_ref_sp(special);
|
}
|
|
SkASSERT(result->isTextureBacked());
|
sk_sp<GrTextureProxy> proxy = result->asTextureProxyRef(this->context());
|
if (!proxy) {
|
return;
|
}
|
|
const GrPixelConfig config = proxy->config();
|
|
SkPaint tmpUnfiltered(paint);
|
if (tmpUnfiltered.getMaskFilter()) {
|
SkMatrix ctm = this->ctm();
|
ctm.postTranslate(-SkIntToScalar(left), -SkIntToScalar(top));
|
tmpUnfiltered.setMaskFilter(tmpUnfiltered.getMaskFilter()->makeWithMatrix(ctm));
|
}
|
|
tmpUnfiltered.setImageFilter(nullptr);
|
|
auto fp = GrSimpleTextureEffect::Make(std::move(proxy), SkMatrix::I());
|
fp = GrColorSpaceXformEffect::Make(std::move(fp), result->getColorSpace(), result->alphaType(),
|
fRenderTargetContext->colorSpaceInfo().colorSpace());
|
if (GrPixelConfigIsAlphaOnly(config)) {
|
fp = GrFragmentProcessor::MakeInputPremulAndMulByOutput(std::move(fp));
|
} else {
|
fp = GrFragmentProcessor::MulChildByInputAlpha(std::move(fp));
|
}
|
|
GrPaint grPaint;
|
if (!SkPaintToGrPaintReplaceShader(this->context(), fRenderTargetContext->colorSpaceInfo(),
|
tmpUnfiltered, std::move(fp), &grPaint)) {
|
return;
|
}
|
|
const SkIRect& subset = result->subset();
|
|
fRenderTargetContext->fillRectToRect(
|
this->clip(),
|
std::move(grPaint),
|
GrAA(tmpUnfiltered.isAntiAlias()),
|
SkMatrix::I(),
|
SkRect::Make(SkIRect::MakeXYWH(left, top, subset.width(), subset.height())),
|
SkRect::Make(subset));
|
}
|
|
void SkGpuDevice::drawBitmapRect(const SkBitmap& bitmap,
|
const SkRect* src, const SkRect& origDst,
|
const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) {
|
ASSERT_SINGLE_OWNER
|
// The src rect is inferred to be the bmp bounds if not provided. Otherwise, the src rect must
|
// be clipped to the bmp bounds. To determine tiling parameters we need the filter mode which
|
// in turn requires knowing the src-to-dst mapping. If the src was clipped to the bmp bounds
|
// then we use the src-to-dst mapping to compute a new clipped dst rect.
|
const SkRect* dst = &origDst;
|
const SkRect bmpBounds = SkRect::MakeIWH(bitmap.width(), bitmap.height());
|
// Compute matrix from the two rectangles
|
if (!src) {
|
src = &bmpBounds;
|
}
|
|
SkMatrix srcToDstMatrix;
|
if (!srcToDstMatrix.setRectToRect(*src, *dst, SkMatrix::kFill_ScaleToFit)) {
|
return;
|
}
|
SkRect tmpSrc, tmpDst;
|
if (src != &bmpBounds) {
|
if (!bmpBounds.contains(*src)) {
|
tmpSrc = *src;
|
if (!tmpSrc.intersect(bmpBounds)) {
|
return; // nothing to draw
|
}
|
src = &tmpSrc;
|
srcToDstMatrix.mapRect(&tmpDst, *src);
|
dst = &tmpDst;
|
}
|
}
|
|
int maxTileSize = this->caps()->maxTileSize();
|
|
// The tile code path doesn't currently support AA, so if the paint asked for aa and we could
|
// draw untiled, then we bypass checking for tiling purely for optimization reasons.
|
bool useCoverageAA = GrFSAAType::kUnifiedMSAA != fRenderTargetContext->fsaaType() &&
|
paint.isAntiAlias() && bitmap.width() <= maxTileSize &&
|
bitmap.height() <= maxTileSize;
|
|
bool skipTileCheck = useCoverageAA || paint.getMaskFilter();
|
|
if (!skipTileCheck) {
|
int tileSize;
|
SkIRect clippedSrcRect;
|
|
GrSamplerState sampleState;
|
bool doBicubic;
|
GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode(
|
paint.getFilterQuality(), this->ctm(), srcToDstMatrix,
|
fContext->contextPriv().sharpenMipmappedTextures(), &doBicubic);
|
|
int tileFilterPad;
|
|
if (doBicubic) {
|
tileFilterPad = GrBicubicEffect::kFilterTexelPad;
|
} else if (GrSamplerState::Filter::kNearest == textureFilterMode) {
|
tileFilterPad = 0;
|
} else {
|
tileFilterPad = 1;
|
}
|
sampleState.setFilterMode(textureFilterMode);
|
|
int maxTileSizeForFilter = this->caps()->maxTileSize() - 2 * tileFilterPad;
|
if (this->shouldTileImageID(bitmap.getGenerationID(), bitmap.getSubset(), this->ctm(),
|
srcToDstMatrix, sampleState, src, maxTileSizeForFilter,
|
&tileSize, &clippedSrcRect)) {
|
this->drawTiledBitmap(bitmap, this->ctm(), srcToDstMatrix, *src, clippedSrcRect,
|
sampleState, paint, constraint, tileSize, doBicubic);
|
return;
|
}
|
}
|
GrBitmapTextureMaker maker(fContext.get(), bitmap);
|
this->drawTextureProducer(&maker, src, dst, constraint, this->ctm(), paint, true);
|
}
|
|
sk_sp<SkSpecialImage> SkGpuDevice::makeSpecial(const SkBitmap& bitmap) {
|
// TODO: this makes a tight copy of 'bitmap' but it doesn't have to be (given SkSpecialImage's
|
// semantics). Since this is cached we would have to bake the fit into the cache key though.
|
sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy(fContext->contextPriv().proxyProvider(),
|
bitmap);
|
if (!proxy) {
|
return nullptr;
|
}
|
|
const SkIRect rect = SkIRect::MakeWH(proxy->width(), proxy->height());
|
|
// GrMakeCachedBitmapProxy creates a tight copy of 'bitmap' so we don't have to subset
|
// the special image
|
return SkSpecialImage::MakeDeferredFromGpu(fContext.get(),
|
rect,
|
bitmap.getGenerationID(),
|
std::move(proxy),
|
bitmap.refColorSpace(),
|
&this->surfaceProps());
|
}
|
|
sk_sp<SkSpecialImage> SkGpuDevice::makeSpecial(const SkImage* image) {
|
SkPixmap pm;
|
if (image->isTextureBacked()) {
|
sk_sp<GrTextureProxy> proxy = as_IB(image)->asTextureProxyRef();
|
|
return SkSpecialImage::MakeDeferredFromGpu(fContext.get(),
|
SkIRect::MakeWH(image->width(), image->height()),
|
image->uniqueID(),
|
std::move(proxy),
|
as_IB(image)->onImageInfo().refColorSpace(),
|
&this->surfaceProps());
|
} else if (image->peekPixels(&pm)) {
|
SkBitmap bm;
|
|
bm.installPixels(pm);
|
return this->makeSpecial(bm);
|
} else {
|
return nullptr;
|
}
|
}
|
|
sk_sp<SkSpecialImage> SkGpuDevice::snapSpecial() {
|
// If we are wrapping a vulkan secondary command buffer, then we can't snap off a special image
|
// since it would require us to make a copy of the underlying VkImage which we don't have access
|
// to. Additionaly we can't stop and start the render pass that is used with the secondary
|
// command buffer.
|
if (this->accessRenderTargetContext()->wrapsVkSecondaryCB()) {
|
return nullptr;
|
}
|
|
sk_sp<GrTextureProxy> proxy(this->accessRenderTargetContext()->asTextureProxyRef());
|
if (!proxy) {
|
// When the device doesn't have a texture, we create a temporary texture.
|
// TODO: we should actually only copy the portion of the source needed to apply the image
|
// filter
|
proxy = GrSurfaceProxy::Copy(fContext.get(),
|
this->accessRenderTargetContext()->asSurfaceProxy(),
|
GrMipMapped::kNo,
|
SkBackingFit::kApprox,
|
SkBudgeted::kYes);
|
if (!proxy) {
|
return nullptr;
|
}
|
}
|
|
const SkImageInfo ii = this->imageInfo();
|
const SkIRect srcRect = SkIRect::MakeWH(ii.width(), ii.height());
|
|
return SkSpecialImage::MakeDeferredFromGpu(fContext.get(),
|
srcRect,
|
kNeedNewImageUniqueID_SpecialImage,
|
std::move(proxy),
|
ii.refColorSpace(),
|
&this->surfaceProps());
|
}
|
|
sk_sp<SkSpecialImage> SkGpuDevice::snapBackImage(const SkIRect& subset) {
|
GrRenderTargetContext* rtc = this->accessRenderTargetContext();
|
|
// If we are wrapping a vulkan secondary command buffer, then we can't snap off a special image
|
// since it would require us to make a copy of the underlying VkImage which we don't have access
|
// to. Additionaly we can't stop and start the render pass that is used with the secondary
|
// command buffer.
|
if (rtc->wrapsVkSecondaryCB()) {
|
return nullptr;
|
}
|
|
|
GrContext* ctx = this->context();
|
SkASSERT(rtc->asSurfaceProxy());
|
|
auto srcProxy =
|
GrSurfaceProxy::Copy(ctx, rtc->asSurfaceProxy(), rtc->mipMapped(), subset,
|
SkBackingFit::kApprox, rtc->asSurfaceProxy()->isBudgeted());
|
if (!srcProxy) {
|
return nullptr;
|
}
|
|
// Note, can't move srcProxy since we also refer to this in the 2nd parameter
|
return SkSpecialImage::MakeDeferredFromGpu(fContext.get(),
|
SkIRect::MakeSize(srcProxy->isize()),
|
kNeedNewImageUniqueID_SpecialImage,
|
srcProxy,
|
this->imageInfo().refColorSpace(),
|
&this->surfaceProps());
|
}
|
|
void SkGpuDevice::drawDevice(SkBaseDevice* device,
|
int left, int top, const SkPaint& paint) {
|
SkASSERT(!paint.getImageFilter());
|
|
ASSERT_SINGLE_OWNER
|
// clear of the source device must occur before CHECK_SHOULD_DRAW
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawDevice", fContext.get());
|
|
// drawDevice is defined to be in device coords.
|
SkGpuDevice* dev = static_cast<SkGpuDevice*>(device);
|
sk_sp<SkSpecialImage> srcImg(dev->snapSpecial());
|
if (!srcImg) {
|
return;
|
}
|
|
this->drawSpecial(srcImg.get(), left, top, paint, nullptr, SkMatrix::I());
|
}
|
|
void SkGpuDevice::drawImage(const SkImage* image, SkScalar x, SkScalar y, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
SkMatrix viewMatrix = this->ctm();
|
viewMatrix.preTranslate(x, y);
|
if (as_IB(image)->isYUVA()) {
|
GrYUVAImageTextureMaker maker(fContext.get(), image);
|
this->drawTextureProducer(&maker, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint,
|
viewMatrix, paint, false);
|
return;
|
}
|
uint32_t pinnedUniqueID;
|
if (sk_sp<GrTextureProxy> proxy = as_IB(image)->refPinnedTextureProxy(&pinnedUniqueID)) {
|
this->drawPinnedTextureProxy(std::move(proxy), pinnedUniqueID, as_IB(image)->colorSpace(),
|
image->alphaType(), nullptr, nullptr,
|
SkCanvas::kFast_SrcRectConstraint, viewMatrix, paint);
|
return;
|
}
|
SkBitmap bm;
|
if (this->shouldTileImage(image, nullptr, SkCanvas::kFast_SrcRectConstraint,
|
paint.getFilterQuality(), viewMatrix, SkMatrix::I())) {
|
// only support tiling as bitmap at the moment, so force raster-version
|
if (!as_IB(image)->getROPixels(&bm)) {
|
return;
|
}
|
this->drawBitmap(bm, x, y, paint);
|
return;
|
}
|
if (image->isLazyGenerated()) {
|
GrImageTextureMaker maker(fContext.get(), image, SkImage::kAllow_CachingHint);
|
this->drawTextureProducer(&maker, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint,
|
viewMatrix, paint, true);
|
return;
|
}
|
if (as_IB(image)->getROPixels(&bm)) {
|
GrBitmapTextureMaker maker(fContext.get(), bm);
|
this->drawTextureProducer(&maker, nullptr, nullptr, SkCanvas::kFast_SrcRectConstraint,
|
viewMatrix, paint, true);
|
}
|
}
|
|
void SkGpuDevice::drawImageRect(const SkImage* image, const SkRect* src, const SkRect& dst,
|
const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) {
|
ASSERT_SINGLE_OWNER
|
if (!src || src->contains(image->bounds())) {
|
constraint = SkCanvas::kFast_SrcRectConstraint;
|
}
|
if (as_IB(image)->isYUVA()) {
|
GrYUVAImageTextureMaker maker(fContext.get(), image);
|
this->drawTextureProducer(&maker, src, &dst, constraint, this->ctm(), paint, false);
|
return;
|
}
|
uint32_t pinnedUniqueID;
|
if (sk_sp<GrTextureProxy> proxy = as_IB(image)->refPinnedTextureProxy(&pinnedUniqueID)) {
|
this->drawPinnedTextureProxy(std::move(proxy), pinnedUniqueID, as_IB(image)->colorSpace(),
|
image->alphaType(), src, &dst, constraint, this->ctm(), paint);
|
return;
|
}
|
SkBitmap bm;
|
SkMatrix srcToDstRect;
|
srcToDstRect.setRectToRect((src ? *src : SkRect::MakeIWH(image->width(), image->height())),
|
dst, SkMatrix::kFill_ScaleToFit);
|
if (this->shouldTileImage(image, src, constraint, paint.getFilterQuality(), this->ctm(),
|
srcToDstRect)) {
|
// only support tiling as bitmap at the moment, so force raster-version
|
if (!as_IB(image)->getROPixels(&bm)) {
|
return;
|
}
|
this->drawBitmapRect(bm, src, dst, paint, constraint);
|
return;
|
}
|
if (image->isLazyGenerated()) {
|
GrImageTextureMaker maker(fContext.get(), image, SkImage::kAllow_CachingHint);
|
this->drawTextureProducer(&maker, src, &dst, constraint, this->ctm(), paint, true);
|
return;
|
}
|
if (as_IB(image)->getROPixels(&bm)) {
|
GrBitmapTextureMaker maker(fContext.get(), bm);
|
this->drawTextureProducer(&maker, src, &dst, constraint, this->ctm(), paint, true);
|
}
|
}
|
|
// When drawing nine-patches or n-patches, cap the filter quality at kBilerp.
|
static GrSamplerState::Filter compute_lattice_filter_mode(const SkPaint& paint) {
|
if (paint.getFilterQuality() == kNone_SkFilterQuality) {
|
return GrSamplerState::Filter::kNearest;
|
}
|
|
return GrSamplerState::Filter::kBilerp;
|
}
|
|
void SkGpuDevice::drawImageNine(const SkImage* image,
|
const SkIRect& center, const SkRect& dst, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
uint32_t pinnedUniqueID;
|
auto iter = skstd::make_unique<SkLatticeIter>(image->width(), image->height(), center, dst);
|
if (sk_sp<GrTextureProxy> proxy = as_IB(image)->refPinnedTextureProxy(&pinnedUniqueID)) {
|
GrTextureAdjuster adjuster(this->context(), std::move(proxy),
|
image->alphaType(), pinnedUniqueID,
|
as_IB(image)->onImageInfo().colorSpace());
|
this->drawProducerLattice(&adjuster, std::move(iter), dst, paint);
|
} else {
|
SkBitmap bm;
|
if (image->isLazyGenerated()) {
|
GrImageTextureMaker maker(fContext.get(), image, SkImage::kAllow_CachingHint);
|
this->drawProducerLattice(&maker, std::move(iter), dst, paint);
|
} else if (as_IB(image)->getROPixels(&bm)) {
|
GrBitmapTextureMaker maker(fContext.get(), bm);
|
this->drawProducerLattice(&maker, std::move(iter), dst, paint);
|
}
|
}
|
}
|
|
void SkGpuDevice::drawBitmapNine(const SkBitmap& bitmap, const SkIRect& center,
|
const SkRect& dst, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
auto iter = skstd::make_unique<SkLatticeIter>(bitmap.width(), bitmap.height(), center, dst);
|
GrBitmapTextureMaker maker(fContext.get(), bitmap);
|
this->drawProducerLattice(&maker, std::move(iter), dst, paint);
|
}
|
|
void SkGpuDevice::drawProducerLattice(GrTextureProducer* producer,
|
std::unique_ptr<SkLatticeIter> iter, const SkRect& dst,
|
const SkPaint& origPaint) {
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawProducerLattice", fContext.get());
|
SkTCopyOnFirstWrite<SkPaint> paint(&origPaint);
|
|
if (!producer->isAlphaOnly() && (paint->getColor() & 0x00FFFFFF) != 0x00FFFFFF) {
|
paint.writable()->setColor(SkColorSetARGB(origPaint.getAlpha(), 0xFF, 0xFF, 0xFF));
|
}
|
GrPaint grPaint;
|
if (!SkPaintToGrPaintWithPrimitiveColor(this->context(), fRenderTargetContext->colorSpaceInfo(),
|
*paint, &grPaint)) {
|
return;
|
}
|
|
auto dstColorSpace = fRenderTargetContext->colorSpaceInfo().colorSpace();
|
const GrSamplerState::Filter filter = compute_lattice_filter_mode(*paint);
|
auto proxy = producer->refTextureProxyForParams(filter, nullptr);
|
if (!proxy) {
|
return;
|
}
|
auto csxf = GrColorSpaceXform::Make(producer->colorSpace(), producer->alphaType(),
|
dstColorSpace, kPremul_SkAlphaType);
|
|
fRenderTargetContext->drawImageLattice(this->clip(), std::move(grPaint), this->ctm(),
|
std::move(proxy), std::move(csxf), filter,
|
std::move(iter), dst);
|
}
|
|
void SkGpuDevice::drawImageLattice(const SkImage* image,
|
const SkCanvas::Lattice& lattice, const SkRect& dst,
|
const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
uint32_t pinnedUniqueID;
|
auto iter = skstd::make_unique<SkLatticeIter>(lattice, dst);
|
if (sk_sp<GrTextureProxy> proxy = as_IB(image)->refPinnedTextureProxy(&pinnedUniqueID)) {
|
GrTextureAdjuster adjuster(this->context(), std::move(proxy),
|
image->alphaType(), pinnedUniqueID,
|
as_IB(image)->onImageInfo().colorSpace());
|
this->drawProducerLattice(&adjuster, std::move(iter), dst, paint);
|
} else {
|
SkBitmap bm;
|
if (image->isLazyGenerated()) {
|
GrImageTextureMaker maker(fContext.get(), image, SkImage::kAllow_CachingHint);
|
this->drawProducerLattice(&maker, std::move(iter), dst, paint);
|
} else if (as_IB(image)->getROPixels(&bm)) {
|
GrBitmapTextureMaker maker(fContext.get(), bm);
|
this->drawProducerLattice(&maker, std::move(iter), dst, paint);
|
}
|
}
|
}
|
|
void SkGpuDevice::drawBitmapLattice(const SkBitmap& bitmap,
|
const SkCanvas::Lattice& lattice, const SkRect& dst,
|
const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
auto iter = skstd::make_unique<SkLatticeIter>(lattice, dst);
|
GrBitmapTextureMaker maker(fContext.get(), bitmap);
|
this->drawProducerLattice(&maker, std::move(iter), dst, paint);
|
}
|
|
void SkGpuDevice::drawImageSet(const SkCanvas::ImageSetEntry set[], int count,
|
SkFilterQuality filterQuality, SkBlendMode mode) {
|
SkASSERT(count > 0);
|
|
GrSamplerState sampler;
|
sampler.setFilterMode(kNone_SkFilterQuality == filterQuality ? GrSamplerState::Filter::kNearest
|
: GrSamplerState::Filter::kBilerp);
|
SkAutoTArray<GrRenderTargetContext::TextureSetEntry> textures(count);
|
// We accumulate compatible proxies until we find an an incompatible one or reach the end and
|
// issue the accumulated 'n' draws starting at 'base'.
|
int base = 0, n = 0;
|
auto draw = [&] {
|
if (n > 0) {
|
auto textureXform = GrColorSpaceXform::Make(
|
set[base].fImage->colorSpace(), set[base].fImage->alphaType(),
|
fRenderTargetContext->colorSpaceInfo().colorSpace(), kPremul_SkAlphaType);
|
fRenderTargetContext->drawTextureSet(this->clip(), textures.get() + base, n,
|
sampler.filter(), mode, this->ctm(),
|
std::move(textureXform));
|
}
|
};
|
for (int i = 0; i < count; ++i) {
|
// The default SkBaseDevice implementation is based on drawImageRect which does not allow
|
// non-sorted src rects. TODO: Decide this is OK or make sure we handle it.
|
if (!set[i].fSrcRect.isSorted()) {
|
draw();
|
base = i + 1;
|
n = 0;
|
continue;
|
}
|
uint32_t uniqueID;
|
textures[i].fProxy = as_IB(set[i].fImage.get())->refPinnedTextureProxy(&uniqueID);
|
if (!textures[i].fProxy) {
|
textures[i].fProxy =
|
as_IB(set[i].fImage.get())
|
->asTextureProxyRef(fContext.get(), GrSamplerState::ClampBilerp(),
|
nullptr);
|
// If we failed to make a proxy then flush the accumulated set and reset for the next
|
// image.
|
if (!textures[i].fProxy) {
|
draw();
|
base = i + 1;
|
n = 0;
|
continue;
|
}
|
}
|
textures[i].fSrcRect = set[i].fSrcRect;
|
textures[i].fDstRect = set[i].fDstRect;
|
textures[i].fAlpha = set[i].fAlpha;
|
textures[i].fAAFlags = SkToGrQuadAAFlags(set[i].fAAFlags);
|
if (n > 0 &&
|
(!GrTextureProxy::ProxiesAreCompatibleAsDynamicState(textures[i].fProxy.get(),
|
textures[base].fProxy.get()) ||
|
set[i].fImage->alphaType() != set[base].fImage->alphaType() ||
|
!SkColorSpace::Equals(set[i].fImage->colorSpace(), set[base].fImage->colorSpace()))) {
|
draw();
|
base = i;
|
n = 1;
|
} else {
|
++n;
|
}
|
}
|
draw();
|
}
|
|
static bool init_vertices_paint(GrContext* context, const GrColorSpaceInfo& colorSpaceInfo,
|
const SkPaint& skPaint, const SkMatrix& matrix, SkBlendMode bmode,
|
bool hasTexs, bool hasColors, GrPaint* grPaint) {
|
if (hasTexs && skPaint.getShader()) {
|
if (hasColors) {
|
// When there are texs and colors the shader and colors are combined using bmode.
|
return SkPaintToGrPaintWithXfermode(context, colorSpaceInfo, skPaint, matrix, bmode,
|
grPaint);
|
} else {
|
// We have a shader, but no colors to blend it against.
|
return SkPaintToGrPaint(context, colorSpaceInfo, skPaint, matrix, grPaint);
|
}
|
} else {
|
if (hasColors) {
|
// We have colors, but either have no shader or no texture coords (which implies that
|
// we should ignore the shader).
|
return SkPaintToGrPaintWithPrimitiveColor(context, colorSpaceInfo, skPaint, grPaint);
|
} else {
|
// No colors and no shaders. Just draw with the paint color.
|
return SkPaintToGrPaintNoShader(context, colorSpaceInfo, skPaint, grPaint);
|
}
|
}
|
}
|
|
void SkGpuDevice::wireframeVertices(SkVertices::VertexMode vmode, int vertexCount,
|
const SkPoint vertices[],
|
const SkVertices::Bone bones[], int boneCount,
|
SkBlendMode bmode,
|
const uint16_t indices[], int indexCount,
|
const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "wireframeVertices", fContext.get());
|
|
SkPaint copy(paint);
|
copy.setStyle(SkPaint::kStroke_Style);
|
copy.setStrokeWidth(0);
|
|
GrPaint grPaint;
|
// we ignore the shader since we have no texture coordinates.
|
if (!SkPaintToGrPaintNoShader(this->context(), fRenderTargetContext->colorSpaceInfo(), copy,
|
&grPaint)) {
|
return;
|
}
|
|
int triangleCount = 0;
|
int n = (nullptr == indices) ? vertexCount : indexCount;
|
switch (vmode) {
|
case SkVertices::kTriangles_VertexMode:
|
triangleCount = n / 3;
|
break;
|
case SkVertices::kTriangleStrip_VertexMode:
|
triangleCount = n - 2;
|
break;
|
case SkVertices::kTriangleFan_VertexMode:
|
SK_ABORT("Unexpected triangle fan.");
|
break;
|
}
|
|
VertState state(vertexCount, indices, indexCount);
|
VertState::Proc vertProc = state.chooseProc(vmode);
|
|
//number of indices for lines per triangle with kLines
|
indexCount = triangleCount * 6;
|
|
static constexpr SkVertices::VertexMode kIgnoredMode = SkVertices::kTriangles_VertexMode;
|
SkVertices::Builder builder(kIgnoredMode, vertexCount, indexCount, 0);
|
memcpy(builder.positions(), vertices, vertexCount * sizeof(SkPoint));
|
|
uint16_t* lineIndices = builder.indices();
|
int i = 0;
|
while (vertProc(&state)) {
|
lineIndices[i] = state.f0;
|
lineIndices[i + 1] = state.f1;
|
lineIndices[i + 2] = state.f1;
|
lineIndices[i + 3] = state.f2;
|
lineIndices[i + 4] = state.f2;
|
lineIndices[i + 5] = state.f0;
|
i += 6;
|
}
|
|
GrPrimitiveType primitiveType = GrPrimitiveType::kLines;
|
fRenderTargetContext->drawVertices(this->clip(),
|
std::move(grPaint),
|
this->ctm(),
|
builder.detach(),
|
bones,
|
boneCount,
|
&primitiveType);
|
}
|
|
void SkGpuDevice::drawVertices(const SkVertices* vertices, const SkVertices::Bone bones[],
|
int boneCount, SkBlendMode mode, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawVertices", fContext.get());
|
|
SkASSERT(vertices);
|
GrPaint grPaint;
|
bool hasColors = vertices->hasColors();
|
bool hasTexs = vertices->hasTexCoords();
|
if ((!hasTexs || !paint.getShader()) && !hasColors) {
|
// The dreaded wireframe mode. Fallback to drawVertices and go so slooooooow.
|
this->wireframeVertices(vertices->mode(), vertices->vertexCount(), vertices->positions(),
|
bones, boneCount, mode, vertices->indices(), vertices->indexCount(),
|
paint);
|
return;
|
}
|
if (!init_vertices_paint(fContext.get(), fRenderTargetContext->colorSpaceInfo(), paint,
|
this->ctm(), mode, hasTexs, hasColors, &grPaint)) {
|
return;
|
}
|
fRenderTargetContext->drawVertices(this->clip(), std::move(grPaint), this->ctm(),
|
sk_ref_sp(const_cast<SkVertices*>(vertices)),
|
bones, boneCount);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkGpuDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
|
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawShadow", fContext.get());
|
|
if (!fRenderTargetContext->drawFastShadow(this->clip(), this->ctm(), path, rec)) {
|
// failed to find an accelerated case
|
this->INHERITED::drawShadow(path, rec);
|
}
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkGpuDevice::drawAtlas(const SkImage* atlas, const SkRSXform xform[],
|
const SkRect texRect[], const SkColor colors[], int count,
|
SkBlendMode mode, const SkPaint& paint) {
|
ASSERT_SINGLE_OWNER
|
if (paint.isAntiAlias()) {
|
this->INHERITED::drawAtlas(atlas, xform, texRect, colors, count, mode, paint);
|
return;
|
}
|
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawText", fContext.get());
|
|
SkPaint p(paint);
|
p.setShader(atlas->makeShader());
|
|
GrPaint grPaint;
|
if (colors) {
|
if (!SkPaintToGrPaintWithXfermode(this->context(), fRenderTargetContext->colorSpaceInfo(),
|
p, this->ctm(), (SkBlendMode)mode, &grPaint)) {
|
return;
|
}
|
} else {
|
if (!SkPaintToGrPaint(this->context(), fRenderTargetContext->colorSpaceInfo(), p,
|
this->ctm(), &grPaint)) {
|
return;
|
}
|
}
|
|
fRenderTargetContext->drawAtlas(
|
this->clip(), std::move(grPaint), this->ctm(), count, xform, texRect, colors);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkGpuDevice::drawGlyphRunList(const SkGlyphRunList& glyphRunList) {
|
ASSERT_SINGLE_OWNER
|
GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice", "drawGlyphRunList", fContext.get());
|
|
// Check for valid input
|
const SkMatrix& ctm = this->ctm();
|
if (!ctm.isFinite() || !glyphRunList.allFontsFinite()) {
|
return;
|
}
|
|
fRenderTargetContext->drawGlyphRunList(this->clip(), ctm, glyphRunList);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkGpuDevice::drawDrawable(SkDrawable* drawable, const SkMatrix* matrix, SkCanvas* canvas) {
|
GrBackendApi api = this->context()->backend();
|
if (GrBackendApi::kVulkan == api) {
|
const SkMatrix& ctm = canvas->getTotalMatrix();
|
const SkMatrix& combinedMatrix = matrix ? SkMatrix::Concat(ctm, *matrix) : ctm;
|
std::unique_ptr<SkDrawable::GpuDrawHandler> gpuDraw =
|
drawable->snapGpuDrawHandler(api, combinedMatrix, canvas->getDeviceClipBounds(),
|
this->imageInfo());
|
if (gpuDraw) {
|
fRenderTargetContext->drawDrawable(std::move(gpuDraw), drawable->getBounds());
|
return;
|
}
|
}
|
this->INHERITED::drawDrawable(drawable, matrix, canvas);
|
}
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkGpuDevice::flush() {
|
this->flushAndSignalSemaphores(0, nullptr);
|
}
|
|
GrSemaphoresSubmitted SkGpuDevice::flushAndSignalSemaphores(int numSemaphores,
|
GrBackendSemaphore signalSemaphores[]) {
|
ASSERT_SINGLE_OWNER
|
|
return fRenderTargetContext->prepareForExternalIO(numSemaphores, signalSemaphores);
|
}
|
|
bool SkGpuDevice::wait(int numSemaphores, const GrBackendSemaphore* waitSemaphores) {
|
ASSERT_SINGLE_OWNER
|
|
return fRenderTargetContext->waitOnSemaphores(numSemaphores, waitSemaphores);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
SkBaseDevice* SkGpuDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint*) {
|
ASSERT_SINGLE_OWNER
|
|
SkSurfaceProps props(this->surfaceProps().flags(), cinfo.fPixelGeometry);
|
|
// layers are never drawn in repeat modes, so we can request an approx
|
// match and ignore any padding.
|
SkBackingFit fit = kNever_TileUsage == cinfo.fTileUsage ? SkBackingFit::kApprox
|
: SkBackingFit::kExact;
|
|
GrPixelConfig config = fRenderTargetContext->colorSpaceInfo().config();
|
const GrBackendFormat& origFormat = fRenderTargetContext->asSurfaceProxy()->backendFormat();
|
GrBackendFormat format = origFormat.makeTexture2D();
|
if (!format.isValid()) {
|
return nullptr;
|
}
|
if (kRGBA_1010102_GrPixelConfig == config) {
|
// If the original device is 1010102, fall back to 8888 so that we have a usable alpha
|
// channel in the layer.
|
config = kRGBA_8888_GrPixelConfig;
|
format =
|
fContext->contextPriv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
|
}
|
|
sk_sp<GrRenderTargetContext> rtc(fContext->contextPriv().makeDeferredRenderTargetContext(
|
format, fit, cinfo.fInfo.width(), cinfo.fInfo.height(), config,
|
fRenderTargetContext->colorSpaceInfo().refColorSpace(),
|
fRenderTargetContext->numStencilSamples(), GrMipMapped::kNo,
|
kBottomLeft_GrSurfaceOrigin, &props));
|
if (!rtc) {
|
return nullptr;
|
}
|
|
// Skia's convention is to only clear a device if it is non-opaque.
|
InitContents init = cinfo.fInfo.isOpaque() ? kUninit_InitContents : kClear_InitContents;
|
|
return SkGpuDevice::Make(fContext.get(), std::move(rtc),
|
cinfo.fInfo.width(), cinfo.fInfo.height(), init).release();
|
}
|
|
sk_sp<SkSurface> SkGpuDevice::makeSurface(const SkImageInfo& info, const SkSurfaceProps& props) {
|
ASSERT_SINGLE_OWNER
|
// TODO: Change the signature of newSurface to take a budgeted parameter.
|
static const SkBudgeted kBudgeted = SkBudgeted::kNo;
|
return SkSurface::MakeRenderTarget(fContext.get(), kBudgeted, info,
|
fRenderTargetContext->numStencilSamples(),
|
fRenderTargetContext->origin(), &props);
|
}
|
|
SkImageFilterCache* SkGpuDevice::getImageFilterCache() {
|
ASSERT_SINGLE_OWNER
|
// We always return a transient cache, so it is freed after each
|
// filter traversal.
|
return SkImageFilterCache::Create(SkImageFilterCache::kDefaultTransientSize);
|
}
|