/*
|
* Copyright 2016 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkSLMetalCodeGenerator.h"
|
|
#include "SkSLCompiler.h"
|
#include "ir/SkSLExpressionStatement.h"
|
#include "ir/SkSLExtension.h"
|
#include "ir/SkSLIndexExpression.h"
|
#include "ir/SkSLModifiersDeclaration.h"
|
#include "ir/SkSLNop.h"
|
#include "ir/SkSLVariableReference.h"
|
|
#ifdef SK_MOLTENVK
|
static const uint32_t MVKMagicNum = 0x19960412;
|
#endif
|
|
namespace SkSL {
|
|
void MetalCodeGenerator::setupIntrinsics() {
|
#define METAL(x) std::make_pair(kMetal_IntrinsicKind, k ## x ## _MetalIntrinsic)
|
#define SPECIAL(x) std::make_pair(kSpecial_IntrinsicKind, k ## x ## _SpecialIntrinsic)
|
fIntrinsicMap[String("texture")] = SPECIAL(Texture);
|
fIntrinsicMap[String("mod")] = SPECIAL(Mod);
|
fIntrinsicMap[String("equal")] = METAL(Equal);
|
fIntrinsicMap[String("notEqual")] = METAL(NotEqual);
|
fIntrinsicMap[String("lessThan")] = METAL(LessThan);
|
fIntrinsicMap[String("lessThanEqual")] = METAL(LessThanEqual);
|
fIntrinsicMap[String("greaterThan")] = METAL(GreaterThan);
|
fIntrinsicMap[String("greaterThanEqual")] = METAL(GreaterThanEqual);
|
}
|
|
void MetalCodeGenerator::write(const char* s) {
|
if (!s[0]) {
|
return;
|
}
|
if (fAtLineStart) {
|
for (int i = 0; i < fIndentation; i++) {
|
fOut->writeText(" ");
|
}
|
}
|
fOut->writeText(s);
|
fAtLineStart = false;
|
}
|
|
void MetalCodeGenerator::writeLine(const char* s) {
|
this->write(s);
|
fOut->writeText(fLineEnding);
|
fAtLineStart = true;
|
}
|
|
void MetalCodeGenerator::write(const String& s) {
|
this->write(s.c_str());
|
}
|
|
void MetalCodeGenerator::writeLine(const String& s) {
|
this->writeLine(s.c_str());
|
}
|
|
void MetalCodeGenerator::writeLine() {
|
this->writeLine("");
|
}
|
|
void MetalCodeGenerator::writeExtension(const Extension& ext) {
|
this->writeLine("#extension " + ext.fName + " : enable");
|
}
|
|
void MetalCodeGenerator::writeType(const Type& type) {
|
switch (type.kind()) {
|
case Type::kStruct_Kind:
|
for (const Type* search : fWrittenStructs) {
|
if (*search == type) {
|
// already written
|
this->write(type.name());
|
return;
|
}
|
}
|
fWrittenStructs.push_back(&type);
|
this->writeLine("struct " + type.name() + " {");
|
fIndentation++;
|
this->writeFields(type.fields(), type.fOffset);
|
fIndentation--;
|
this->write("}");
|
break;
|
case Type::kVector_Kind:
|
this->writeType(type.componentType());
|
this->write(to_string(type.columns()));
|
break;
|
case Type::kMatrix_Kind:
|
this->writeType(type.componentType());
|
this->write(to_string(type.columns()));
|
this->write("x");
|
this->write(to_string(type.rows()));
|
break;
|
case Type::kSampler_Kind:
|
this->write("texture2d<float> "); // FIXME - support other texture types;
|
break;
|
default:
|
if (type == *fContext.fHalf_Type) {
|
// FIXME - Currently only supporting floats in MSL to avoid type coercion issues.
|
this->write(fContext.fFloat_Type->name());
|
} else if (type == *fContext.fByte_Type) {
|
this->write("char");
|
} else if (type == *fContext.fUByte_Type) {
|
this->write("uchar");
|
} else {
|
this->write(type.name());
|
}
|
}
|
}
|
|
void MetalCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) {
|
switch (expr.fKind) {
|
case Expression::kBinary_Kind:
|
this->writeBinaryExpression((BinaryExpression&) expr, parentPrecedence);
|
break;
|
case Expression::kBoolLiteral_Kind:
|
this->writeBoolLiteral((BoolLiteral&) expr);
|
break;
|
case Expression::kConstructor_Kind:
|
this->writeConstructor((Constructor&) expr, parentPrecedence);
|
break;
|
case Expression::kIntLiteral_Kind:
|
this->writeIntLiteral((IntLiteral&) expr);
|
break;
|
case Expression::kFieldAccess_Kind:
|
this->writeFieldAccess(((FieldAccess&) expr));
|
break;
|
case Expression::kFloatLiteral_Kind:
|
this->writeFloatLiteral(((FloatLiteral&) expr));
|
break;
|
case Expression::kFunctionCall_Kind:
|
this->writeFunctionCall((FunctionCall&) expr);
|
break;
|
case Expression::kPrefix_Kind:
|
this->writePrefixExpression((PrefixExpression&) expr, parentPrecedence);
|
break;
|
case Expression::kPostfix_Kind:
|
this->writePostfixExpression((PostfixExpression&) expr, parentPrecedence);
|
break;
|
case Expression::kSetting_Kind:
|
this->writeSetting((Setting&) expr);
|
break;
|
case Expression::kSwizzle_Kind:
|
this->writeSwizzle((Swizzle&) expr);
|
break;
|
case Expression::kVariableReference_Kind:
|
this->writeVariableReference((VariableReference&) expr);
|
break;
|
case Expression::kTernary_Kind:
|
this->writeTernaryExpression((TernaryExpression&) expr, parentPrecedence);
|
break;
|
case Expression::kIndex_Kind:
|
this->writeIndexExpression((IndexExpression&) expr);
|
break;
|
default:
|
ABORT("unsupported expression: %s", expr.description().c_str());
|
}
|
}
|
|
void MetalCodeGenerator::writeIntrinsicCall(const FunctionCall& c) {
|
auto i = fIntrinsicMap.find(c.fFunction.fName);
|
SkASSERT(i != fIntrinsicMap.end());
|
Intrinsic intrinsic = i->second;
|
int32_t intrinsicId = intrinsic.second;
|
switch (intrinsic.first) {
|
case kSpecial_IntrinsicKind:
|
return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId);
|
break;
|
case kMetal_IntrinsicKind:
|
this->writeExpression(*c.fArguments[0], kSequence_Precedence);
|
switch ((MetalIntrinsic) intrinsicId) {
|
case kEqual_MetalIntrinsic:
|
this->write(" == ");
|
break;
|
case kNotEqual_MetalIntrinsic:
|
this->write(" != ");
|
break;
|
case kLessThan_MetalIntrinsic:
|
this->write(" < ");
|
break;
|
case kLessThanEqual_MetalIntrinsic:
|
this->write(" <= ");
|
break;
|
case kGreaterThan_MetalIntrinsic:
|
this->write(" > ");
|
break;
|
case kGreaterThanEqual_MetalIntrinsic:
|
this->write(" >= ");
|
break;
|
default:
|
ABORT("unsupported metal intrinsic kind");
|
}
|
this->writeExpression(*c.fArguments[1], kSequence_Precedence);
|
break;
|
default:
|
ABORT("unsupported intrinsic kind");
|
}
|
}
|
|
void MetalCodeGenerator::writeFunctionCall(const FunctionCall& c) {
|
const auto& entry = fIntrinsicMap.find(c.fFunction.fName);
|
if (entry != fIntrinsicMap.end()) {
|
this->writeIntrinsicCall(c);
|
return;
|
}
|
if (c.fFunction.fBuiltin && "atan" == c.fFunction.fName && 2 == c.fArguments.size()) {
|
this->write("atan2");
|
} else if (c.fFunction.fBuiltin && "inversesqrt" == c.fFunction.fName) {
|
this->write("rsqrt");
|
} else if (c.fFunction.fBuiltin && "inverse" == c.fFunction.fName) {
|
SkASSERT(c.fArguments.size() == 1);
|
this->writeInverseHack(*c.fArguments[0]);
|
} else if (c.fFunction.fBuiltin && "dFdx" == c.fFunction.fName) {
|
this->write("dfdx");
|
} else if (c.fFunction.fBuiltin && "dFdy" == c.fFunction.fName) {
|
// Flipping Y also negates the Y derivatives.
|
this->write((fProgram.fSettings.fFlipY) ? "-dfdy" : "dfdy");
|
} else {
|
this->writeName(c.fFunction.fName);
|
}
|
this->write("(");
|
const char* separator = "";
|
if (this->requirements(c.fFunction) & kInputs_Requirement) {
|
this->write("_in");
|
separator = ", ";
|
}
|
if (this->requirements(c.fFunction) & kOutputs_Requirement) {
|
this->write(separator);
|
this->write("_out");
|
separator = ", ";
|
}
|
if (this->requirements(c.fFunction) & kUniforms_Requirement) {
|
this->write(separator);
|
this->write("_uniforms");
|
separator = ", ";
|
}
|
if (this->requirements(c.fFunction) & kGlobals_Requirement) {
|
this->write(separator);
|
this->write("_globals");
|
separator = ", ";
|
}
|
for (size_t i = 0; i < c.fArguments.size(); ++i) {
|
const Expression& arg = *c.fArguments[i];
|
this->write(separator);
|
separator = ", ";
|
if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) {
|
this->write("&");
|
}
|
this->writeExpression(arg, kSequence_Precedence);
|
}
|
this->write(")");
|
}
|
|
void MetalCodeGenerator::writeInverseHack(const Expression& mat) {
|
String typeName = mat.fType.name();
|
String name = typeName + "_inverse";
|
if (mat.fType == *fContext.fFloat2x2_Type || mat.fType == *fContext.fHalf2x2_Type) {
|
if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
|
fWrittenIntrinsics.insert(name);
|
fExtraFunctions.writeText((
|
typeName + " " + name + "(" + typeName + " m) {"
|
" return float2x2(m[1][1], -m[0][1], -m[1][0], m[0][0]) * (1/determinant(m));"
|
"}"
|
).c_str());
|
}
|
}
|
else if (mat.fType == *fContext.fFloat3x3_Type || mat.fType == *fContext.fHalf3x3_Type) {
|
if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
|
fWrittenIntrinsics.insert(name);
|
fExtraFunctions.writeText((
|
typeName + " " + name + "(" + typeName + " m) {"
|
" float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];"
|
" float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];"
|
" float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];"
|
" float b01 = a22 * a11 - a12 * a21;"
|
" float b11 = -a22 * a10 + a12 * a20;"
|
" float b21 = a21 * a10 - a11 * a20;"
|
" float det = a00 * b01 + a01 * b11 + a02 * b21;"
|
" return " + typeName +
|
" (b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11),"
|
" b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10),"
|
" b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) * "
|
" (1/det);"
|
"}"
|
).c_str());
|
}
|
}
|
else if (mat.fType == *fContext.fFloat4x4_Type || mat.fType == *fContext.fHalf4x4_Type) {
|
if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) {
|
fWrittenIntrinsics.insert(name);
|
fExtraFunctions.writeText((
|
typeName + " " + name + "(" + typeName + " m) {"
|
" float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3];"
|
" float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3];"
|
" float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3];"
|
" float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3];"
|
" float b00 = a00 * a11 - a01 * a10;"
|
" float b01 = a00 * a12 - a02 * a10;"
|
" float b02 = a00 * a13 - a03 * a10;"
|
" float b03 = a01 * a12 - a02 * a11;"
|
" float b04 = a01 * a13 - a03 * a11;"
|
" float b05 = a02 * a13 - a03 * a12;"
|
" float b06 = a20 * a31 - a21 * a30;"
|
" float b07 = a20 * a32 - a22 * a30;"
|
" float b08 = a20 * a33 - a23 * a30;"
|
" float b09 = a21 * a32 - a22 * a31;"
|
" float b10 = a21 * a33 - a23 * a31;"
|
" float b11 = a22 * a33 - a23 * a32;"
|
" float det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - "
|
" b04 * b07 + b05 * b06;"
|
" return " + typeName + "(a11 * b11 - a12 * b10 + a13 * b09,"
|
" a02 * b10 - a01 * b11 - a03 * b09,"
|
" a31 * b05 - a32 * b04 + a33 * b03,"
|
" a22 * b04 - a21 * b05 - a23 * b03,"
|
" a12 * b08 - a10 * b11 - a13 * b07,"
|
" a00 * b11 - a02 * b08 + a03 * b07,"
|
" a32 * b02 - a30 * b05 - a33 * b01,"
|
" a20 * b05 - a22 * b02 + a23 * b01,"
|
" a10 * b10 - a11 * b08 + a13 * b06,"
|
" a01 * b08 - a00 * b10 - a03 * b06,"
|
" a30 * b04 - a31 * b02 + a33 * b00,"
|
" a21 * b02 - a20 * b04 - a23 * b00,"
|
" a11 * b07 - a10 * b09 - a12 * b06,"
|
" a00 * b09 - a01 * b07 + a02 * b06,"
|
" a31 * b01 - a30 * b03 - a32 * b00,"
|
" a20 * b03 - a21 * b01 + a22 * b00) / det;"
|
"}"
|
).c_str());
|
}
|
}
|
this->write(name);
|
}
|
|
void MetalCodeGenerator::writeSpecialIntrinsic(const FunctionCall & c, SpecialIntrinsic kind) {
|
switch (kind) {
|
case kTexture_SpecialIntrinsic:
|
this->writeExpression(*c.fArguments[0], kSequence_Precedence);
|
this->write(".sample(");
|
this->writeExpression(*c.fArguments[0], kSequence_Precedence);
|
this->write(SAMPLER_SUFFIX);
|
this->write(", ");
|
this->writeExpression(*c.fArguments[1], kSequence_Precedence);
|
if (c.fArguments[1]->fType == *fContext.fFloat3_Type) {
|
this->write(".xy)"); // FIXME - add projection functionality
|
} else {
|
SkASSERT(c.fArguments[1]->fType == *fContext.fFloat2_Type);
|
this->write(")");
|
}
|
break;
|
case kMod_SpecialIntrinsic:
|
// fmod(x, y) in metal calculates x - y * trunc(x / y) instead of x - y * floor(x / y)
|
this->write("((");
|
this->writeExpression(*c.fArguments[0], kSequence_Precedence);
|
this->write(") - (");
|
this->writeExpression(*c.fArguments[1], kSequence_Precedence);
|
this->write(") * floor((");
|
this->writeExpression(*c.fArguments[0], kSequence_Precedence);
|
this->write(") / (");
|
this->writeExpression(*c.fArguments[1], kSequence_Precedence);
|
this->write(")))");
|
break;
|
default:
|
ABORT("unsupported special intrinsic kind");
|
}
|
}
|
|
// If it hasn't already been written, writes a constructor for 'matrix' which takes a single value
|
// of type 'arg'.
|
String MetalCodeGenerator::getMatrixConstructHelper(const Type& matrix, const Type& arg) {
|
String key = matrix.name() + arg.name();
|
auto found = fHelpers.find(key);
|
if (found != fHelpers.end()) {
|
return found->second;
|
}
|
String name;
|
int columns = matrix.columns();
|
int rows = matrix.rows();
|
if (arg.isNumber()) {
|
// creating a matrix from a single scalar value
|
name = "float" + to_string(columns) + "x" + to_string(rows) + "_from_float";
|
fExtraFunctions.printf("float%dx%d %s(float x) {\n",
|
columns, rows, name.c_str());
|
fExtraFunctions.printf(" return float%dx%d(", columns, rows);
|
for (int i = 0; i < columns; ++i) {
|
if (i > 0) {
|
fExtraFunctions.writeText(", ");
|
}
|
fExtraFunctions.printf("float%d(", rows);
|
for (int j = 0; j < rows; ++j) {
|
if (j > 0) {
|
fExtraFunctions.writeText(", ");
|
}
|
if (i == j) {
|
fExtraFunctions.writeText("x");
|
} else {
|
fExtraFunctions.writeText("0");
|
}
|
}
|
fExtraFunctions.writeText(")");
|
}
|
fExtraFunctions.writeText(");\n}\n");
|
} else if (arg.kind() == Type::kMatrix_Kind) {
|
// creating a matrix from another matrix
|
int argColumns = arg.columns();
|
int argRows = arg.rows();
|
name = "float" + to_string(columns) + "x" + to_string(rows) + "_from_float" +
|
to_string(argColumns) + "x" + to_string(argRows);
|
fExtraFunctions.printf("float%dx%d %s(float%dx%d m) {\n",
|
columns, rows, name.c_str(), argColumns, argRows);
|
fExtraFunctions.printf(" return float%dx%d(", columns, rows);
|
for (int i = 0; i < columns; ++i) {
|
if (i > 0) {
|
fExtraFunctions.writeText(", ");
|
}
|
fExtraFunctions.printf("float%d(", rows);
|
for (int j = 0; j < rows; ++j) {
|
if (j > 0) {
|
fExtraFunctions.writeText(", ");
|
}
|
if (i < argColumns && j < argRows) {
|
fExtraFunctions.printf("m[%d][%d]", i, j);
|
} else {
|
fExtraFunctions.writeText("0");
|
}
|
}
|
fExtraFunctions.writeText(")");
|
}
|
fExtraFunctions.writeText(");\n}\n");
|
} else if (matrix.rows() == 2 && matrix.columns() == 2 && arg == *fContext.fFloat4_Type) {
|
// float2x2(float4) doesn't work, need to split it into float2x2(float2, float2)
|
name = "float2x2_from_float4";
|
fExtraFunctions.printf(
|
"float2x2 %s(float4 v) {\n"
|
" return float2x2(float2(v[0], v[1]), float2(v[2], v[3]));\n"
|
"}\n",
|
name.c_str()
|
);
|
} else {
|
SkASSERT(false);
|
name = "<error>";
|
}
|
fHelpers[key] = name;
|
return name;
|
}
|
|
bool MetalCodeGenerator::canCoerce(const Type& t1, const Type& t2) {
|
if (t1.columns() != t2.columns() || t1.rows() != t2.rows()) {
|
return false;
|
}
|
if (t1.columns() > 1) {
|
return this->canCoerce(t1.componentType(), t2.componentType());
|
}
|
return t1.isFloat() && t2.isFloat();
|
}
|
|
void MetalCodeGenerator::writeConstructor(const Constructor& c, Precedence parentPrecedence) {
|
if (c.fArguments.size() == 1 && this->canCoerce(c.fType, c.fArguments[0]->fType)) {
|
this->writeExpression(*c.fArguments[0], parentPrecedence);
|
return;
|
}
|
if (c.fType.kind() == Type::kMatrix_Kind && c.fArguments.size() == 1) {
|
const Expression& arg = *c.fArguments[0];
|
String name = this->getMatrixConstructHelper(c.fType, arg.fType);
|
this->write(name);
|
this->write("(");
|
this->writeExpression(arg, kSequence_Precedence);
|
this->write(")");
|
} else {
|
this->writeType(c.fType);
|
this->write("(");
|
const char* separator = "";
|
int scalarCount = 0;
|
for (const auto& arg : c.fArguments) {
|
this->write(separator);
|
separator = ", ";
|
if (Type::kMatrix_Kind == c.fType.kind() && arg->fType.columns() != c.fType.rows()) {
|
// merge scalars and smaller vectors together
|
if (!scalarCount) {
|
this->writeType(c.fType.componentType());
|
this->write(to_string(c.fType.rows()));
|
this->write("(");
|
}
|
scalarCount += arg->fType.columns();
|
}
|
this->writeExpression(*arg, kSequence_Precedence);
|
if (scalarCount && scalarCount == c.fType.rows()) {
|
this->write(")");
|
scalarCount = 0;
|
}
|
}
|
this->write(")");
|
}
|
}
|
|
void MetalCodeGenerator::writeFragCoord() {
|
if (fProgram.fInputs.fRTHeight) {
|
this->write("float4(_fragCoord.x, _anonInterface0.u_skRTHeight - _fragCoord.y, 0.0, "
|
"_fragCoord.w)");
|
} else {
|
this->write("float4(_fragCoord.x, _fragCoord.y, 0.0, _fragCoord.w)");
|
}
|
}
|
|
void MetalCodeGenerator::writeVariableReference(const VariableReference& ref) {
|
switch (ref.fVariable.fModifiers.fLayout.fBuiltin) {
|
case SK_FRAGCOLOR_BUILTIN:
|
this->write("_out->sk_FragColor");
|
break;
|
case SK_FRAGCOORD_BUILTIN:
|
this->writeFragCoord();
|
break;
|
case SK_VERTEXID_BUILTIN:
|
this->write("sk_VertexID");
|
break;
|
case SK_INSTANCEID_BUILTIN:
|
this->write("sk_InstanceID");
|
break;
|
case SK_CLOCKWISE_BUILTIN:
|
// We'd set the front facing winding in the MTLRenderCommandEncoder to be counter
|
// clockwise to match Skia convention. This is also the default in MoltenVK.
|
this->write(fProgram.fSettings.fFlipY ? "_frontFacing" : "(!_frontFacing)");
|
break;
|
default:
|
if (Variable::kGlobal_Storage == ref.fVariable.fStorage) {
|
if (ref.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) {
|
this->write("_in.");
|
} else if (ref.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag) {
|
this->write("_out->");
|
} else if (ref.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag &&
|
ref.fVariable.fType.kind() != Type::kSampler_Kind) {
|
this->write("_uniforms.");
|
} else {
|
this->write("_globals->");
|
}
|
}
|
this->writeName(ref.fVariable.fName);
|
}
|
}
|
|
void MetalCodeGenerator::writeIndexExpression(const IndexExpression& expr) {
|
this->writeExpression(*expr.fBase, kPostfix_Precedence);
|
this->write("[");
|
this->writeExpression(*expr.fIndex, kTopLevel_Precedence);
|
this->write("]");
|
}
|
|
void MetalCodeGenerator::writeFieldAccess(const FieldAccess& f) {
|
const Type::Field* field = &f.fBase->fType.fields()[f.fFieldIndex];
|
if (FieldAccess::kDefault_OwnerKind == f.fOwnerKind) {
|
this->writeExpression(*f.fBase, kPostfix_Precedence);
|
this->write(".");
|
}
|
switch (field->fModifiers.fLayout.fBuiltin) {
|
case SK_CLIPDISTANCE_BUILTIN:
|
this->write("gl_ClipDistance");
|
break;
|
case SK_POSITION_BUILTIN:
|
this->write("_out->sk_Position");
|
break;
|
default:
|
if (field->fName == "sk_PointSize") {
|
this->write("_out->sk_PointSize");
|
} else {
|
if (FieldAccess::kAnonymousInterfaceBlock_OwnerKind == f.fOwnerKind) {
|
this->write("_globals->");
|
this->write(fInterfaceBlockNameMap[fInterfaceBlockMap[field]]);
|
this->write("->");
|
}
|
this->writeName(field->fName);
|
}
|
}
|
}
|
|
void MetalCodeGenerator::writeSwizzle(const Swizzle& swizzle) {
|
int last = swizzle.fComponents.back();
|
if (last == SKSL_SWIZZLE_0 || last == SKSL_SWIZZLE_1) {
|
this->writeType(swizzle.fType);
|
this->write("(");
|
}
|
this->writeExpression(*swizzle.fBase, kPostfix_Precedence);
|
this->write(".");
|
for (int c : swizzle.fComponents) {
|
if (c >= 0) {
|
this->write(&("x\0y\0z\0w\0"[c * 2]));
|
}
|
}
|
if (last == SKSL_SWIZZLE_0) {
|
this->write(", 0)");
|
}
|
else if (last == SKSL_SWIZZLE_1) {
|
this->write(", 1)");
|
}
|
}
|
|
MetalCodeGenerator::Precedence MetalCodeGenerator::GetBinaryPrecedence(Token::Kind op) {
|
switch (op) {
|
case Token::STAR: // fall through
|
case Token::SLASH: // fall through
|
case Token::PERCENT: return MetalCodeGenerator::kMultiplicative_Precedence;
|
case Token::PLUS: // fall through
|
case Token::MINUS: return MetalCodeGenerator::kAdditive_Precedence;
|
case Token::SHL: // fall through
|
case Token::SHR: return MetalCodeGenerator::kShift_Precedence;
|
case Token::LT: // fall through
|
case Token::GT: // fall through
|
case Token::LTEQ: // fall through
|
case Token::GTEQ: return MetalCodeGenerator::kRelational_Precedence;
|
case Token::EQEQ: // fall through
|
case Token::NEQ: return MetalCodeGenerator::kEquality_Precedence;
|
case Token::BITWISEAND: return MetalCodeGenerator::kBitwiseAnd_Precedence;
|
case Token::BITWISEXOR: return MetalCodeGenerator::kBitwiseXor_Precedence;
|
case Token::BITWISEOR: return MetalCodeGenerator::kBitwiseOr_Precedence;
|
case Token::LOGICALAND: return MetalCodeGenerator::kLogicalAnd_Precedence;
|
case Token::LOGICALXOR: return MetalCodeGenerator::kLogicalXor_Precedence;
|
case Token::LOGICALOR: return MetalCodeGenerator::kLogicalOr_Precedence;
|
case Token::EQ: // fall through
|
case Token::PLUSEQ: // fall through
|
case Token::MINUSEQ: // fall through
|
case Token::STAREQ: // fall through
|
case Token::SLASHEQ: // fall through
|
case Token::PERCENTEQ: // fall through
|
case Token::SHLEQ: // fall through
|
case Token::SHREQ: // fall through
|
case Token::LOGICALANDEQ: // fall through
|
case Token::LOGICALXOREQ: // fall through
|
case Token::LOGICALOREQ: // fall through
|
case Token::BITWISEANDEQ: // fall through
|
case Token::BITWISEXOREQ: // fall through
|
case Token::BITWISEOREQ: return MetalCodeGenerator::kAssignment_Precedence;
|
case Token::COMMA: return MetalCodeGenerator::kSequence_Precedence;
|
default: ABORT("unsupported binary operator");
|
}
|
}
|
|
void MetalCodeGenerator::writeMatrixTimesEqualHelper(const Type& left, const Type& right,
|
const Type& result) {
|
String key = "TimesEqual" + left.name() + right.name();
|
if (fHelpers.find(key) == fHelpers.end()) {
|
fExtraFunctions.printf("%s operator*=(thread %s& left, thread const %s& right) {\n"
|
" left = left * right;\n"
|
" return left;\n"
|
"}", result.name().c_str(), left.name().c_str(),
|
right.name().c_str());
|
}
|
}
|
|
void MetalCodeGenerator::writeBinaryExpression(const BinaryExpression& b,
|
Precedence parentPrecedence) {
|
Precedence precedence = GetBinaryPrecedence(b.fOperator);
|
bool needParens = precedence >= parentPrecedence;
|
switch (b.fOperator) {
|
case Token::EQEQ:
|
if (b.fLeft->fType.kind() == Type::kVector_Kind) {
|
this->write("all");
|
needParens = true;
|
}
|
break;
|
case Token::NEQ:
|
if (b.fLeft->fType.kind() == Type::kVector_Kind) {
|
this->write("!all");
|
needParens = true;
|
}
|
break;
|
default:
|
break;
|
}
|
if (needParens) {
|
this->write("(");
|
}
|
if (Compiler::IsAssignment(b.fOperator) &&
|
Expression::kVariableReference_Kind == b.fLeft->fKind &&
|
Variable::kParameter_Storage == ((VariableReference&) *b.fLeft).fVariable.fStorage &&
|
(((VariableReference&) *b.fLeft).fVariable.fModifiers.fFlags & Modifiers::kOut_Flag)) {
|
// writing to an out parameter. Since we have to turn those into pointers, we have to
|
// dereference it here.
|
this->write("*");
|
}
|
if (b.fOperator == Token::STAREQ && b.fLeft->fType.kind() == Type::kMatrix_Kind &&
|
b.fRight->fType.kind() == Type::kMatrix_Kind) {
|
this->writeMatrixTimesEqualHelper(b.fLeft->fType, b.fRight->fType, b.fType);
|
}
|
this->writeExpression(*b.fLeft, precedence);
|
if (b.fOperator != Token::EQ && Compiler::IsAssignment(b.fOperator) &&
|
Expression::kSwizzle_Kind == b.fLeft->fKind && !b.fLeft->hasSideEffects()) {
|
// This doesn't compile in Metal:
|
// float4 x = float4(1);
|
// x.xy *= float2x2(...);
|
// with the error message "non-const reference cannot bind to vector element",
|
// but switching it to x.xy = x.xy * float2x2(...) fixes it. We perform this tranformation
|
// as long as the LHS has no side effects, and hope for the best otherwise.
|
this->write(" = ");
|
this->writeExpression(*b.fLeft, kAssignment_Precedence);
|
this->write(" ");
|
String op = Compiler::OperatorName(b.fOperator);
|
SkASSERT(op.endsWith("="));
|
this->write(op.substr(0, op.size() - 1).c_str());
|
this->write(" ");
|
} else {
|
this->write(String(" ") + Compiler::OperatorName(b.fOperator) + " ");
|
}
|
this->writeExpression(*b.fRight, precedence);
|
if (needParens) {
|
this->write(")");
|
}
|
}
|
|
void MetalCodeGenerator::writeTernaryExpression(const TernaryExpression& t,
|
Precedence parentPrecedence) {
|
if (kTernary_Precedence >= parentPrecedence) {
|
this->write("(");
|
}
|
this->writeExpression(*t.fTest, kTernary_Precedence);
|
this->write(" ? ");
|
this->writeExpression(*t.fIfTrue, kTernary_Precedence);
|
this->write(" : ");
|
this->writeExpression(*t.fIfFalse, kTernary_Precedence);
|
if (kTernary_Precedence >= parentPrecedence) {
|
this->write(")");
|
}
|
}
|
|
void MetalCodeGenerator::writePrefixExpression(const PrefixExpression& p,
|
Precedence parentPrecedence) {
|
if (kPrefix_Precedence >= parentPrecedence) {
|
this->write("(");
|
}
|
this->write(Compiler::OperatorName(p.fOperator));
|
this->writeExpression(*p.fOperand, kPrefix_Precedence);
|
if (kPrefix_Precedence >= parentPrecedence) {
|
this->write(")");
|
}
|
}
|
|
void MetalCodeGenerator::writePostfixExpression(const PostfixExpression& p,
|
Precedence parentPrecedence) {
|
if (kPostfix_Precedence >= parentPrecedence) {
|
this->write("(");
|
}
|
this->writeExpression(*p.fOperand, kPostfix_Precedence);
|
this->write(Compiler::OperatorName(p.fOperator));
|
if (kPostfix_Precedence >= parentPrecedence) {
|
this->write(")");
|
}
|
}
|
|
void MetalCodeGenerator::writeBoolLiteral(const BoolLiteral& b) {
|
this->write(b.fValue ? "true" : "false");
|
}
|
|
void MetalCodeGenerator::writeIntLiteral(const IntLiteral& i) {
|
if (i.fType == *fContext.fUInt_Type) {
|
this->write(to_string(i.fValue & 0xffffffff) + "u");
|
} else {
|
this->write(to_string((int32_t) i.fValue));
|
}
|
}
|
|
void MetalCodeGenerator::writeFloatLiteral(const FloatLiteral& f) {
|
this->write(to_string(f.fValue));
|
}
|
|
void MetalCodeGenerator::writeSetting(const Setting& s) {
|
ABORT("internal error; setting was not folded to a constant during compilation\n");
|
}
|
|
void MetalCodeGenerator::writeFunction(const FunctionDefinition& f) {
|
const char* separator = "";
|
if ("main" == f.fDeclaration.fName) {
|
switch (fProgram.fKind) {
|
case Program::kFragment_Kind:
|
#ifdef SK_MOLTENVK
|
this->write("fragment Outputs main0");
|
#else
|
this->write("fragment Outputs fragmentMain");
|
#endif
|
break;
|
case Program::kVertex_Kind:
|
#ifdef SK_MOLTENVK
|
this->write("vertex Outputs main0");
|
#else
|
this->write("vertex Outputs vertexMain");
|
#endif
|
break;
|
default:
|
SkASSERT(false);
|
}
|
this->write("(Inputs _in [[stage_in]]");
|
if (-1 != fUniformBuffer) {
|
this->write(", constant Uniforms& _uniforms [[buffer(" +
|
to_string(fUniformBuffer) + ")]]");
|
}
|
for (const auto& e : fProgram) {
|
if (ProgramElement::kVar_Kind == e.fKind) {
|
VarDeclarations& decls = (VarDeclarations&) e;
|
if (!decls.fVars.size()) {
|
continue;
|
}
|
for (const auto& stmt: decls.fVars) {
|
VarDeclaration& var = (VarDeclaration&) *stmt;
|
if (var.fVar->fType.kind() == Type::kSampler_Kind) {
|
this->write(", texture2d<float> "); // FIXME - support other texture types
|
this->writeName(var.fVar->fName);
|
this->write("[[texture(");
|
this->write(to_string(var.fVar->fModifiers.fLayout.fBinding));
|
this->write(")]]");
|
this->write(", sampler ");
|
this->writeName(var.fVar->fName);
|
this->write(SAMPLER_SUFFIX);
|
this->write("[[sampler(");
|
this->write(to_string(var.fVar->fModifiers.fLayout.fBinding));
|
this->write(")]]");
|
}
|
}
|
} else if (ProgramElement::kInterfaceBlock_Kind == e.fKind) {
|
InterfaceBlock& intf = (InterfaceBlock&) e;
|
if ("sk_PerVertex" == intf.fTypeName) {
|
continue;
|
}
|
this->write(", constant ");
|
this->writeType(intf.fVariable.fType);
|
this->write("& " );
|
this->write(fInterfaceBlockNameMap[&intf]);
|
this->write(" [[buffer(");
|
#ifdef SK_MOLTENVK
|
this->write(to_string(intf.fVariable.fModifiers.fLayout.fSet));
|
#else
|
this->write(to_string(intf.fVariable.fModifiers.fLayout.fBinding));
|
#endif
|
this->write(")]]");
|
}
|
}
|
if (fProgram.fKind == Program::kFragment_Kind) {
|
if (fProgram.fInputs.fRTHeight && fInterfaceBlockNameMap.empty()) {
|
#ifdef SK_MOLTENVK
|
this->write(", constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(0)]]");
|
#else
|
this->write(", constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(1)]]");
|
#endif
|
}
|
this->write(", bool _frontFacing [[front_facing]]");
|
this->write(", float4 _fragCoord [[position]]");
|
} else if (fProgram.fKind == Program::kVertex_Kind) {
|
this->write(", uint sk_VertexID [[vertex_id]], uint sk_InstanceID [[instance_id]]");
|
}
|
separator = ", ";
|
} else {
|
this->writeType(f.fDeclaration.fReturnType);
|
this->write(" ");
|
this->writeName(f.fDeclaration.fName);
|
this->write("(");
|
if (this->requirements(f.fDeclaration) & kInputs_Requirement) {
|
this->write("Inputs _in");
|
separator = ", ";
|
}
|
if (this->requirements(f.fDeclaration) & kOutputs_Requirement) {
|
this->write(separator);
|
this->write("thread Outputs* _out");
|
separator = ", ";
|
}
|
if (this->requirements(f.fDeclaration) & kUniforms_Requirement) {
|
this->write(separator);
|
this->write("Uniforms _uniforms");
|
separator = ", ";
|
}
|
if (this->requirements(f.fDeclaration) & kGlobals_Requirement) {
|
this->write(separator);
|
this->write("thread Globals* _globals");
|
separator = ", ";
|
}
|
}
|
for (const auto& param : f.fDeclaration.fParameters) {
|
this->write(separator);
|
separator = ", ";
|
this->writeModifiers(param->fModifiers, false);
|
std::vector<int> sizes;
|
const Type* type = ¶m->fType;
|
while (Type::kArray_Kind == type->kind()) {
|
sizes.push_back(type->columns());
|
type = &type->componentType();
|
}
|
this->writeType(*type);
|
if (param->fModifiers.fFlags & Modifiers::kOut_Flag) {
|
this->write("*");
|
}
|
this->write(" ");
|
this->writeName(param->fName);
|
for (int s : sizes) {
|
if (s <= 0) {
|
this->write("[]");
|
} else {
|
this->write("[" + to_string(s) + "]");
|
}
|
}
|
}
|
this->writeLine(") {");
|
|
SkASSERT(!fProgram.fSettings.fFragColorIsInOut);
|
|
if ("main" == f.fDeclaration.fName) {
|
if (fNeedsGlobalStructInit) {
|
this->writeLine(" Globals globalStruct;");
|
this->writeLine(" thread Globals* _globals = &globalStruct;");
|
for (const auto& intf: fInterfaceBlockNameMap) {
|
const auto& intfName = intf.second;
|
this->write(" _globals->");
|
this->writeName(intfName);
|
this->write(" = &");
|
this->writeName(intfName);
|
this->write(";\n");
|
}
|
for (const auto& var: fInitNonConstGlobalVars) {
|
this->write(" _globals->");
|
this->writeName(var->fVar->fName);
|
this->write(" = ");
|
this->writeVarInitializer(*var->fVar, *var->fValue);
|
this->writeLine(";");
|
}
|
for (const auto& texture: fTextures) {
|
this->write(" _globals->");
|
this->writeName(texture->fName);
|
this->write(" = ");
|
this->writeName(texture->fName);
|
this->write(";\n");
|
this->write(" _globals->");
|
this->writeName(texture->fName);
|
this->write(SAMPLER_SUFFIX);
|
this->write(" = ");
|
this->writeName(texture->fName);
|
this->write(SAMPLER_SUFFIX);
|
this->write(";\n");
|
}
|
}
|
this->writeLine(" Outputs _outputStruct;");
|
this->writeLine(" thread Outputs* _out = &_outputStruct;");
|
}
|
fFunctionHeader = "";
|
OutputStream* oldOut = fOut;
|
StringStream buffer;
|
fOut = &buffer;
|
fIndentation++;
|
this->writeStatements(((Block&) *f.fBody).fStatements);
|
if ("main" == f.fDeclaration.fName) {
|
switch (fProgram.fKind) {
|
case Program::kFragment_Kind:
|
this->writeLine("return *_out;");
|
break;
|
case Program::kVertex_Kind:
|
this->writeLine("_out->sk_Position.y = -_out->sk_Position.y;");
|
this->writeLine("return *_out;"); // FIXME - detect if function already has return
|
break;
|
default:
|
SkASSERT(false);
|
}
|
}
|
fIndentation--;
|
this->writeLine("}");
|
|
fOut = oldOut;
|
this->write(fFunctionHeader);
|
this->write(buffer.str());
|
}
|
|
void MetalCodeGenerator::writeModifiers(const Modifiers& modifiers,
|
bool globalContext) {
|
if (modifiers.fFlags & Modifiers::kOut_Flag) {
|
this->write("thread ");
|
}
|
if (modifiers.fFlags & Modifiers::kConst_Flag) {
|
this->write("constant ");
|
}
|
}
|
|
void MetalCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) {
|
if ("sk_PerVertex" == intf.fTypeName) {
|
return;
|
}
|
this->writeModifiers(intf.fVariable.fModifiers, true);
|
this->write("struct ");
|
this->writeLine(intf.fTypeName + " {");
|
const Type* structType = &intf.fVariable.fType;
|
fWrittenStructs.push_back(structType);
|
while (Type::kArray_Kind == structType->kind()) {
|
structType = &structType->componentType();
|
}
|
fIndentation++;
|
writeFields(structType->fields(), structType->fOffset, &intf);
|
if (fProgram.fInputs.fRTHeight) {
|
this->writeLine("float u_skRTHeight;");
|
}
|
fIndentation--;
|
this->write("}");
|
if (intf.fInstanceName.size()) {
|
this->write(" ");
|
this->write(intf.fInstanceName);
|
for (const auto& size : intf.fSizes) {
|
this->write("[");
|
if (size) {
|
this->writeExpression(*size, kTopLevel_Precedence);
|
}
|
this->write("]");
|
}
|
fInterfaceBlockNameMap[&intf] = intf.fInstanceName;
|
} else {
|
fInterfaceBlockNameMap[&intf] = "_anonInterface" + to_string(fAnonInterfaceCount++);
|
}
|
this->writeLine(";");
|
}
|
|
void MetalCodeGenerator::writeFields(const std::vector<Type::Field>& fields, int parentOffset,
|
const InterfaceBlock* parentIntf) {
|
#ifdef SK_MOLTENVK
|
MemoryLayout memoryLayout(MemoryLayout::k140_Standard);
|
#else
|
MemoryLayout memoryLayout(MemoryLayout::kMetal_Standard);
|
#endif
|
int currentOffset = 0;
|
for (const auto& field: fields) {
|
int fieldOffset = field.fModifiers.fLayout.fOffset;
|
const Type* fieldType = field.fType;
|
if (fieldOffset != -1) {
|
if (currentOffset > fieldOffset) {
|
fErrors.error(parentOffset,
|
"offset of field '" + field.fName + "' must be at least " +
|
to_string((int) currentOffset));
|
} else if (currentOffset < fieldOffset) {
|
this->write("char pad");
|
this->write(to_string(fPaddingCount++));
|
this->write("[");
|
this->write(to_string(fieldOffset - currentOffset));
|
this->writeLine("];");
|
currentOffset = fieldOffset;
|
}
|
int alignment = memoryLayout.alignment(*fieldType);
|
if (fieldOffset % alignment) {
|
fErrors.error(parentOffset,
|
"offset of field '" + field.fName + "' must be a multiple of " +
|
to_string((int) alignment));
|
}
|
}
|
#ifdef SK_MOLTENVK
|
if (fieldType->kind() == Type::kVector_Kind &&
|
fieldType->columns() == 3) {
|
SkASSERT(memoryLayout.size(*fieldType) == 3);
|
// Pack all vec3 types so that their size in bytes will match what was expected in the
|
// original SkSL code since MSL has vec3 sizes equal to 4 * component type, while SkSL
|
// has vec3 equal to 3 * component type.
|
|
// FIXME - Packed vectors can't be accessed by swizzles, but can be indexed into. A
|
// combination of this being a problem which only occurs when using MoltenVK and the
|
// fact that we haven't swizzled a vec3 yet means that this problem hasn't been
|
// addressed.
|
this->write(PACKED_PREFIX);
|
}
|
#endif
|
currentOffset += memoryLayout.size(*fieldType);
|
std::vector<int> sizes;
|
while (fieldType->kind() == Type::kArray_Kind) {
|
sizes.push_back(fieldType->columns());
|
fieldType = &fieldType->componentType();
|
}
|
this->writeModifiers(field.fModifiers, false);
|
this->writeType(*fieldType);
|
this->write(" ");
|
this->writeName(field.fName);
|
for (int s : sizes) {
|
if (s <= 0) {
|
this->write("[]");
|
} else {
|
this->write("[" + to_string(s) + "]");
|
}
|
}
|
this->writeLine(";");
|
if (parentIntf) {
|
fInterfaceBlockMap[&field] = parentIntf;
|
}
|
}
|
}
|
|
void MetalCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) {
|
this->writeExpression(value, kTopLevel_Precedence);
|
}
|
|
void MetalCodeGenerator::writeName(const String& name) {
|
if (fReservedWords.find(name) != fReservedWords.end()) {
|
this->write("_"); // adding underscore before name to avoid conflict with reserved words
|
}
|
this->write(name);
|
}
|
|
void MetalCodeGenerator::writeVarDeclarations(const VarDeclarations& decl, bool global) {
|
SkASSERT(decl.fVars.size() > 0);
|
bool wroteType = false;
|
for (const auto& stmt : decl.fVars) {
|
VarDeclaration& var = (VarDeclaration&) *stmt;
|
if (global && !(var.fVar->fModifiers.fFlags & Modifiers::kConst_Flag)) {
|
continue;
|
}
|
if (wroteType) {
|
this->write(", ");
|
} else {
|
this->writeModifiers(var.fVar->fModifiers, global);
|
this->writeType(decl.fBaseType);
|
this->write(" ");
|
wroteType = true;
|
}
|
this->writeName(var.fVar->fName);
|
for (const auto& size : var.fSizes) {
|
this->write("[");
|
if (size) {
|
this->writeExpression(*size, kTopLevel_Precedence);
|
}
|
this->write("]");
|
}
|
if (var.fValue) {
|
this->write(" = ");
|
this->writeVarInitializer(*var.fVar, *var.fValue);
|
}
|
if (!fFoundImageDecl && var.fVar->fType == *fContext.fImage2D_Type) {
|
if (fProgram.fSettings.fCaps->imageLoadStoreExtensionString()) {
|
fHeader.writeText("#extension ");
|
fHeader.writeText(fProgram.fSettings.fCaps->imageLoadStoreExtensionString());
|
fHeader.writeText(" : require\n");
|
}
|
fFoundImageDecl = true;
|
}
|
}
|
if (wroteType) {
|
this->write(";");
|
}
|
}
|
|
void MetalCodeGenerator::writeStatement(const Statement& s) {
|
switch (s.fKind) {
|
case Statement::kBlock_Kind:
|
this->writeBlock((Block&) s);
|
break;
|
case Statement::kExpression_Kind:
|
this->writeExpression(*((ExpressionStatement&) s).fExpression, kTopLevel_Precedence);
|
this->write(";");
|
break;
|
case Statement::kReturn_Kind:
|
this->writeReturnStatement((ReturnStatement&) s);
|
break;
|
case Statement::kVarDeclarations_Kind:
|
this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration, false);
|
break;
|
case Statement::kIf_Kind:
|
this->writeIfStatement((IfStatement&) s);
|
break;
|
case Statement::kFor_Kind:
|
this->writeForStatement((ForStatement&) s);
|
break;
|
case Statement::kWhile_Kind:
|
this->writeWhileStatement((WhileStatement&) s);
|
break;
|
case Statement::kDo_Kind:
|
this->writeDoStatement((DoStatement&) s);
|
break;
|
case Statement::kSwitch_Kind:
|
this->writeSwitchStatement((SwitchStatement&) s);
|
break;
|
case Statement::kBreak_Kind:
|
this->write("break;");
|
break;
|
case Statement::kContinue_Kind:
|
this->write("continue;");
|
break;
|
case Statement::kDiscard_Kind:
|
this->write("discard_fragment();");
|
break;
|
case Statement::kNop_Kind:
|
this->write(";");
|
break;
|
default:
|
ABORT("unsupported statement: %s", s.description().c_str());
|
}
|
}
|
|
void MetalCodeGenerator::writeStatements(const std::vector<std::unique_ptr<Statement>>& statements) {
|
for (const auto& s : statements) {
|
if (!s->isEmpty()) {
|
this->writeStatement(*s);
|
this->writeLine();
|
}
|
}
|
}
|
|
void MetalCodeGenerator::writeBlock(const Block& b) {
|
this->writeLine("{");
|
fIndentation++;
|
this->writeStatements(b.fStatements);
|
fIndentation--;
|
this->write("}");
|
}
|
|
void MetalCodeGenerator::writeIfStatement(const IfStatement& stmt) {
|
this->write("if (");
|
this->writeExpression(*stmt.fTest, kTopLevel_Precedence);
|
this->write(") ");
|
this->writeStatement(*stmt.fIfTrue);
|
if (stmt.fIfFalse) {
|
this->write(" else ");
|
this->writeStatement(*stmt.fIfFalse);
|
}
|
}
|
|
void MetalCodeGenerator::writeForStatement(const ForStatement& f) {
|
this->write("for (");
|
if (f.fInitializer && !f.fInitializer->isEmpty()) {
|
this->writeStatement(*f.fInitializer);
|
} else {
|
this->write("; ");
|
}
|
if (f.fTest) {
|
this->writeExpression(*f.fTest, kTopLevel_Precedence);
|
}
|
this->write("; ");
|
if (f.fNext) {
|
this->writeExpression(*f.fNext, kTopLevel_Precedence);
|
}
|
this->write(") ");
|
this->writeStatement(*f.fStatement);
|
}
|
|
void MetalCodeGenerator::writeWhileStatement(const WhileStatement& w) {
|
this->write("while (");
|
this->writeExpression(*w.fTest, kTopLevel_Precedence);
|
this->write(") ");
|
this->writeStatement(*w.fStatement);
|
}
|
|
void MetalCodeGenerator::writeDoStatement(const DoStatement& d) {
|
this->write("do ");
|
this->writeStatement(*d.fStatement);
|
this->write(" while (");
|
this->writeExpression(*d.fTest, kTopLevel_Precedence);
|
this->write(");");
|
}
|
|
void MetalCodeGenerator::writeSwitchStatement(const SwitchStatement& s) {
|
this->write("switch (");
|
this->writeExpression(*s.fValue, kTopLevel_Precedence);
|
this->writeLine(") {");
|
fIndentation++;
|
for (const auto& c : s.fCases) {
|
if (c->fValue) {
|
this->write("case ");
|
this->writeExpression(*c->fValue, kTopLevel_Precedence);
|
this->writeLine(":");
|
} else {
|
this->writeLine("default:");
|
}
|
fIndentation++;
|
for (const auto& stmt : c->fStatements) {
|
this->writeStatement(*stmt);
|
this->writeLine();
|
}
|
fIndentation--;
|
}
|
fIndentation--;
|
this->write("}");
|
}
|
|
void MetalCodeGenerator::writeReturnStatement(const ReturnStatement& r) {
|
this->write("return");
|
if (r.fExpression) {
|
this->write(" ");
|
this->writeExpression(*r.fExpression, kTopLevel_Precedence);
|
}
|
this->write(";");
|
}
|
|
void MetalCodeGenerator::writeHeader() {
|
this->write("#include <metal_stdlib>\n");
|
this->write("#include <simd/simd.h>\n");
|
this->write("using namespace metal;\n");
|
}
|
|
void MetalCodeGenerator::writeUniformStruct() {
|
for (const auto& e : fProgram) {
|
if (ProgramElement::kVar_Kind == e.fKind) {
|
VarDeclarations& decls = (VarDeclarations&) e;
|
if (!decls.fVars.size()) {
|
continue;
|
}
|
const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar;
|
if (first.fModifiers.fFlags & Modifiers::kUniform_Flag &&
|
first.fType.kind() != Type::kSampler_Kind) {
|
if (-1 == fUniformBuffer) {
|
this->write("struct Uniforms {\n");
|
fUniformBuffer = first.fModifiers.fLayout.fSet;
|
if (-1 == fUniformBuffer) {
|
fErrors.error(decls.fOffset, "Metal uniforms must have 'layout(set=...)'");
|
}
|
} else if (first.fModifiers.fLayout.fSet != fUniformBuffer) {
|
if (-1 == fUniformBuffer) {
|
fErrors.error(decls.fOffset, "Metal backend requires all uniforms to have "
|
"the same 'layout(set=...)'");
|
}
|
}
|
this->write(" ");
|
this->writeType(first.fType);
|
this->write(" ");
|
for (const auto& stmt : decls.fVars) {
|
VarDeclaration& var = (VarDeclaration&) *stmt;
|
this->writeName(var.fVar->fName);
|
}
|
this->write(";\n");
|
}
|
}
|
}
|
if (-1 != fUniformBuffer) {
|
this->write("};\n");
|
}
|
}
|
|
void MetalCodeGenerator::writeInputStruct() {
|
this->write("struct Inputs {\n");
|
for (const auto& e : fProgram) {
|
if (ProgramElement::kVar_Kind == e.fKind) {
|
VarDeclarations& decls = (VarDeclarations&) e;
|
if (!decls.fVars.size()) {
|
continue;
|
}
|
const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar;
|
if (first.fModifiers.fFlags & Modifiers::kIn_Flag &&
|
-1 == first.fModifiers.fLayout.fBuiltin) {
|
this->write(" ");
|
this->writeType(first.fType);
|
this->write(" ");
|
for (const auto& stmt : decls.fVars) {
|
VarDeclaration& var = (VarDeclaration&) *stmt;
|
this->writeName(var.fVar->fName);
|
if (-1 != var.fVar->fModifiers.fLayout.fLocation) {
|
if (fProgram.fKind == Program::kVertex_Kind) {
|
this->write(" [[attribute(" +
|
to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]");
|
} else if (fProgram.fKind == Program::kFragment_Kind) {
|
this->write(" [[user(locn" +
|
to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]");
|
}
|
}
|
}
|
this->write(";\n");
|
}
|
}
|
}
|
this->write("};\n");
|
}
|
|
void MetalCodeGenerator::writeOutputStruct() {
|
this->write("struct Outputs {\n");
|
if (fProgram.fKind == Program::kVertex_Kind) {
|
this->write(" float4 sk_Position [[position]];\n");
|
} else if (fProgram.fKind == Program::kFragment_Kind) {
|
this->write(" float4 sk_FragColor [[color(0)]];\n");
|
}
|
for (const auto& e : fProgram) {
|
if (ProgramElement::kVar_Kind == e.fKind) {
|
VarDeclarations& decls = (VarDeclarations&) e;
|
if (!decls.fVars.size()) {
|
continue;
|
}
|
const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar;
|
if (first.fModifiers.fFlags & Modifiers::kOut_Flag &&
|
-1 == first.fModifiers.fLayout.fBuiltin) {
|
this->write(" ");
|
this->writeType(first.fType);
|
this->write(" ");
|
for (const auto& stmt : decls.fVars) {
|
VarDeclaration& var = (VarDeclaration&) *stmt;
|
this->writeName(var.fVar->fName);
|
if (fProgram.fKind == Program::kVertex_Kind) {
|
this->write(" [[user(locn" +
|
to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]");
|
} else if (fProgram.fKind == Program::kFragment_Kind) {
|
this->write(" [[color(" +
|
to_string(var.fVar->fModifiers.fLayout.fLocation) +")");
|
int colorIndex = var.fVar->fModifiers.fLayout.fIndex;
|
if (colorIndex) {
|
this->write(", index(" + to_string(colorIndex) + ")");
|
}
|
this->write("]]");
|
}
|
}
|
this->write(";\n");
|
}
|
}
|
}
|
if (fProgram.fKind == Program::kVertex_Kind) {
|
this->write(" float sk_PointSize;\n");
|
}
|
this->write("};\n");
|
}
|
|
void MetalCodeGenerator::writeInterfaceBlocks() {
|
bool wroteInterfaceBlock = false;
|
for (const auto& e : fProgram) {
|
if (ProgramElement::kInterfaceBlock_Kind == e.fKind) {
|
this->writeInterfaceBlock((InterfaceBlock&) e);
|
wroteInterfaceBlock = true;
|
}
|
}
|
if (!wroteInterfaceBlock && fProgram.fInputs.fRTHeight) {
|
this->writeLine("struct sksl_synthetic_uniforms {");
|
this->writeLine(" float u_skRTHeight;");
|
this->writeLine("};");
|
}
|
}
|
|
void MetalCodeGenerator::writeGlobalStruct() {
|
bool wroteStructDecl = false;
|
for (const auto& intf : fInterfaceBlockNameMap) {
|
if (!wroteStructDecl) {
|
this->write("struct Globals {\n");
|
wroteStructDecl = true;
|
}
|
fNeedsGlobalStructInit = true;
|
const auto& intfType = intf.first;
|
const auto& intfName = intf.second;
|
this->write(" constant ");
|
this->write(intfType->fTypeName);
|
this->write("* ");
|
this->writeName(intfName);
|
this->write(";\n");
|
}
|
for (const auto& e : fProgram) {
|
if (ProgramElement::kVar_Kind == e.fKind) {
|
VarDeclarations& decls = (VarDeclarations&) e;
|
if (!decls.fVars.size()) {
|
continue;
|
}
|
const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar;
|
if ((!first.fModifiers.fFlags && -1 == first.fModifiers.fLayout.fBuiltin) ||
|
first.fType.kind() == Type::kSampler_Kind) {
|
if (!wroteStructDecl) {
|
this->write("struct Globals {\n");
|
wroteStructDecl = true;
|
}
|
fNeedsGlobalStructInit = true;
|
this->write(" ");
|
this->writeType(first.fType);
|
this->write(" ");
|
for (const auto& stmt : decls.fVars) {
|
VarDeclaration& var = (VarDeclaration&) *stmt;
|
this->writeName(var.fVar->fName);
|
if (var.fVar->fType.kind() == Type::kSampler_Kind) {
|
fTextures.push_back(var.fVar);
|
this->write(";\n");
|
this->write(" sampler ");
|
this->writeName(var.fVar->fName);
|
this->write(SAMPLER_SUFFIX);
|
}
|
if (var.fValue) {
|
fInitNonConstGlobalVars.push_back(&var);
|
}
|
}
|
this->write(";\n");
|
}
|
}
|
}
|
if (wroteStructDecl) {
|
this->write("};\n");
|
}
|
}
|
|
void MetalCodeGenerator::writeProgramElement(const ProgramElement& e) {
|
switch (e.fKind) {
|
case ProgramElement::kExtension_Kind:
|
break;
|
case ProgramElement::kVar_Kind: {
|
VarDeclarations& decl = (VarDeclarations&) e;
|
if (decl.fVars.size() > 0) {
|
int builtin = ((VarDeclaration&) *decl.fVars[0]).fVar->fModifiers.fLayout.fBuiltin;
|
if (-1 == builtin) {
|
// normal var
|
this->writeVarDeclarations(decl, true);
|
this->writeLine();
|
} else if (SK_FRAGCOLOR_BUILTIN == builtin) {
|
// ignore
|
}
|
}
|
break;
|
}
|
case ProgramElement::kInterfaceBlock_Kind:
|
// handled in writeInterfaceBlocks, do nothing
|
break;
|
case ProgramElement::kFunction_Kind:
|
this->writeFunction((FunctionDefinition&) e);
|
break;
|
case ProgramElement::kModifiers_Kind:
|
this->writeModifiers(((ModifiersDeclaration&) e).fModifiers, true);
|
this->writeLine(";");
|
break;
|
default:
|
printf("%s\n", e.description().c_str());
|
ABORT("unsupported program element");
|
}
|
}
|
|
MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Expression& e) {
|
switch (e.fKind) {
|
case Expression::kFunctionCall_Kind: {
|
const FunctionCall& f = (const FunctionCall&) e;
|
Requirements result = this->requirements(f.fFunction);
|
for (const auto& e : f.fArguments) {
|
result |= this->requirements(*e);
|
}
|
return result;
|
}
|
case Expression::kConstructor_Kind: {
|
const Constructor& c = (const Constructor&) e;
|
Requirements result = kNo_Requirements;
|
for (const auto& e : c.fArguments) {
|
result |= this->requirements(*e);
|
}
|
return result;
|
}
|
case Expression::kFieldAccess_Kind: {
|
const FieldAccess& f = (const FieldAccess&) e;
|
if (FieldAccess::kAnonymousInterfaceBlock_OwnerKind == f.fOwnerKind) {
|
return kGlobals_Requirement;
|
}
|
return this->requirements(*((const FieldAccess&) e).fBase);
|
}
|
case Expression::kSwizzle_Kind:
|
return this->requirements(*((const Swizzle&) e).fBase);
|
case Expression::kBinary_Kind: {
|
const BinaryExpression& b = (const BinaryExpression&) e;
|
return this->requirements(*b.fLeft) | this->requirements(*b.fRight);
|
}
|
case Expression::kIndex_Kind: {
|
const IndexExpression& idx = (const IndexExpression&) e;
|
return this->requirements(*idx.fBase) | this->requirements(*idx.fIndex);
|
}
|
case Expression::kPrefix_Kind:
|
return this->requirements(*((const PrefixExpression&) e).fOperand);
|
case Expression::kPostfix_Kind:
|
return this->requirements(*((const PostfixExpression&) e).fOperand);
|
case Expression::kTernary_Kind: {
|
const TernaryExpression& t = (const TernaryExpression&) e;
|
return this->requirements(*t.fTest) | this->requirements(*t.fIfTrue) |
|
this->requirements(*t.fIfFalse);
|
}
|
case Expression::kVariableReference_Kind: {
|
const VariableReference& v = (const VariableReference&) e;
|
Requirements result = kNo_Requirements;
|
if (v.fVariable.fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) {
|
result = kInputs_Requirement;
|
} else if (Variable::kGlobal_Storage == v.fVariable.fStorage) {
|
if (v.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) {
|
result = kInputs_Requirement;
|
} else if (v.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag) {
|
result = kOutputs_Requirement;
|
} else if (v.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag &&
|
v.fVariable.fType.kind() != Type::kSampler_Kind) {
|
result = kUniforms_Requirement;
|
} else {
|
result = kGlobals_Requirement;
|
}
|
}
|
return result;
|
}
|
default:
|
return kNo_Requirements;
|
}
|
}
|
|
MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Statement& s) {
|
switch (s.fKind) {
|
case Statement::kBlock_Kind: {
|
Requirements result = kNo_Requirements;
|
for (const auto& child : ((const Block&) s).fStatements) {
|
result |= this->requirements(*child);
|
}
|
return result;
|
}
|
case Statement::kVarDeclaration_Kind: {
|
Requirements result = kNo_Requirements;
|
const VarDeclaration& var = (const VarDeclaration&) s;
|
if (var.fValue) {
|
result = this->requirements(*var.fValue);
|
}
|
return result;
|
}
|
case Statement::kVarDeclarations_Kind: {
|
Requirements result = kNo_Requirements;
|
const VarDeclarations& decls = *((const VarDeclarationsStatement&) s).fDeclaration;
|
for (const auto& stmt : decls.fVars) {
|
result |= this->requirements(*stmt);
|
}
|
return result;
|
}
|
case Statement::kExpression_Kind:
|
return this->requirements(*((const ExpressionStatement&) s).fExpression);
|
case Statement::kReturn_Kind: {
|
const ReturnStatement& r = (const ReturnStatement&) s;
|
if (r.fExpression) {
|
return this->requirements(*r.fExpression);
|
}
|
return kNo_Requirements;
|
}
|
case Statement::kIf_Kind: {
|
const IfStatement& i = (const IfStatement&) s;
|
return this->requirements(*i.fTest) |
|
this->requirements(*i.fIfTrue) |
|
(i.fIfFalse && this->requirements(*i.fIfFalse));
|
}
|
case Statement::kFor_Kind: {
|
const ForStatement& f = (const ForStatement&) s;
|
return this->requirements(*f.fInitializer) |
|
this->requirements(*f.fTest) |
|
this->requirements(*f.fNext) |
|
this->requirements(*f.fStatement);
|
}
|
case Statement::kWhile_Kind: {
|
const WhileStatement& w = (const WhileStatement&) s;
|
return this->requirements(*w.fTest) |
|
this->requirements(*w.fStatement);
|
}
|
case Statement::kDo_Kind: {
|
const DoStatement& d = (const DoStatement&) s;
|
return this->requirements(*d.fTest) |
|
this->requirements(*d.fStatement);
|
}
|
case Statement::kSwitch_Kind: {
|
const SwitchStatement& sw = (const SwitchStatement&) s;
|
Requirements result = this->requirements(*sw.fValue);
|
for (const auto& c : sw.fCases) {
|
for (const auto& st : c->fStatements) {
|
result |= this->requirements(*st);
|
}
|
}
|
return result;
|
}
|
default:
|
return kNo_Requirements;
|
}
|
}
|
|
MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const FunctionDeclaration& f) {
|
if (f.fBuiltin) {
|
return kNo_Requirements;
|
}
|
auto found = fRequirements.find(&f);
|
if (found == fRequirements.end()) {
|
for (const auto& e : fProgram) {
|
if (ProgramElement::kFunction_Kind == e.fKind) {
|
const FunctionDefinition& def = (const FunctionDefinition&) e;
|
if (&def.fDeclaration == &f) {
|
Requirements reqs = this->requirements(*def.fBody);
|
fRequirements[&f] = reqs;
|
return reqs;
|
}
|
}
|
}
|
}
|
return found->second;
|
}
|
|
bool MetalCodeGenerator::generateCode() {
|
OutputStream* rawOut = fOut;
|
fOut = &fHeader;
|
#ifdef SK_MOLTENVK
|
fOut->write((const char*) &MVKMagicNum, sizeof(MVKMagicNum));
|
#endif
|
fProgramKind = fProgram.fKind;
|
this->writeHeader();
|
this->writeUniformStruct();
|
this->writeInputStruct();
|
this->writeOutputStruct();
|
this->writeInterfaceBlocks();
|
this->writeGlobalStruct();
|
StringStream body;
|
fOut = &body;
|
for (const auto& e : fProgram) {
|
this->writeProgramElement(e);
|
}
|
fOut = rawOut;
|
|
write_stringstream(fHeader, *rawOut);
|
write_stringstream(fExtraFunctions, *rawOut);
|
write_stringstream(body, *rawOut);
|
#ifdef SK_MOLTENVK
|
this->write("\0");
|
#endif
|
return true;
|
}
|
|
}
|