/*
|
* Copyright 2013-2017 Advanced Micro Devices, Inc.
|
*
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
* copy of this software and associated documentation files (the "Software"),
|
* to deal in the Software without restriction, including without limitation
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
* and/or sell copies of the Software, and to permit persons to whom the
|
* Software is furnished to do so, subject to the following conditions:
|
*
|
* The above copyright notice and this permission notice (including the next
|
* paragraph) shall be included in all copies or substantial portions of the
|
* Software.
|
*
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
* SOFTWARE.
|
*
|
*/
|
|
#include <libsync.h>
|
|
#include "util/os_time.h"
|
#include "util/u_memory.h"
|
#include "util/u_queue.h"
|
#include "util/u_upload_mgr.h"
|
|
#include "si_pipe.h"
|
#include "radeon/r600_cs.h"
|
|
struct si_fine_fence {
|
struct r600_resource *buf;
|
unsigned offset;
|
};
|
|
struct si_multi_fence {
|
struct pipe_reference reference;
|
struct pipe_fence_handle *gfx;
|
struct pipe_fence_handle *sdma;
|
struct tc_unflushed_batch_token *tc_token;
|
struct util_queue_fence ready;
|
|
/* If the context wasn't flushed at fence creation, this is non-NULL. */
|
struct {
|
struct r600_common_context *ctx;
|
unsigned ib_index;
|
} gfx_unflushed;
|
|
struct si_fine_fence fine;
|
};
|
|
static void si_add_fence_dependency(struct r600_common_context *rctx,
|
struct pipe_fence_handle *fence)
|
{
|
struct radeon_winsys *ws = rctx->ws;
|
|
if (rctx->dma.cs)
|
ws->cs_add_fence_dependency(rctx->dma.cs, fence);
|
ws->cs_add_fence_dependency(rctx->gfx.cs, fence);
|
}
|
|
static void si_fence_reference(struct pipe_screen *screen,
|
struct pipe_fence_handle **dst,
|
struct pipe_fence_handle *src)
|
{
|
struct radeon_winsys *ws = ((struct si_screen*)screen)->ws;
|
struct si_multi_fence **rdst = (struct si_multi_fence **)dst;
|
struct si_multi_fence *rsrc = (struct si_multi_fence *)src;
|
|
if (pipe_reference(&(*rdst)->reference, &rsrc->reference)) {
|
ws->fence_reference(&(*rdst)->gfx, NULL);
|
ws->fence_reference(&(*rdst)->sdma, NULL);
|
tc_unflushed_batch_token_reference(&(*rdst)->tc_token, NULL);
|
r600_resource_reference(&(*rdst)->fine.buf, NULL);
|
FREE(*rdst);
|
}
|
*rdst = rsrc;
|
}
|
|
static struct si_multi_fence *si_create_multi_fence()
|
{
|
struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence);
|
if (!fence)
|
return NULL;
|
|
pipe_reference_init(&fence->reference, 1);
|
util_queue_fence_init(&fence->ready);
|
|
return fence;
|
}
|
|
struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
|
struct tc_unflushed_batch_token *tc_token)
|
{
|
struct si_multi_fence *fence = si_create_multi_fence();
|
if (!fence)
|
return NULL;
|
|
util_queue_fence_reset(&fence->ready);
|
tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
|
|
return (struct pipe_fence_handle *)fence;
|
}
|
|
static void si_fence_server_sync(struct pipe_context *ctx,
|
struct pipe_fence_handle *fence)
|
{
|
struct r600_common_context *rctx = (struct r600_common_context *)ctx;
|
struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
|
|
util_queue_fence_wait(&rfence->ready);
|
|
/* Unflushed fences from the same context are no-ops. */
|
if (rfence->gfx_unflushed.ctx &&
|
rfence->gfx_unflushed.ctx == rctx)
|
return;
|
|
/* All unflushed commands will not start execution before
|
* this fence dependency is signalled.
|
*
|
* Should we flush the context to allow more GPU parallelism?
|
*/
|
if (rfence->sdma)
|
si_add_fence_dependency(rctx, rfence->sdma);
|
if (rfence->gfx)
|
si_add_fence_dependency(rctx, rfence->gfx);
|
}
|
|
static bool si_fine_fence_signaled(struct radeon_winsys *rws,
|
const struct si_fine_fence *fine)
|
{
|
char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ |
|
PIPE_TRANSFER_UNSYNCHRONIZED);
|
if (!map)
|
return false;
|
|
uint32_t *fence = (uint32_t*)(map + fine->offset);
|
return *fence != 0;
|
}
|
|
static void si_fine_fence_set(struct si_context *ctx,
|
struct si_fine_fence *fine,
|
unsigned flags)
|
{
|
uint32_t *fence_ptr;
|
|
assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
|
|
/* Use uncached system memory for the fence. */
|
u_upload_alloc(ctx->b.cached_gtt_allocator, 0, 4, 4,
|
&fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
|
if (!fine->buf)
|
return;
|
|
*fence_ptr = 0;
|
|
uint64_t fence_va = fine->buf->gpu_address + fine->offset;
|
|
radeon_add_to_buffer_list(&ctx->b, &ctx->b.gfx, fine->buf,
|
RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
|
if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
|
struct radeon_winsys_cs *cs = ctx->b.gfx.cs;
|
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
|
radeon_emit(cs, S_370_DST_SEL(V_370_MEM_ASYNC) |
|
S_370_WR_CONFIRM(1) |
|
S_370_ENGINE_SEL(V_370_PFP));
|
radeon_emit(cs, fence_va);
|
radeon_emit(cs, fence_va >> 32);
|
radeon_emit(cs, 0x80000000);
|
} else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
|
si_gfx_write_event_eop(&ctx->b, V_028A90_BOTTOM_OF_PIPE_TS, 0,
|
EOP_DATA_SEL_VALUE_32BIT,
|
NULL, fence_va, 0x80000000,
|
PIPE_QUERY_GPU_FINISHED);
|
} else {
|
assert(false);
|
}
|
}
|
|
static boolean si_fence_finish(struct pipe_screen *screen,
|
struct pipe_context *ctx,
|
struct pipe_fence_handle *fence,
|
uint64_t timeout)
|
{
|
struct radeon_winsys *rws = ((struct si_screen*)screen)->ws;
|
struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
|
int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
|
|
if (!util_queue_fence_is_signalled(&rfence->ready)) {
|
if (rfence->tc_token) {
|
/* Ensure that si_flush_from_st will be called for
|
* this fence, but only if we're in the API thread
|
* where the context is current.
|
*
|
* Note that the batch containing the flush may already
|
* be in flight in the driver thread, so the fence
|
* may not be ready yet when this call returns.
|
*/
|
threaded_context_flush(ctx, rfence->tc_token,
|
timeout == 0);
|
}
|
|
if (!timeout)
|
return false;
|
|
if (timeout == PIPE_TIMEOUT_INFINITE) {
|
util_queue_fence_wait(&rfence->ready);
|
} else {
|
if (!util_queue_fence_wait_timeout(&rfence->ready, abs_timeout))
|
return false;
|
}
|
|
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
|
int64_t time = os_time_get_nano();
|
timeout = abs_timeout > time ? abs_timeout - time : 0;
|
}
|
}
|
|
if (rfence->sdma) {
|
if (!rws->fence_wait(rws, rfence->sdma, timeout))
|
return false;
|
|
/* Recompute the timeout after waiting. */
|
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
|
int64_t time = os_time_get_nano();
|
timeout = abs_timeout > time ? abs_timeout - time : 0;
|
}
|
}
|
|
if (!rfence->gfx)
|
return true;
|
|
if (rfence->fine.buf &&
|
si_fine_fence_signaled(rws, &rfence->fine)) {
|
rws->fence_reference(&rfence->gfx, NULL);
|
r600_resource_reference(&rfence->fine.buf, NULL);
|
return true;
|
}
|
|
/* Flush the gfx IB if it hasn't been flushed yet. */
|
if (ctx && rfence->gfx_unflushed.ctx) {
|
struct si_context *sctx;
|
|
sctx = (struct si_context *)threaded_context_unwrap_unsync(ctx);
|
if (rfence->gfx_unflushed.ctx == &sctx->b &&
|
rfence->gfx_unflushed.ib_index == sctx->b.num_gfx_cs_flushes) {
|
/* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
|
* spec says:
|
*
|
* "If the sync object being blocked upon will not be
|
* signaled in finite time (for example, by an associated
|
* fence command issued previously, but not yet flushed to
|
* the graphics pipeline), then ClientWaitSync may hang
|
* forever. To help prevent this behavior, if
|
* ClientWaitSync is called and all of the following are
|
* true:
|
*
|
* * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
|
* * sync is unsignaled when ClientWaitSync is called,
|
* * and the calls to ClientWaitSync and FenceSync were
|
* issued from the same context,
|
*
|
* then the GL will behave as if the equivalent of Flush
|
* were inserted immediately after the creation of sync."
|
*
|
* This means we need to flush for such fences even when we're
|
* not going to wait.
|
*/
|
threaded_context_unwrap_sync(ctx);
|
sctx->b.gfx.flush(&sctx->b, timeout ? 0 : PIPE_FLUSH_ASYNC, NULL);
|
rfence->gfx_unflushed.ctx = NULL;
|
|
if (!timeout)
|
return false;
|
|
/* Recompute the timeout after all that. */
|
if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
|
int64_t time = os_time_get_nano();
|
timeout = abs_timeout > time ? abs_timeout - time : 0;
|
}
|
}
|
}
|
|
if (rws->fence_wait(rws, rfence->gfx, timeout))
|
return true;
|
|
/* Re-check in case the GPU is slow or hangs, but the commands before
|
* the fine-grained fence have completed. */
|
if (rfence->fine.buf &&
|
si_fine_fence_signaled(rws, &rfence->fine))
|
return true;
|
|
return false;
|
}
|
|
static void si_create_fence_fd(struct pipe_context *ctx,
|
struct pipe_fence_handle **pfence, int fd)
|
{
|
struct si_screen *sscreen = (struct si_screen*)ctx->screen;
|
struct radeon_winsys *ws = sscreen->ws;
|
struct si_multi_fence *rfence;
|
|
*pfence = NULL;
|
|
if (!sscreen->info.has_fence_to_handle)
|
return;
|
|
rfence = si_create_multi_fence();
|
if (!rfence)
|
return;
|
|
rfence->gfx = ws->fence_import_sync_file(ws, fd);
|
if (!rfence->gfx) {
|
FREE(rfence);
|
return;
|
}
|
|
*pfence = (struct pipe_fence_handle*)rfence;
|
}
|
|
static int si_fence_get_fd(struct pipe_screen *screen,
|
struct pipe_fence_handle *fence)
|
{
|
struct si_screen *sscreen = (struct si_screen*)screen;
|
struct radeon_winsys *ws = sscreen->ws;
|
struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
|
int gfx_fd = -1, sdma_fd = -1;
|
|
if (!sscreen->info.has_fence_to_handle)
|
return -1;
|
|
util_queue_fence_wait(&rfence->ready);
|
|
/* Deferred fences aren't supported. */
|
assert(!rfence->gfx_unflushed.ctx);
|
if (rfence->gfx_unflushed.ctx)
|
return -1;
|
|
if (rfence->sdma) {
|
sdma_fd = ws->fence_export_sync_file(ws, rfence->sdma);
|
if (sdma_fd == -1)
|
return -1;
|
}
|
if (rfence->gfx) {
|
gfx_fd = ws->fence_export_sync_file(ws, rfence->gfx);
|
if (gfx_fd == -1) {
|
if (sdma_fd != -1)
|
close(sdma_fd);
|
return -1;
|
}
|
}
|
|
/* If we don't have FDs at this point, it means we don't have fences
|
* either. */
|
if (sdma_fd == -1 && gfx_fd == -1)
|
return ws->export_signalled_sync_file(ws);
|
if (sdma_fd == -1)
|
return gfx_fd;
|
if (gfx_fd == -1)
|
return sdma_fd;
|
|
/* Get a fence that will be a combination of both fences. */
|
sync_accumulate("radeonsi", &gfx_fd, sdma_fd);
|
close(sdma_fd);
|
return gfx_fd;
|
}
|
|
static void si_flush_from_st(struct pipe_context *ctx,
|
struct pipe_fence_handle **fence,
|
unsigned flags)
|
{
|
struct pipe_screen *screen = ctx->screen;
|
struct r600_common_context *rctx = (struct r600_common_context *)ctx;
|
struct radeon_winsys *ws = rctx->ws;
|
struct pipe_fence_handle *gfx_fence = NULL;
|
struct pipe_fence_handle *sdma_fence = NULL;
|
bool deferred_fence = false;
|
struct si_fine_fence fine = {};
|
unsigned rflags = PIPE_FLUSH_ASYNC;
|
|
if (flags & PIPE_FLUSH_END_OF_FRAME)
|
rflags |= PIPE_FLUSH_END_OF_FRAME;
|
|
if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
|
assert(flags & PIPE_FLUSH_DEFERRED);
|
assert(fence);
|
|
si_fine_fence_set((struct si_context *)rctx, &fine, flags);
|
}
|
|
/* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
|
if (rctx->dma.cs)
|
rctx->dma.flush(rctx, rflags, fence ? &sdma_fence : NULL);
|
|
if (!radeon_emitted(rctx->gfx.cs, rctx->initial_gfx_cs_size)) {
|
if (fence)
|
ws->fence_reference(&gfx_fence, rctx->last_gfx_fence);
|
if (!(flags & PIPE_FLUSH_DEFERRED))
|
ws->cs_sync_flush(rctx->gfx.cs);
|
} else {
|
/* Instead of flushing, create a deferred fence. Constraints:
|
* - The state tracker must allow a deferred flush.
|
* - The state tracker must request a fence.
|
* - fence_get_fd is not allowed.
|
* Thread safety in fence_finish must be ensured by the state tracker.
|
*/
|
if (flags & PIPE_FLUSH_DEFERRED &&
|
!(flags & PIPE_FLUSH_FENCE_FD) &&
|
fence) {
|
gfx_fence = rctx->ws->cs_get_next_fence(rctx->gfx.cs);
|
deferred_fence = true;
|
} else {
|
rctx->gfx.flush(rctx, rflags, fence ? &gfx_fence : NULL);
|
}
|
}
|
|
/* Both engines can signal out of order, so we need to keep both fences. */
|
if (fence) {
|
struct si_multi_fence *multi_fence;
|
|
if (flags & TC_FLUSH_ASYNC) {
|
multi_fence = (struct si_multi_fence *)*fence;
|
assert(multi_fence);
|
} else {
|
multi_fence = si_create_multi_fence();
|
if (!multi_fence) {
|
ws->fence_reference(&sdma_fence, NULL);
|
ws->fence_reference(&gfx_fence, NULL);
|
goto finish;
|
}
|
|
screen->fence_reference(screen, fence, NULL);
|
*fence = (struct pipe_fence_handle*)multi_fence;
|
}
|
|
/* If both fences are NULL, fence_finish will always return true. */
|
multi_fence->gfx = gfx_fence;
|
multi_fence->sdma = sdma_fence;
|
|
if (deferred_fence) {
|
multi_fence->gfx_unflushed.ctx = rctx;
|
multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
|
}
|
|
multi_fence->fine = fine;
|
fine.buf = NULL;
|
|
if (flags & TC_FLUSH_ASYNC) {
|
util_queue_fence_signal(&multi_fence->ready);
|
tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
|
}
|
}
|
assert(!fine.buf);
|
finish:
|
if (!(flags & PIPE_FLUSH_DEFERRED)) {
|
if (rctx->dma.cs)
|
ws->cs_sync_flush(rctx->dma.cs);
|
ws->cs_sync_flush(rctx->gfx.cs);
|
}
|
}
|
|
void si_init_fence_functions(struct si_context *ctx)
|
{
|
ctx->b.b.flush = si_flush_from_st;
|
ctx->b.b.create_fence_fd = si_create_fence_fd;
|
ctx->b.b.fence_server_sync = si_fence_server_sync;
|
}
|
|
void si_init_screen_fence_functions(struct si_screen *screen)
|
{
|
screen->b.fence_finish = si_fence_finish;
|
screen->b.fence_reference = si_fence_reference;
|
screen->b.fence_get_fd = si_fence_get_fd;
|
}
|