lin
2025-03-21 c2c82c91f6acd44c57766034b6ced0c53c164a55
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
 * Copyright 2011 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 */
 
#include <linux/spinlock.h>
#include <linux/module.h>
#include <asm/processor.h>
 
#include "spinlock_common.h"
 
/*
 * Read the spinlock value without allocating in our cache and without
 * causing an invalidation to another cpu with a copy of the cacheline.
 * This is important when we are spinning waiting for the lock.
 */
static inline u32 arch_spin_read_noalloc(void *lock)
{
   return atomic_cmpxchg((atomic_t *)lock, -1, -1);
}
 
/*
 * Wait until the high bits (current) match my ticket.
 * If we notice the overflow bit set on entry, we clear it.
 */
void arch_spin_lock_slow(arch_spinlock_t *lock, u32 my_ticket)
{
   if (unlikely(my_ticket & __ARCH_SPIN_NEXT_OVERFLOW)) {
       __insn_fetchand4(&lock->lock, ~__ARCH_SPIN_NEXT_OVERFLOW);
       my_ticket &= ~__ARCH_SPIN_NEXT_OVERFLOW;
   }
 
   for (;;) {
       u32 val = arch_spin_read_noalloc(lock);
       u32 delta = my_ticket - arch_spin_current(val);
       if (delta == 0)
           return;
       relax((128 / CYCLES_PER_RELAX_LOOP) * delta);
   }
}
EXPORT_SYMBOL(arch_spin_lock_slow);
 
/*
 * Check the lock to see if it is plausible, and try to get it with cmpxchg().
 */
int arch_spin_trylock(arch_spinlock_t *lock)
{
   u32 val = arch_spin_read_noalloc(lock);
   if (unlikely(arch_spin_current(val) != arch_spin_next(val)))
       return 0;
   return cmpxchg(&lock->lock, val, (val + 1) & ~__ARCH_SPIN_NEXT_OVERFLOW)
       == val;
}
EXPORT_SYMBOL(arch_spin_trylock);
 
void arch_spin_unlock_wait(arch_spinlock_t *lock)
{
   u32 iterations = 0;
   u32 val = READ_ONCE(lock->lock);
   u32 curr = arch_spin_current(val);
 
   /* Return immediately if unlocked. */
   if (arch_spin_next(val) == curr)
       return;
 
   /* Wait until the current locker has released the lock. */
   do {
       delay_backoff(iterations++);
   } while (arch_spin_current(READ_ONCE(lock->lock)) == curr);
 
   /*
    * The TILE architecture doesn't do read speculation; therefore
    * a control dependency guarantees a LOAD->{LOAD,STORE} order.
    */
   barrier();
}
EXPORT_SYMBOL(arch_spin_unlock_wait);
 
/*
 * If the read lock fails due to a writer, we retry periodically
 * until the value is positive and we write our incremented reader count.
 */
void __read_lock_failed(arch_rwlock_t *rw)
{
   u32 val;
   int iterations = 0;
   do {
       delay_backoff(iterations++);
       val = __insn_fetchaddgez4(&rw->lock, 1);
   } while (unlikely(arch_write_val_locked(val)));
}
EXPORT_SYMBOL(__read_lock_failed);
 
/*
 * If we failed because there were readers, clear the "writer" bit
 * so we don't block additional readers.  Otherwise, there was another
 * writer anyway, so our "fetchor" made no difference.  Then wait,
 * issuing periodic fetchor instructions, till we get the lock.
 */
void __write_lock_failed(arch_rwlock_t *rw, u32 val)
{
   int iterations = 0;
   do {
       if (!arch_write_val_locked(val))
           val = __insn_fetchand4(&rw->lock, ~__WRITE_LOCK_BIT);
       delay_backoff(iterations++);
       val = __insn_fetchor4(&rw->lock, __WRITE_LOCK_BIT);
   } while (val != 0);
}
EXPORT_SYMBOL(__write_lock_failed);