/****************************************************************************
|
* Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
|
*
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
* copy of this software and associated documentation files (the "Software"),
|
* to deal in the Software without restriction, including without limitation
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
* and/or sell copies of the Software, and to permit persons to whom the
|
* Software is furnished to do so, subject to the following conditions:
|
*
|
* The above copyright notice and this permission notice (including the next
|
* paragraph) shall be included in all copies or substantial portions of the
|
* Software.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
* IN THE SOFTWARE.
|
*
|
* @file frontend.h
|
*
|
* @brief Definitions for Frontend which handles vertex processing,
|
* primitive assembly, clipping, binning, etc.
|
*
|
******************************************************************************/
|
#pragma once
|
#include "context.h"
|
#include "common/simdintrin.h"
|
#include <type_traits>
|
|
// Calculates the A and B coefficients for the 3 edges of the triangle
|
//
|
// maths for edge equations:
|
// standard form of a line in 2d
|
// Ax + By + C = 0
|
// A = y0 - y1
|
// B = x1 - x0
|
// C = x0y1 - x1y0
|
INLINE
|
void triangleSetupAB(const __m128 vX, const __m128 vY, __m128 & vA, __m128 & vB)
|
{
|
// vYsub = y1 y2 y0 dc
|
__m128 vYsub = _mm_shuffle_ps(vY, vY, _MM_SHUFFLE(3, 0, 2, 1));
|
// vY = y0 y1 y2 dc
|
vA = _mm_sub_ps(vY, vYsub);
|
|
// Result:
|
// A[0] = y0 - y1
|
// A[1] = y1 - y2
|
// A[2] = y2 - y0
|
|
// vXsub = x1 x2 x0 dc
|
__m128 vXsub = _mm_shuffle_ps(vX, vX, _MM_SHUFFLE(3, 0, 2, 1));
|
// vX = x0 x1 x2 dc
|
vB = _mm_sub_ps(vXsub, vX);
|
|
// Result:
|
// B[0] = x1 - x0
|
// B[1] = x2 - x1
|
// B[2] = x0 - x2
|
}
|
|
INLINE
|
void triangleSetupABInt(const __m128i vX, const __m128i vY, __m128i & vA, __m128i & vB)
|
{
|
// generate edge equations
|
// A = y0 - y1
|
// B = x1 - x0
|
// C = x0y1 - x1y0
|
__m128i vYsub = _mm_shuffle_epi32(vY, _MM_SHUFFLE(3, 0, 2, 1));
|
vA = _mm_sub_epi32(vY, vYsub);
|
|
__m128i vXsub = _mm_shuffle_epi32(vX, _MM_SHUFFLE(3, 0, 2, 1));
|
vB = _mm_sub_epi32(vXsub, vX);
|
}
|
|
INLINE
|
void triangleSetupABIntVertical(const simdscalari vX[3], const simdscalari vY[3], simdscalari (&vA)[3], simdscalari (&vB)[3])
|
{
|
// A = y0 - y1
|
// B = x1 - x0
|
vA[0] = _simd_sub_epi32(vY[0], vY[1]);
|
vA[1] = _simd_sub_epi32(vY[1], vY[2]);
|
vA[2] = _simd_sub_epi32(vY[2], vY[0]);
|
|
vB[0] = _simd_sub_epi32(vX[1], vX[0]);
|
vB[1] = _simd_sub_epi32(vX[2], vX[1]);
|
vB[2] = _simd_sub_epi32(vX[0], vX[2]);
|
}
|
|
#if ENABLE_AVX512_SIMD16
|
INLINE
|
void triangleSetupABIntVertical(const simd16scalari vX[3], const simd16scalari vY[3], simd16scalari(&vA)[3], simd16scalari(&vB)[3])
|
{
|
// A = y0 - y1
|
// B = x1 - x0
|
vA[0] = _simd16_sub_epi32(vY[0], vY[1]);
|
vA[1] = _simd16_sub_epi32(vY[1], vY[2]);
|
vA[2] = _simd16_sub_epi32(vY[2], vY[0]);
|
|
vB[0] = _simd16_sub_epi32(vX[1], vX[0]);
|
vB[1] = _simd16_sub_epi32(vX[2], vX[1]);
|
vB[2] = _simd16_sub_epi32(vX[0], vX[2]);
|
}
|
|
#endif
|
// Calculate the determinant of the triangle
|
// 2 vectors between the 3 points: P, Q
|
// Px = x0-x2, Py = y0-y2
|
// Qx = x1-x2, Qy = y1-y2
|
// |Px Qx|
|
// det = | | = PxQy - PyQx
|
// |Py Qy|
|
// simplifies to : (x0-x2)*(y1-y2) - (y0-y2)*(x1-x2)
|
// try to reuse our A & B coef's already calculated. factor out a -1 from Py and Qx
|
// : B[2]*A[1] - (-(y2-y0))*(-(x2-x1))
|
// : B[2]*A[1] - (-1)(-1)(y2-y0)*(x2-x1)
|
// : B[2]*A[1] - A[2]*B[1]
|
INLINE
|
float calcDeterminantInt(const __m128i vA, const __m128i vB)
|
{
|
// vAShuf = [A1, A0, A2, A0]
|
__m128i vAShuf = _mm_shuffle_epi32(vA, _MM_SHUFFLE(0, 2, 0, 1));
|
// vBShuf = [B2, B0, B1, B0]
|
__m128i vBShuf = _mm_shuffle_epi32(vB, _MM_SHUFFLE(0, 1, 0, 2));
|
// vMul = [A1*B2, B1*A2]
|
__m128i vMul = _mm_mul_epi32(vAShuf, vBShuf);
|
|
// shuffle upper to lower
|
// vMul2 = [B1*A2, B1*A2]
|
__m128i vMul2 = _mm_shuffle_epi32(vMul, _MM_SHUFFLE(3, 2, 3, 2));
|
//vMul = [A1*B2 - B1*A2]
|
vMul = _mm_sub_epi64(vMul, vMul2);
|
|
int64_t result;
|
_mm_store_sd((double*)&result, _mm_castsi128_pd(vMul));
|
|
double dResult = (double)result;
|
dResult = dResult * (1.0 / FIXED_POINT16_SCALE);
|
|
return (float)dResult;
|
}
|
|
INLINE
|
void calcDeterminantIntVertical(const simdscalari vA[3], const simdscalari vB[3], simdscalari *pvDet)
|
{
|
// refer to calcDeterminantInt comment for calculation explanation
|
|
// A1*B2
|
simdscalari vA1Lo = _simd_unpacklo_epi32(vA[1], vA[1]); // 0 0 1 1 4 4 5 5
|
simdscalari vA1Hi = _simd_unpackhi_epi32(vA[1], vA[1]); // 2 2 3 3 6 6 7 7
|
|
simdscalari vB2Lo = _simd_unpacklo_epi32(vB[2], vB[2]);
|
simdscalari vB2Hi = _simd_unpackhi_epi32(vB[2], vB[2]);
|
|
simdscalari vA1B2Lo = _simd_mul_epi32(vA1Lo, vB2Lo); // 0 1 4 5
|
simdscalari vA1B2Hi = _simd_mul_epi32(vA1Hi, vB2Hi); // 2 3 6 7
|
|
// B1*A2
|
simdscalari vA2Lo = _simd_unpacklo_epi32(vA[2], vA[2]);
|
simdscalari vA2Hi = _simd_unpackhi_epi32(vA[2], vA[2]);
|
|
simdscalari vB1Lo = _simd_unpacklo_epi32(vB[1], vB[1]);
|
simdscalari vB1Hi = _simd_unpackhi_epi32(vB[1], vB[1]);
|
|
simdscalari vA2B1Lo = _simd_mul_epi32(vA2Lo, vB1Lo);
|
simdscalari vA2B1Hi = _simd_mul_epi32(vA2Hi, vB1Hi);
|
|
// A1*B2 - A2*B1
|
simdscalari detLo = _simd_sub_epi64(vA1B2Lo, vA2B1Lo);
|
simdscalari detHi = _simd_sub_epi64(vA1B2Hi, vA2B1Hi);
|
|
// shuffle 0 1 4 5 2 3 6 7 -> 0 1 2 3
|
simdscalari vResultLo = _simd_permute2f128_si(detLo, detHi, 0x20);
|
|
// shuffle 0 1 4 5 2 3 6 7 -> 4 5 6 7
|
simdscalari vResultHi = _simd_permute2f128_si(detLo, detHi, 0x31);
|
|
pvDet[0] = vResultLo;
|
pvDet[1] = vResultHi;
|
}
|
|
#if ENABLE_AVX512_SIMD16
|
INLINE
|
void calcDeterminantIntVertical(const simd16scalari vA[3], const simd16scalari vB[3], simd16scalari *pvDet)
|
{
|
// refer to calcDeterminantInt comment for calculation explanation
|
|
// A1*B2
|
simd16scalari vA1_lo = _simd16_unpacklo_epi32(vA[1], vA[1]); // X 0 X 1 X 4 X 5 X 8 X 9 X C X D (32b)
|
simd16scalari vA1_hi = _simd16_unpackhi_epi32(vA[1], vA[1]); // X 2 X 3 X 6 X 7 X A X B X E X F
|
|
simd16scalari vB2_lo = _simd16_unpacklo_epi32(vB[2], vB[2]);
|
simd16scalari vB2_hi = _simd16_unpackhi_epi32(vB[2], vB[2]);
|
|
simd16scalari vA1B2_lo = _simd16_mul_epi32(vA1_lo, vB2_lo); // 0 1 4 5 8 9 C D (64b)
|
simd16scalari vA1B2_hi = _simd16_mul_epi32(vA1_hi, vB2_hi); // 2 3 6 7 A B E F
|
|
// B1*A2
|
simd16scalari vA2_lo = _simd16_unpacklo_epi32(vA[2], vA[2]);
|
simd16scalari vA2_hi = _simd16_unpackhi_epi32(vA[2], vA[2]);
|
|
simd16scalari vB1_lo = _simd16_unpacklo_epi32(vB[1], vB[1]);
|
simd16scalari vB1_hi = _simd16_unpackhi_epi32(vB[1], vB[1]);
|
|
simd16scalari vA2B1_lo = _simd16_mul_epi32(vA2_lo, vB1_lo);
|
simd16scalari vA2B1_hi = _simd16_mul_epi32(vA2_hi, vB1_hi);
|
|
// A1*B2 - A2*B1
|
simd16scalari difflo = _simd16_sub_epi64(vA1B2_lo, vA2B1_lo); // 0 1 4 5 8 9 C D (64b)
|
simd16scalari diffhi = _simd16_sub_epi64(vA1B2_hi, vA2B1_hi); // 2 3 6 7 A B E F
|
|
// (1, 0, 1, 0) = 01 00 01 00 = 0x44, (3, 2, 3, 2) = 11 10 11 10 = 0xEE
|
simd16scalari templo = _simd16_permute2f128_si(difflo, diffhi, 0x44); // 0 1 4 5 2 3 6 7 (64b)
|
simd16scalari temphi = _simd16_permute2f128_si(difflo, diffhi, 0xEE); // 8 9 C D A B E F
|
|
// (3, 1, 2, 0) = 11 01 10 00 = 0xD8
|
pvDet[0] = _simd16_permute2f128_si(templo, templo, 0xD8); // 0 1 2 3 4 5 6 7 (64b)
|
pvDet[1] = _simd16_permute2f128_si(temphi, temphi, 0xD8); // 8 9 A B C D E F
|
}
|
|
#endif
|
INLINE
|
void triangleSetupC(const __m128 vX, const __m128 vY, const __m128 vA, const __m128 &vB, __m128 &vC)
|
{
|
// C = -Ax - By
|
vC = _mm_mul_ps(vA, vX);
|
__m128 vCy = _mm_mul_ps(vB, vY);
|
vC = _mm_mul_ps(vC, _mm_set1_ps(-1.0f));
|
vC = _mm_sub_ps(vC, vCy);
|
}
|
|
template<uint32_t NumVerts>
|
INLINE
|
void viewportTransform(simdvector *v, const SWR_VIEWPORT_MATRICES & vpMatrices)
|
{
|
simdscalar m00 = _simd_load1_ps(&vpMatrices.m00[0]);
|
simdscalar m30 = _simd_load1_ps(&vpMatrices.m30[0]);
|
simdscalar m11 = _simd_load1_ps(&vpMatrices.m11[0]);
|
simdscalar m31 = _simd_load1_ps(&vpMatrices.m31[0]);
|
simdscalar m22 = _simd_load1_ps(&vpMatrices.m22[0]);
|
simdscalar m32 = _simd_load1_ps(&vpMatrices.m32[0]);
|
|
for (uint32_t i = 0; i < NumVerts; ++i)
|
{
|
v[i].x = _simd_fmadd_ps(v[i].x, m00, m30);
|
v[i].y = _simd_fmadd_ps(v[i].y, m11, m31);
|
v[i].z = _simd_fmadd_ps(v[i].z, m22, m32);
|
}
|
}
|
|
#if USE_SIMD16_FRONTEND
|
template<uint32_t NumVerts>
|
INLINE
|
void viewportTransform(simd16vector *v, const SWR_VIEWPORT_MATRICES & vpMatrices)
|
{
|
const simd16scalar m00 = _simd16_broadcast_ss(&vpMatrices.m00[0]);
|
const simd16scalar m30 = _simd16_broadcast_ss(&vpMatrices.m30[0]);
|
const simd16scalar m11 = _simd16_broadcast_ss(&vpMatrices.m11[0]);
|
const simd16scalar m31 = _simd16_broadcast_ss(&vpMatrices.m31[0]);
|
const simd16scalar m22 = _simd16_broadcast_ss(&vpMatrices.m22[0]);
|
const simd16scalar m32 = _simd16_broadcast_ss(&vpMatrices.m32[0]);
|
|
for (uint32_t i = 0; i < NumVerts; ++i)
|
{
|
v[i].x = _simd16_fmadd_ps(v[i].x, m00, m30);
|
v[i].y = _simd16_fmadd_ps(v[i].y, m11, m31);
|
v[i].z = _simd16_fmadd_ps(v[i].z, m22, m32);
|
}
|
}
|
|
#endif
|
template<uint32_t NumVerts>
|
INLINE
|
void viewportTransform(simdvector *v, const SWR_VIEWPORT_MATRICES & vpMatrices, simdscalari const &vViewportIdx)
|
{
|
// perform a gather of each matrix element based on the viewport array indexes
|
simdscalar m00 = _simd_i32gather_ps(&vpMatrices.m00[0], vViewportIdx, 4);
|
simdscalar m30 = _simd_i32gather_ps(&vpMatrices.m30[0], vViewportIdx, 4);
|
simdscalar m11 = _simd_i32gather_ps(&vpMatrices.m11[0], vViewportIdx, 4);
|
simdscalar m31 = _simd_i32gather_ps(&vpMatrices.m31[0], vViewportIdx, 4);
|
simdscalar m22 = _simd_i32gather_ps(&vpMatrices.m22[0], vViewportIdx, 4);
|
simdscalar m32 = _simd_i32gather_ps(&vpMatrices.m32[0], vViewportIdx, 4);
|
|
for (uint32_t i = 0; i < NumVerts; ++i)
|
{
|
v[i].x = _simd_fmadd_ps(v[i].x, m00, m30);
|
v[i].y = _simd_fmadd_ps(v[i].y, m11, m31);
|
v[i].z = _simd_fmadd_ps(v[i].z, m22, m32);
|
}
|
}
|
|
#if USE_SIMD16_FRONTEND
|
template<uint32_t NumVerts>
|
INLINE
|
void viewportTransform(simd16vector *v, const SWR_VIEWPORT_MATRICES & vpMatrices, simd16scalari const &vViewportIdx)
|
{
|
// perform a gather of each matrix element based on the viewport array indexes
|
const simd16scalar m00 = _simd16_i32gather_ps(&vpMatrices.m00[0], vViewportIdx, 4);
|
const simd16scalar m30 = _simd16_i32gather_ps(&vpMatrices.m30[0], vViewportIdx, 4);
|
const simd16scalar m11 = _simd16_i32gather_ps(&vpMatrices.m11[0], vViewportIdx, 4);
|
const simd16scalar m31 = _simd16_i32gather_ps(&vpMatrices.m31[0], vViewportIdx, 4);
|
const simd16scalar m22 = _simd16_i32gather_ps(&vpMatrices.m22[0], vViewportIdx, 4);
|
const simd16scalar m32 = _simd16_i32gather_ps(&vpMatrices.m32[0], vViewportIdx, 4);
|
|
for (uint32_t i = 0; i < NumVerts; ++i)
|
{
|
v[i].x = _simd16_fmadd_ps(v[i].x, m00, m30);
|
v[i].y = _simd16_fmadd_ps(v[i].y, m11, m31);
|
v[i].z = _simd16_fmadd_ps(v[i].z, m22, m32);
|
}
|
}
|
|
#endif
|
INLINE
|
void calcBoundingBoxInt(const __m128i &vX, const __m128i &vY, SWR_RECT &bbox)
|
{
|
// Need horizontal fp min here
|
__m128i vX1 = _mm_shuffle_epi32(vX, _MM_SHUFFLE(3, 2, 0, 1));
|
__m128i vX2 = _mm_shuffle_epi32(vX, _MM_SHUFFLE(3, 0, 1, 2));
|
|
__m128i vY1 = _mm_shuffle_epi32(vY, _MM_SHUFFLE(3, 2, 0, 1));
|
__m128i vY2 = _mm_shuffle_epi32(vY, _MM_SHUFFLE(3, 0, 1, 2));
|
|
|
__m128i vMinX = _mm_min_epi32(vX, vX1);
|
vMinX = _mm_min_epi32(vMinX, vX2);
|
|
__m128i vMaxX = _mm_max_epi32(vX, vX1);
|
vMaxX = _mm_max_epi32(vMaxX, vX2);
|
|
__m128i vMinY = _mm_min_epi32(vY, vY1);
|
vMinY = _mm_min_epi32(vMinY, vY2);
|
|
__m128i vMaxY = _mm_max_epi32(vY, vY1);
|
vMaxY = _mm_max_epi32(vMaxY, vY2);
|
|
bbox.xmin = _mm_extract_epi32(vMinX, 0);
|
bbox.xmax = _mm_extract_epi32(vMaxX, 0);
|
bbox.ymin = _mm_extract_epi32(vMinY, 0);
|
bbox.ymax = _mm_extract_epi32(vMaxY, 0);
|
}
|
|
INLINE
|
bool CanUseSimplePoints(DRAW_CONTEXT *pDC)
|
{
|
const API_STATE& state = GetApiState(pDC);
|
|
return (state.rastState.sampleCount == SWR_MULTISAMPLE_1X &&
|
state.rastState.pointSize == 1.0f &&
|
!state.rastState.pointParam &&
|
!state.rastState.pointSpriteEnable &&
|
!state.backendState.clipDistanceMask);
|
}
|
|
INLINE
|
bool vHasNaN(const __m128& vec)
|
{
|
const __m128 result = _mm_cmpunord_ps(vec, vec);
|
const int32_t mask = _mm_movemask_ps(result);
|
return (mask != 0);
|
}
|
|
uint32_t GetNumPrims(PRIMITIVE_TOPOLOGY mode, uint32_t numElements);
|
uint32_t NumVertsPerPrim(PRIMITIVE_TOPOLOGY topology, bool includeAdjVerts);
|
|
|
// ProcessDraw front-end function. All combinations of parameter values are available
|
PFN_FE_WORK_FUNC GetProcessDrawFunc(
|
bool IsIndexed,
|
bool IsCutIndexEnabled,
|
bool HasTessellation,
|
bool HasGeometryShader,
|
bool HasStreamOut,
|
bool HasRasterization);
|
|
void ProcessClear(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
|
void ProcessStoreTiles(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
|
void ProcessDiscardInvalidateTiles(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
|
void ProcessSync(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
|
void ProcessShutdown(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
|
|
PFN_PROCESS_PRIMS GetBinTrianglesFunc(bool IsConservative);
|
#if USE_SIMD16_FRONTEND
|
PFN_PROCESS_PRIMS_SIMD16 GetBinTrianglesFunc_simd16(bool IsConservative);
|
#endif
|
|
struct PA_STATE_BASE; // forward decl
|
void BinPoints(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simdvector prims[3], uint32_t primMask, simdscalari const &primID, simdscalari const &viewportIdx, simdscalari const &rtIdx);
|
void BinLines(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simdvector prims[3], uint32_t primMask, simdscalari const &primID, simdscalari const &viewportIdx, simdscalari const &rtIdx);
|
#if USE_SIMD16_FRONTEND
|
void SIMDCALL BinPoints_simd16(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simd16vector prims[3], uint32_t primMask, simd16scalari const &primID, simd16scalari const &viewportIdx, simd16scalari const &rtIdx);
|
void SIMDCALL BinLines_simd16(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simd16vector prims[3], uint32_t primMask, simd16scalari const &primID, simd16scalari const &viewportIdx, simd16scalari const &rtIdx);
|
#endif
|