/*
|
* Copyright © 2014 Broadcom
|
*
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
* copy of this software and associated documentation files (the "Software"),
|
* to deal in the Software without restriction, including without limitation
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
* and/or sell copies of the Software, and to permit persons to whom the
|
* Software is furnished to do so, subject to the following conditions:
|
*
|
* The above copyright notice and this permission notice (including the next
|
* paragraph) shall be included in all copies or substantial portions of the
|
* Software.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
* IN THE SOFTWARE.
|
*/
|
|
#include <inttypes.h>
|
|
#include "vc4_context.h"
|
#include "vc4_qir.h"
|
#include "vc4_qpu.h"
|
#include "util/ralloc.h"
|
|
static void
|
vc4_dump_program(struct vc4_compile *c)
|
{
|
fprintf(stderr, "%s prog %d/%d QPU:\n",
|
qir_get_stage_name(c->stage),
|
c->program_id, c->variant_id);
|
|
for (int i = 0; i < c->qpu_inst_count; i++) {
|
fprintf(stderr, "0x%016"PRIx64" ", c->qpu_insts[i]);
|
vc4_qpu_disasm(&c->qpu_insts[i], 1);
|
fprintf(stderr, "\n");
|
}
|
fprintf(stderr, "\n");
|
}
|
|
static void
|
queue(struct qblock *block, uint64_t inst)
|
{
|
struct queued_qpu_inst *q = rzalloc(block, struct queued_qpu_inst);
|
q->inst = inst;
|
list_addtail(&q->link, &block->qpu_inst_list);
|
}
|
|
static uint64_t *
|
last_inst(struct qblock *block)
|
{
|
struct queued_qpu_inst *q =
|
(struct queued_qpu_inst *)block->qpu_inst_list.prev;
|
return &q->inst;
|
}
|
|
static void
|
set_last_cond_add(struct qblock *block, uint32_t cond)
|
{
|
*last_inst(block) = qpu_set_cond_add(*last_inst(block), cond);
|
}
|
|
static void
|
set_last_cond_mul(struct qblock *block, uint32_t cond)
|
{
|
*last_inst(block) = qpu_set_cond_mul(*last_inst(block), cond);
|
}
|
|
/**
|
* Some special registers can be read from either file, which lets us resolve
|
* raddr conflicts without extra MOVs.
|
*/
|
static bool
|
swap_file(struct qpu_reg *src)
|
{
|
switch (src->addr) {
|
case QPU_R_UNIF:
|
case QPU_R_VARY:
|
if (src->mux == QPU_MUX_SMALL_IMM) {
|
return false;
|
} else {
|
if (src->mux == QPU_MUX_A)
|
src->mux = QPU_MUX_B;
|
else
|
src->mux = QPU_MUX_A;
|
return true;
|
}
|
|
default:
|
return false;
|
}
|
}
|
|
/**
|
* Sets up the VPM read FIFO before we do any VPM read.
|
*
|
* VPM reads (vertex attribute input) and VPM writes (varyings output) from
|
* the QPU reuse the VRI (varying interpolation) block's FIFOs to talk to the
|
* VPM block. In the VS/CS (unlike in the FS), the block starts out
|
* uninitialized, and you need to emit setup to the block before any VPM
|
* reads/writes.
|
*
|
* VRI has a FIFO in each direction, with each FIFO able to hold four
|
* 32-bit-per-vertex values. VPM reads come through the read FIFO and VPM
|
* writes go through the write FIFO. The read/write setup values from QPU go
|
* through the write FIFO as well, with a sideband signal indicating that
|
* they're setup values. Once a read setup reaches the other side of the
|
* FIFO, the VPM block will start asynchronously reading vertex attributes and
|
* filling the read FIFO -- that way hopefully the QPU doesn't have to block
|
* on reads later.
|
*
|
* VPM read setup can configure 16 32-bit-per-vertex values to be read at a
|
* time, which is 4 vec4s. If more than that is being read (since we support
|
* 8 vec4 vertex attributes), then multiple read setup writes need to be done.
|
*
|
* The existence of the FIFO makes it seem like you should be able to emit
|
* both setups for the 5-8 attribute cases and then do all the attribute
|
* reads. However, once the setup value makes it to the other end of the
|
* write FIFO, it will immediately update the VPM block's setup register.
|
* That updated setup register would be used for read FIFO fills from then on,
|
* breaking whatever remaining VPM values were supposed to be read into the
|
* read FIFO from the previous attribute set.
|
*
|
* As a result, we need to emit the read setup, pull every VPM read value from
|
* that setup, and only then emit the second setup if applicable.
|
*/
|
static void
|
setup_for_vpm_read(struct vc4_compile *c, struct qblock *block)
|
{
|
if (c->num_inputs_in_fifo) {
|
c->num_inputs_in_fifo--;
|
return;
|
}
|
|
c->num_inputs_in_fifo = MIN2(c->num_inputs_remaining, 16);
|
|
queue(block,
|
qpu_load_imm_ui(qpu_vrsetup(),
|
c->vpm_read_offset |
|
0x00001a00 |
|
((c->num_inputs_in_fifo & 0xf) << 20)));
|
c->num_inputs_remaining -= c->num_inputs_in_fifo;
|
c->vpm_read_offset += c->num_inputs_in_fifo;
|
|
c->num_inputs_in_fifo--;
|
}
|
|
/**
|
* This is used to resolve the fact that we might register-allocate two
|
* different operands of an instruction to the same physical register file
|
* even though instructions have only one field for the register file source
|
* address.
|
*
|
* In that case, we need to move one to a temporary that can be used in the
|
* instruction, instead. We reserve ra14/rb14 for this purpose.
|
*/
|
static void
|
fixup_raddr_conflict(struct qblock *block,
|
struct qpu_reg dst,
|
struct qpu_reg *src0, struct qpu_reg *src1,
|
struct qinst *inst, uint64_t *unpack)
|
{
|
uint32_t mux0 = src0->mux == QPU_MUX_SMALL_IMM ? QPU_MUX_B : src0->mux;
|
uint32_t mux1 = src1->mux == QPU_MUX_SMALL_IMM ? QPU_MUX_B : src1->mux;
|
|
if (mux0 <= QPU_MUX_R5 ||
|
mux0 != mux1 ||
|
(src0->addr == src1->addr &&
|
src0->mux == src1->mux)) {
|
return;
|
}
|
|
if (swap_file(src0) || swap_file(src1))
|
return;
|
|
if (mux0 == QPU_MUX_A) {
|
/* Make sure we use the same type of MOV as the instruction,
|
* in case of unpacks.
|
*/
|
if (qir_is_float_input(inst))
|
queue(block, qpu_a_FMAX(qpu_rb(14), *src0, *src0));
|
else
|
queue(block, qpu_a_MOV(qpu_rb(14), *src0));
|
|
/* If we had an unpack on this A-file source, we need to put
|
* it into this MOV, not into the later move from regfile B.
|
*/
|
if (inst->src[0].pack) {
|
*last_inst(block) |= *unpack;
|
*unpack = 0;
|
}
|
*src0 = qpu_rb(14);
|
} else {
|
queue(block, qpu_a_MOV(qpu_ra(14), *src0));
|
*src0 = qpu_ra(14);
|
}
|
}
|
|
static void
|
set_last_dst_pack(struct qblock *block, struct qinst *inst)
|
{
|
MAYBE_UNUSED bool had_pm = *last_inst(block) & QPU_PM;
|
MAYBE_UNUSED bool had_ws = *last_inst(block) & QPU_WS;
|
MAYBE_UNUSED uint32_t unpack = QPU_GET_FIELD(*last_inst(block), QPU_UNPACK);
|
|
if (!inst->dst.pack)
|
return;
|
|
*last_inst(block) |= QPU_SET_FIELD(inst->dst.pack, QPU_PACK);
|
|
if (qir_is_mul(inst)) {
|
assert(!unpack || had_pm);
|
*last_inst(block) |= QPU_PM;
|
} else {
|
assert(!unpack || !had_pm);
|
assert(!had_ws); /* dst must be a-file to pack. */
|
}
|
}
|
|
static void
|
handle_r4_qpu_write(struct qblock *block, struct qinst *qinst,
|
struct qpu_reg dst)
|
{
|
if (dst.mux != QPU_MUX_R4) {
|
queue(block, qpu_a_MOV(dst, qpu_r4()));
|
set_last_cond_add(block, qinst->cond);
|
} else {
|
assert(qinst->cond == QPU_COND_ALWAYS);
|
if (qinst->sf)
|
queue(block, qpu_a_MOV(qpu_ra(QPU_W_NOP), qpu_r4()));
|
}
|
}
|
|
static void
|
vc4_generate_code_block(struct vc4_compile *c,
|
struct qblock *block,
|
struct qpu_reg *temp_registers)
|
{
|
int last_vpm_read_index = -1;
|
|
qir_for_each_inst(qinst, block) {
|
#if 0
|
fprintf(stderr, "translating qinst to qpu: ");
|
qir_dump_inst(qinst);
|
fprintf(stderr, "\n");
|
#endif
|
|
static const struct {
|
uint32_t op;
|
} translate[] = {
|
#define A(name) [QOP_##name] = {QPU_A_##name}
|
#define M(name) [QOP_##name] = {QPU_M_##name}
|
A(FADD),
|
A(FSUB),
|
A(FMIN),
|
A(FMAX),
|
A(FMINABS),
|
A(FMAXABS),
|
A(FTOI),
|
A(ITOF),
|
A(ADD),
|
A(SUB),
|
A(SHL),
|
A(SHR),
|
A(ASR),
|
A(MIN),
|
A(MAX),
|
A(AND),
|
A(OR),
|
A(XOR),
|
A(NOT),
|
|
M(FMUL),
|
M(V8MULD),
|
M(V8MIN),
|
M(V8MAX),
|
M(V8ADDS),
|
M(V8SUBS),
|
M(MUL24),
|
|
/* If we replicate src[0] out to src[1], this works
|
* out the same as a MOV.
|
*/
|
[QOP_MOV] = { QPU_A_OR },
|
[QOP_FMOV] = { QPU_A_FMAX },
|
[QOP_MMOV] = { QPU_M_V8MIN },
|
|
[QOP_MIN_NOIMM] = { QPU_A_MIN },
|
};
|
|
uint64_t unpack = 0;
|
struct qpu_reg src[ARRAY_SIZE(qinst->src)];
|
for (int i = 0; i < qir_get_nsrc(qinst); i++) {
|
int index = qinst->src[i].index;
|
switch (qinst->src[i].file) {
|
case QFILE_NULL:
|
case QFILE_LOAD_IMM:
|
src[i] = qpu_rn(0);
|
break;
|
case QFILE_TEMP:
|
src[i] = temp_registers[index];
|
if (qinst->src[i].pack) {
|
assert(!unpack ||
|
unpack == qinst->src[i].pack);
|
unpack = QPU_SET_FIELD(qinst->src[i].pack,
|
QPU_UNPACK);
|
if (src[i].mux == QPU_MUX_R4)
|
unpack |= QPU_PM;
|
}
|
break;
|
case QFILE_UNIF:
|
src[i] = qpu_unif();
|
break;
|
case QFILE_VARY:
|
src[i] = qpu_vary();
|
break;
|
case QFILE_SMALL_IMM:
|
src[i].mux = QPU_MUX_SMALL_IMM;
|
src[i].addr = qpu_encode_small_immediate(qinst->src[i].index);
|
/* This should only have returned a valid
|
* small immediate field, not ~0 for failure.
|
*/
|
assert(src[i].addr <= 47);
|
break;
|
case QFILE_VPM:
|
setup_for_vpm_read(c, block);
|
assert((int)qinst->src[i].index >=
|
last_vpm_read_index);
|
(void)last_vpm_read_index;
|
last_vpm_read_index = qinst->src[i].index;
|
src[i] = qpu_ra(QPU_R_VPM);
|
break;
|
|
case QFILE_FRAG_X:
|
src[i] = qpu_ra(QPU_R_XY_PIXEL_COORD);
|
break;
|
case QFILE_FRAG_Y:
|
src[i] = qpu_rb(QPU_R_XY_PIXEL_COORD);
|
break;
|
case QFILE_FRAG_REV_FLAG:
|
src[i] = qpu_rb(QPU_R_MS_REV_FLAGS);
|
break;
|
case QFILE_QPU_ELEMENT:
|
src[i] = qpu_ra(QPU_R_ELEM_QPU);
|
break;
|
|
case QFILE_TLB_COLOR_WRITE:
|
case QFILE_TLB_COLOR_WRITE_MS:
|
case QFILE_TLB_Z_WRITE:
|
case QFILE_TLB_STENCIL_SETUP:
|
case QFILE_TEX_S:
|
case QFILE_TEX_S_DIRECT:
|
case QFILE_TEX_T:
|
case QFILE_TEX_R:
|
case QFILE_TEX_B:
|
unreachable("bad qir src file");
|
}
|
}
|
|
struct qpu_reg dst;
|
switch (qinst->dst.file) {
|
case QFILE_NULL:
|
dst = qpu_ra(QPU_W_NOP);
|
break;
|
case QFILE_TEMP:
|
dst = temp_registers[qinst->dst.index];
|
break;
|
case QFILE_VPM:
|
dst = qpu_ra(QPU_W_VPM);
|
break;
|
|
case QFILE_TLB_COLOR_WRITE:
|
dst = qpu_tlbc();
|
break;
|
|
case QFILE_TLB_COLOR_WRITE_MS:
|
dst = qpu_tlbc_ms();
|
break;
|
|
case QFILE_TLB_Z_WRITE:
|
dst = qpu_ra(QPU_W_TLB_Z);
|
break;
|
|
case QFILE_TLB_STENCIL_SETUP:
|
dst = qpu_ra(QPU_W_TLB_STENCIL_SETUP);
|
break;
|
|
case QFILE_TEX_S:
|
case QFILE_TEX_S_DIRECT:
|
dst = qpu_rb(QPU_W_TMU0_S);
|
break;
|
|
case QFILE_TEX_T:
|
dst = qpu_rb(QPU_W_TMU0_T);
|
break;
|
|
case QFILE_TEX_R:
|
dst = qpu_rb(QPU_W_TMU0_R);
|
break;
|
|
case QFILE_TEX_B:
|
dst = qpu_rb(QPU_W_TMU0_B);
|
break;
|
|
case QFILE_VARY:
|
case QFILE_UNIF:
|
case QFILE_SMALL_IMM:
|
case QFILE_LOAD_IMM:
|
case QFILE_FRAG_X:
|
case QFILE_FRAG_Y:
|
case QFILE_FRAG_REV_FLAG:
|
case QFILE_QPU_ELEMENT:
|
assert(!"not reached");
|
break;
|
}
|
|
MAYBE_UNUSED bool handled_qinst_cond = false;
|
|
switch (qinst->op) {
|
case QOP_RCP:
|
case QOP_RSQ:
|
case QOP_EXP2:
|
case QOP_LOG2:
|
switch (qinst->op) {
|
case QOP_RCP:
|
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_RECIP),
|
src[0]) | unpack);
|
break;
|
case QOP_RSQ:
|
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_RECIPSQRT),
|
src[0]) | unpack);
|
break;
|
case QOP_EXP2:
|
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_EXP),
|
src[0]) | unpack);
|
break;
|
case QOP_LOG2:
|
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_LOG),
|
src[0]) | unpack);
|
break;
|
default:
|
abort();
|
}
|
|
handle_r4_qpu_write(block, qinst, dst);
|
handled_qinst_cond = true;
|
|
break;
|
|
case QOP_LOAD_IMM:
|
assert(qinst->src[0].file == QFILE_LOAD_IMM);
|
queue(block, qpu_load_imm_ui(dst, qinst->src[0].index));
|
break;
|
|
case QOP_LOAD_IMM_U2:
|
queue(block, qpu_load_imm_u2(dst, qinst->src[0].index));
|
break;
|
|
case QOP_LOAD_IMM_I2:
|
queue(block, qpu_load_imm_i2(dst, qinst->src[0].index));
|
break;
|
|
case QOP_ROT_MUL:
|
/* Rotation at the hardware level occurs on the inputs
|
* to the MUL unit, and they must be accumulators in
|
* order to have the time necessary to move things.
|
*/
|
assert(src[0].mux <= QPU_MUX_R3);
|
|
queue(block,
|
qpu_m_rot(dst, src[0], qinst->src[1].index -
|
QPU_SMALL_IMM_MUL_ROT) | unpack);
|
set_last_cond_mul(block, qinst->cond);
|
handled_qinst_cond = true;
|
set_last_dst_pack(block, qinst);
|
break;
|
|
case QOP_MS_MASK:
|
src[1] = qpu_ra(QPU_R_MS_REV_FLAGS);
|
fixup_raddr_conflict(block, dst, &src[0], &src[1],
|
qinst, &unpack);
|
queue(block, qpu_a_AND(qpu_ra(QPU_W_MS_FLAGS),
|
src[0], src[1]) | unpack);
|
break;
|
|
case QOP_FRAG_Z:
|
case QOP_FRAG_W:
|
/* QOP_FRAG_Z/W don't emit instructions, just allocate
|
* the register to the Z/W payload.
|
*/
|
break;
|
|
case QOP_TLB_COLOR_READ:
|
queue(block, qpu_NOP());
|
*last_inst(block) = qpu_set_sig(*last_inst(block),
|
QPU_SIG_COLOR_LOAD);
|
handle_r4_qpu_write(block, qinst, dst);
|
handled_qinst_cond = true;
|
break;
|
|
case QOP_VARY_ADD_C:
|
queue(block, qpu_a_FADD(dst, src[0], qpu_r5()) | unpack);
|
break;
|
|
|
case QOP_TEX_RESULT:
|
queue(block, qpu_NOP());
|
*last_inst(block) = qpu_set_sig(*last_inst(block),
|
QPU_SIG_LOAD_TMU0);
|
handle_r4_qpu_write(block, qinst, dst);
|
handled_qinst_cond = true;
|
break;
|
|
case QOP_THRSW:
|
queue(block, qpu_NOP());
|
*last_inst(block) = qpu_set_sig(*last_inst(block),
|
QPU_SIG_THREAD_SWITCH);
|
c->last_thrsw = last_inst(block);
|
break;
|
|
case QOP_BRANCH:
|
/* The branch target will be updated at QPU scheduling
|
* time.
|
*/
|
queue(block, (qpu_branch(qinst->cond, 0) |
|
QPU_BRANCH_REL));
|
handled_qinst_cond = true;
|
break;
|
|
case QOP_UNIFORMS_RESET:
|
fixup_raddr_conflict(block, dst, &src[0], &src[1],
|
qinst, &unpack);
|
|
queue(block, qpu_a_ADD(qpu_ra(QPU_W_UNIFORMS_ADDRESS),
|
src[0], src[1]));
|
break;
|
|
default:
|
assert(qinst->op < ARRAY_SIZE(translate));
|
assert(translate[qinst->op].op != 0); /* NOPs */
|
|
/* Skip emitting the MOV if it's a no-op. */
|
if (qir_is_raw_mov(qinst) &&
|
dst.mux == src[0].mux && dst.addr == src[0].addr) {
|
break;
|
}
|
|
/* If we have only one source, put it in the second
|
* argument slot as well so that we don't take up
|
* another raddr just to get unused data.
|
*/
|
if (qir_get_non_sideband_nsrc(qinst) == 1)
|
src[1] = src[0];
|
|
fixup_raddr_conflict(block, dst, &src[0], &src[1],
|
qinst, &unpack);
|
|
if (qir_is_mul(qinst)) {
|
queue(block, qpu_m_alu2(translate[qinst->op].op,
|
dst,
|
src[0], src[1]) | unpack);
|
set_last_cond_mul(block, qinst->cond);
|
} else {
|
queue(block, qpu_a_alu2(translate[qinst->op].op,
|
dst,
|
src[0], src[1]) | unpack);
|
set_last_cond_add(block, qinst->cond);
|
}
|
handled_qinst_cond = true;
|
set_last_dst_pack(block, qinst);
|
|
break;
|
}
|
|
assert(qinst->cond == QPU_COND_ALWAYS ||
|
handled_qinst_cond);
|
|
if (qinst->sf)
|
*last_inst(block) |= QPU_SF;
|
}
|
}
|
|
void
|
vc4_generate_code(struct vc4_context *vc4, struct vc4_compile *c)
|
{
|
struct qblock *start_block = list_first_entry(&c->blocks,
|
struct qblock, link);
|
|
struct qpu_reg *temp_registers = vc4_register_allocate(vc4, c);
|
if (!temp_registers)
|
return;
|
|
switch (c->stage) {
|
case QSTAGE_VERT:
|
case QSTAGE_COORD:
|
c->num_inputs_remaining = c->num_inputs;
|
queue(start_block, qpu_load_imm_ui(qpu_vwsetup(), 0x00001a00));
|
break;
|
case QSTAGE_FRAG:
|
break;
|
}
|
|
qir_for_each_block(block, c)
|
vc4_generate_code_block(c, block, temp_registers);
|
|
/* Switch the last SIG_THRSW instruction to SIG_LAST_THRSW.
|
*
|
* LAST_THRSW is a new signal in BCM2708B0 (including Raspberry Pi)
|
* that ensures that a later thread doesn't try to lock the scoreboard
|
* and terminate before an earlier-spawned thread on the same QPU, by
|
* delaying switching back to the later shader until earlier has
|
* finished. Otherwise, if the earlier thread was hitting the same
|
* quad, the scoreboard would deadlock.
|
*/
|
if (c->last_thrsw) {
|
assert(QPU_GET_FIELD(*c->last_thrsw, QPU_SIG) ==
|
QPU_SIG_THREAD_SWITCH);
|
*c->last_thrsw = ((*c->last_thrsw & ~QPU_SIG_MASK) |
|
QPU_SET_FIELD(QPU_SIG_LAST_THREAD_SWITCH,
|
QPU_SIG));
|
}
|
|
uint32_t cycles = qpu_schedule_instructions(c);
|
uint32_t inst_count_at_schedule_time = c->qpu_inst_count;
|
|
/* thread end can't have VPM write or read */
|
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
|
QPU_WADDR_ADD) == QPU_W_VPM ||
|
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
|
QPU_WADDR_MUL) == QPU_W_VPM ||
|
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
|
QPU_RADDR_A) == QPU_R_VPM ||
|
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
|
QPU_RADDR_B) == QPU_R_VPM) {
|
qpu_serialize_one_inst(c, qpu_NOP());
|
}
|
|
/* thread end can't have uniform read */
|
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
|
QPU_RADDR_A) == QPU_R_UNIF ||
|
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
|
QPU_RADDR_B) == QPU_R_UNIF) {
|
qpu_serialize_one_inst(c, qpu_NOP());
|
}
|
|
/* thread end can't have TLB operations */
|
if (qpu_inst_is_tlb(c->qpu_insts[c->qpu_inst_count - 1]))
|
qpu_serialize_one_inst(c, qpu_NOP());
|
|
/* Make sure there's no existing signal set (like for a small
|
* immediate)
|
*/
|
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
|
QPU_SIG) != QPU_SIG_NONE) {
|
qpu_serialize_one_inst(c, qpu_NOP());
|
}
|
|
c->qpu_insts[c->qpu_inst_count - 1] =
|
qpu_set_sig(c->qpu_insts[c->qpu_inst_count - 1],
|
QPU_SIG_PROG_END);
|
qpu_serialize_one_inst(c, qpu_NOP());
|
qpu_serialize_one_inst(c, qpu_NOP());
|
|
switch (c->stage) {
|
case QSTAGE_VERT:
|
case QSTAGE_COORD:
|
break;
|
case QSTAGE_FRAG:
|
c->qpu_insts[c->qpu_inst_count - 1] =
|
qpu_set_sig(c->qpu_insts[c->qpu_inst_count - 1],
|
QPU_SIG_SCOREBOARD_UNLOCK);
|
break;
|
}
|
|
cycles += c->qpu_inst_count - inst_count_at_schedule_time;
|
|
if (vc4_debug & VC4_DEBUG_SHADERDB) {
|
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d estimated cycles\n",
|
qir_get_stage_name(c->stage),
|
c->program_id, c->variant_id,
|
cycles);
|
}
|
|
if (vc4_debug & VC4_DEBUG_QPU)
|
vc4_dump_program(c);
|
|
vc4_qpu_validate(c->qpu_insts, c->qpu_inst_count);
|
|
free(temp_registers);
|
}
|