/*
|
* Copyright 2014 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#ifndef GrXferProcessor_DEFINED
|
#define GrXferProcessor_DEFINED
|
|
#include "GrBlend.h"
|
#include "GrNonAtomicRef.h"
|
#include "GrProcessor.h"
|
#include "GrProcessorAnalysis.h"
|
#include "GrTypes.h"
|
|
class GrGLSLXferProcessor;
|
class GrProcessorSet;
|
class GrShaderCaps;
|
|
/**
|
* Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
|
* required after a pixel has been written, before it can be safely read again.
|
*/
|
enum GrXferBarrierType {
|
kNone_GrXferBarrierType = 0, //<! No barrier is required
|
kTexture_GrXferBarrierType, //<! Required when a shader reads and renders to the same texture.
|
kBlend_GrXferBarrierType, //<! Required by certain blend extensions.
|
};
|
/** Should be able to treat kNone as false in boolean expressions */
|
GR_STATIC_ASSERT(SkToBool(kNone_GrXferBarrierType) == false);
|
|
/**
|
* GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
|
* color, and for applying any coverage. It does this by emitting fragment shader code and
|
* controlling the fixed-function blend state. When dual-source blending is available, it may also
|
* write a seconday fragment shader output color. GrXferProcessor has two modes of operation:
|
*
|
* Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
|
* GrXferProcessor may read the destination color. While operating in this mode, the subclass only
|
* provides shader code that blends the src and dst colors, and the base class applies coverage.
|
*
|
* No dst read: When not performing a dst read, the subclass is given full control of the fixed-
|
* function blend state and/or secondary output, and is responsible to apply coverage on its own.
|
*
|
* A GrXferProcessor is never installed directly into our draw state, but instead is created from a
|
* GrXPFactory once we have finalized the state of our draw.
|
*/
|
class GrXferProcessor : public GrProcessor, public GrNonAtomicRef<GrXferProcessor> {
|
public:
|
/**
|
* A texture that contains the dst pixel values and an integer coord offset from device space
|
* to the space of the texture. Depending on GPU capabilities a DstTexture may be used by a
|
* GrXferProcessor for blending in the fragment shader.
|
*/
|
class DstProxy {
|
public:
|
DstProxy() { fOffset.set(0, 0); }
|
|
DstProxy(const DstProxy& other) {
|
*this = other;
|
}
|
|
DstProxy(sk_sp<GrTextureProxy> proxy, const SkIPoint& offset)
|
: fProxy(std::move(proxy)) {
|
if (fProxy) {
|
fOffset = offset;
|
} else {
|
fOffset.set(0, 0);
|
}
|
}
|
|
DstProxy& operator=(const DstProxy& other) {
|
fProxy = other.fProxy;
|
fOffset = other.fOffset;
|
return *this;
|
}
|
|
bool operator==(const DstProxy& that) const {
|
return fProxy == that.fProxy && fOffset == that.fOffset;
|
}
|
bool operator!=(const DstProxy& that) const { return !(*this == that); }
|
|
const SkIPoint& offset() const { return fOffset; }
|
|
void setOffset(const SkIPoint& offset) { fOffset = offset; }
|
void setOffset(int ox, int oy) { fOffset.set(ox, oy); }
|
|
GrTextureProxy* proxy() const { return fProxy.get(); }
|
|
void setProxy(sk_sp<GrTextureProxy> proxy) {
|
fProxy = std::move(proxy);
|
if (!fProxy) {
|
fOffset = {0, 0};
|
}
|
}
|
|
bool instantiate(GrResourceProvider* resourceProvider) {
|
return SkToBool(fProxy->instantiate(resourceProvider));
|
}
|
|
private:
|
sk_sp<GrTextureProxy> fProxy;
|
SkIPoint fOffset;
|
};
|
|
/**
|
* Sets a unique key on the GrProcessorKeyBuilder calls onGetGLSLProcessorKey(...) to get the
|
* specific subclass's key.
|
*/
|
void getGLSLProcessorKey(const GrShaderCaps&,
|
GrProcessorKeyBuilder*,
|
const GrSurfaceOrigin* originIfDstTexture) const;
|
|
/** Returns a new instance of the appropriate *GL* implementation class
|
for the given GrXferProcessor; caller is responsible for deleting
|
the object. */
|
virtual GrGLSLXferProcessor* createGLSLInstance() const = 0;
|
|
/**
|
* Returns the barrier type, if any, that this XP will require. Note that the possibility
|
* that a kTexture type barrier is required is handled by the GrPipeline and need not be
|
* considered by subclass overrides of this function.
|
*/
|
virtual GrXferBarrierType xferBarrierType(const GrCaps& caps) const {
|
return kNone_GrXferBarrierType;
|
}
|
|
struct BlendInfo {
|
void reset() {
|
fEquation = kAdd_GrBlendEquation;
|
fSrcBlend = kOne_GrBlendCoeff;
|
fDstBlend = kZero_GrBlendCoeff;
|
fBlendConstant = SK_PMColor4fTRANSPARENT;
|
fWriteColor = true;
|
}
|
|
SkDEBUGCODE(SkString dump() const;)
|
|
GrBlendEquation fEquation;
|
GrBlendCoeff fSrcBlend;
|
GrBlendCoeff fDstBlend;
|
SkPMColor4f fBlendConstant;
|
bool fWriteColor;
|
};
|
|
void getBlendInfo(BlendInfo* blendInfo) const;
|
|
bool willReadDstColor() const { return fWillReadDstColor; }
|
|
/**
|
* If we are performing a dst read, returns whether the base class will use mixed samples to
|
* antialias the shader's final output. If not doing a dst read, the subclass is responsible
|
* for antialiasing and this returns false.
|
*/
|
bool dstReadUsesMixedSamples() const { return fDstReadUsesMixedSamples; }
|
|
/**
|
* Returns whether or not this xferProcossor will set a secondary output to be used with dual
|
* source blending.
|
*/
|
bool hasSecondaryOutput() const;
|
|
bool isLCD() const { return fIsLCD; }
|
|
/** Returns true if this and other processor conservatively draw identically. It can only return
|
true when the two processor are of the same subclass (i.e. they return the same object from
|
from getFactory()).
|
|
A return value of true from isEqual() should not be used to test whether the processor would
|
generate the same shader code. To test for identical code generation use getGLSLProcessorKey
|
*/
|
|
bool isEqual(const GrXferProcessor& that) const {
|
if (this->classID() != that.classID()) {
|
return false;
|
}
|
if (this->fWillReadDstColor != that.fWillReadDstColor) {
|
return false;
|
}
|
if (this->fDstReadUsesMixedSamples != that.fDstReadUsesMixedSamples) {
|
return false;
|
}
|
if (fIsLCD != that.fIsLCD) {
|
return false;
|
}
|
return this->onIsEqual(that);
|
}
|
|
protected:
|
GrXferProcessor(ClassID classID);
|
GrXferProcessor(ClassID classID, bool willReadDstColor, bool hasMixedSamples,
|
GrProcessorAnalysisCoverage);
|
|
private:
|
/**
|
* Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this xfer
|
* processor's GL backend implementation.
|
*/
|
virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
|
|
/**
|
* If we are not performing a dst read, returns whether the subclass will set a secondary
|
* output. When using dst reads, the base class controls the secondary output and this method
|
* will not be called.
|
*/
|
virtual bool onHasSecondaryOutput() const { return false; }
|
|
/**
|
* If we are not performing a dst read, retrieves the fixed-function blend state required by the
|
* subclass. When using dst reads, the base class controls the fixed-function blend state and
|
* this method will not be called. The BlendInfo struct comes initialized to "no blending".
|
*/
|
virtual void onGetBlendInfo(BlendInfo*) const {}
|
|
virtual bool onIsEqual(const GrXferProcessor&) const = 0;
|
|
bool fWillReadDstColor;
|
bool fDstReadUsesMixedSamples;
|
bool fIsLCD;
|
|
typedef GrProcessor INHERITED;
|
};
|
|
/**
|
* We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
|
* known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
|
* draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
|
* draw information to create a GrXferProcessor (XP) which can implement the desired blending for
|
* the draw.
|
*
|
* Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
|
* creates will have. For example, can it create an XP that supports RGB coverage or will the XP
|
* blend with the destination color.
|
*
|
* GrXPFactories are intended to be static immutable objects. We pass them around as raw pointers
|
* and expect the pointers to always be valid and for the factories to be reusable and thread safe.
|
* Equality is tested for using pointer comparison. GrXPFactory destructors must be no-ops.
|
*/
|
|
// In order to construct GrXPFactory subclass instances as constexpr the subclass, and therefore
|
// GrXPFactory, must be a literal type. One requirement is having a trivial destructor. This is ok
|
// since these objects have no need for destructors. However, GCC and clang throw a warning when a
|
// class has virtual functions and a non-virtual destructor. We suppress that warning here and
|
// for the subclasses.
|
#if defined(__GNUC__)
|
#pragma GCC diagnostic push
|
#pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
|
#endif
|
#if defined(__clang__)
|
#pragma clang diagnostic push
|
#pragma clang diagnostic ignored "-Wnon-virtual-dtor"
|
#endif
|
class GrXPFactory {
|
public:
|
typedef GrXferProcessor::DstProxy DstProxy;
|
|
enum class AnalysisProperties : unsigned {
|
kNone = 0x0,
|
/**
|
* The fragment shader will require the destination color.
|
*/
|
kReadsDstInShader = 0x1,
|
/**
|
* The op may apply coverage as alpha and still blend correctly.
|
*/
|
kCompatibleWithAlphaAsCoverage = 0x2,
|
/**
|
* The color input to the GrXferProcessor will be ignored.
|
*/
|
kIgnoresInputColor = 0x4,
|
/**
|
* The destination color will be provided to the fragment processor using a texture. This is
|
* additional information about the implementation of kReadsDstInShader.
|
*/
|
kRequiresDstTexture = 0x10,
|
/**
|
* If set, each pixel can only be touched once during a draw (e.g., because we have a dst
|
* texture or because we need an xfer barrier).
|
*/
|
kRequiresNonOverlappingDraws = 0x20,
|
};
|
GR_DECL_BITFIELD_CLASS_OPS_FRIENDS(AnalysisProperties);
|
|
static sk_sp<const GrXferProcessor> MakeXferProcessor(const GrXPFactory*,
|
const GrProcessorAnalysisColor&,
|
GrProcessorAnalysisCoverage,
|
bool hasMixedSamples,
|
const GrCaps& caps);
|
|
static AnalysisProperties GetAnalysisProperties(const GrXPFactory*,
|
const GrProcessorAnalysisColor&,
|
const GrProcessorAnalysisCoverage&,
|
const GrCaps&);
|
|
protected:
|
constexpr GrXPFactory() {}
|
|
private:
|
virtual sk_sp<const GrXferProcessor> makeXferProcessor(const GrProcessorAnalysisColor&,
|
GrProcessorAnalysisCoverage,
|
bool hasMixedSamples,
|
const GrCaps&) const = 0;
|
|
/**
|
* Subclass analysis implementation. This should not return kNeedsDstInTexture as that will be
|
* inferred by the base class based on kReadsDstInShader and the caps.
|
*/
|
virtual AnalysisProperties analysisProperties(const GrProcessorAnalysisColor&,
|
const GrProcessorAnalysisCoverage&,
|
const GrCaps&) const = 0;
|
};
|
#if defined(__GNUC__)
|
#pragma GCC diagnostic pop
|
#endif
|
#if defined(__clang__)
|
#pragma clang diagnostic pop
|
#endif
|
|
GR_MAKE_BITFIELD_CLASS_OPS(GrXPFactory::AnalysisProperties);
|
|
#endif
|