/*
|
* Copyright 2012 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkRRectPriv.h"
|
#include "SkBuffer.h"
|
#include "SkMalloc.h"
|
#include "SkMatrix.h"
|
#include "SkScaleToSides.h"
|
|
#include <cmath>
|
#include <utility>
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) {
|
if (!this->initializeRect(rect)) {
|
return;
|
}
|
|
if (!SkScalarsAreFinite(xRad, yRad)) {
|
xRad = yRad = 0; // devolve into a simple rect
|
}
|
|
if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) {
|
// At most one of these two divides will be by zero, and neither numerator is zero.
|
SkScalar scale = SkMinScalar(sk_ieee_float_divide(fRect. width(), xRad + xRad),
|
sk_ieee_float_divide(fRect.height(), yRad + yRad));
|
SkASSERT(scale < SK_Scalar1);
|
xRad *= scale;
|
yRad *= scale;
|
}
|
|
if (xRad <= 0 || yRad <= 0) {
|
// all corners are square in this case
|
this->setRect(rect);
|
return;
|
}
|
|
for (int i = 0; i < 4; ++i) {
|
fRadii[i].set(xRad, yRad);
|
}
|
fType = kSimple_Type;
|
if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) {
|
fType = kOval_Type;
|
// TODO: assert that all the x&y radii are already W/2 & H/2
|
}
|
|
SkASSERT(this->isValid());
|
}
|
|
void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
|
SkScalar rightRad, SkScalar bottomRad) {
|
if (!this->initializeRect(rect)) {
|
return;
|
}
|
|
const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad };
|
if (!SkScalarsAreFinite(array, 4)) {
|
this->setRect(rect); // devolve into a simple rect
|
return;
|
}
|
|
leftRad = SkMaxScalar(leftRad, 0);
|
topRad = SkMaxScalar(topRad, 0);
|
rightRad = SkMaxScalar(rightRad, 0);
|
bottomRad = SkMaxScalar(bottomRad, 0);
|
|
SkScalar scale = SK_Scalar1;
|
if (leftRad + rightRad > fRect.width()) {
|
scale = fRect.width() / (leftRad + rightRad);
|
}
|
if (topRad + bottomRad > fRect.height()) {
|
scale = SkMinScalar(scale, fRect.height() / (topRad + bottomRad));
|
}
|
|
if (scale < SK_Scalar1) {
|
leftRad *= scale;
|
topRad *= scale;
|
rightRad *= scale;
|
bottomRad *= scale;
|
}
|
|
if (leftRad == rightRad && topRad == bottomRad) {
|
if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) {
|
fType = kOval_Type;
|
} else if (0 == leftRad || 0 == topRad) {
|
// If the left and (by equality check above) right radii are zero then it is a rect.
|
// Same goes for top/bottom.
|
fType = kRect_Type;
|
leftRad = 0;
|
topRad = 0;
|
rightRad = 0;
|
bottomRad = 0;
|
} else {
|
fType = kSimple_Type;
|
}
|
} else {
|
fType = kNinePatch_Type;
|
}
|
|
fRadii[kUpperLeft_Corner].set(leftRad, topRad);
|
fRadii[kUpperRight_Corner].set(rightRad, topRad);
|
fRadii[kLowerRight_Corner].set(rightRad, bottomRad);
|
fRadii[kLowerLeft_Corner].set(leftRad, bottomRad);
|
|
SkASSERT(this->isValid());
|
}
|
|
// These parameters intentionally double. Apropos crbug.com/463920, if one of the
|
// radii is huge while the other is small, single precision math can completely
|
// miss the fact that a scale is required.
|
static double compute_min_scale(double rad1, double rad2, double limit, double curMin) {
|
if ((rad1 + rad2) > limit) {
|
return SkTMin(curMin, limit / (rad1 + rad2));
|
}
|
return curMin;
|
}
|
|
static bool clamp_to_zero(SkVector radii[4]) {
|
bool allCornersSquare = true;
|
|
// Clamp negative radii to zero
|
for (int i = 0; i < 4; ++i) {
|
if (radii[i].fX <= 0 || radii[i].fY <= 0) {
|
// In this case we are being a little fast & loose. Since one of
|
// the radii is 0 the corner is square. However, the other radii
|
// could still be non-zero and play in the global scale factor
|
// computation.
|
radii[i].fX = 0;
|
radii[i].fY = 0;
|
} else {
|
allCornersSquare = false;
|
}
|
}
|
|
return allCornersSquare;
|
}
|
|
void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) {
|
if (!this->initializeRect(rect)) {
|
return;
|
}
|
|
if (!SkScalarsAreFinite(&radii[0].fX, 8)) {
|
this->setRect(rect); // devolve into a simple rect
|
return;
|
}
|
|
memcpy(fRadii, radii, sizeof(fRadii));
|
|
if (clamp_to_zero(fRadii)) {
|
this->setRect(rect);
|
return;
|
}
|
|
this->scaleRadii(rect);
|
}
|
|
bool SkRRect::initializeRect(const SkRect& rect) {
|
// Check this before sorting because sorting can hide nans.
|
if (!rect.isFinite()) {
|
*this = SkRRect();
|
return false;
|
}
|
fRect = rect.makeSorted();
|
if (fRect.isEmpty()) {
|
memset(fRadii, 0, sizeof(fRadii));
|
fType = kEmpty_Type;
|
return false;
|
}
|
return true;
|
}
|
|
// If we can't distinguish one of the radii relative to the other, force it to zero so it
|
// doesn't confuse us later. See crbug.com/850350
|
//
|
static void flush_to_zero(SkScalar& a, SkScalar& b) {
|
SkASSERT(a >= 0);
|
SkASSERT(b >= 0);
|
if (a + b == a) {
|
b = 0;
|
} else if (a + b == b) {
|
a = 0;
|
}
|
}
|
|
void SkRRect::scaleRadii(const SkRect& rect) {
|
// Proportionally scale down all radii to fit. Find the minimum ratio
|
// of a side and the radii on that side (for all four sides) and use
|
// that to scale down _all_ the radii. This algorithm is from the
|
// W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping
|
// Curves:
|
// "Let f = min(Li/Si), where i is one of { top, right, bottom, left },
|
// Si is the sum of the two corresponding radii of the corners on side i,
|
// and Ltop = Lbottom = the width of the box,
|
// and Lleft = Lright = the height of the box.
|
// If f < 1, then all corner radii are reduced by multiplying them by f."
|
double scale = 1.0;
|
|
// The sides of the rectangle may be larger than a float.
|
double width = (double)fRect.fRight - (double)fRect.fLeft;
|
double height = (double)fRect.fBottom - (double)fRect.fTop;
|
scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale);
|
scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale);
|
scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale);
|
scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale);
|
|
flush_to_zero(fRadii[0].fX, fRadii[1].fX);
|
flush_to_zero(fRadii[1].fY, fRadii[2].fY);
|
flush_to_zero(fRadii[2].fX, fRadii[3].fX);
|
flush_to_zero(fRadii[3].fY, fRadii[0].fY);
|
|
if (scale < 1.0) {
|
SkScaleToSides::AdjustRadii(width, scale, &fRadii[0].fX, &fRadii[1].fX);
|
SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY);
|
SkScaleToSides::AdjustRadii(width, scale, &fRadii[2].fX, &fRadii[3].fX);
|
SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY);
|
}
|
|
// adjust radii may set x or y to zero; set companion to zero as well
|
if (clamp_to_zero(fRadii)) {
|
this->setRect(rect);
|
return;
|
}
|
|
// At this point we're either oval, simple, or complex (not empty or rect).
|
this->computeType();
|
|
SkASSERT(this->isValid());
|
}
|
|
// This method determines if a point known to be inside the RRect's bounds is
|
// inside all the corners.
|
bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const {
|
SkPoint canonicalPt; // (x,y) translated to one of the quadrants
|
int index;
|
|
if (kOval_Type == this->type()) {
|
canonicalPt.set(x - fRect.centerX(), y - fRect.centerY());
|
index = kUpperLeft_Corner; // any corner will do in this case
|
} else {
|
if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX &&
|
y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) {
|
// UL corner
|
index = kUpperLeft_Corner;
|
canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX),
|
y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY));
|
SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0);
|
} else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX &&
|
y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) {
|
// LL corner
|
index = kLowerLeft_Corner;
|
canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX),
|
y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY));
|
SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0);
|
} else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX &&
|
y < fRect.fTop + fRadii[kUpperRight_Corner].fY) {
|
// UR corner
|
index = kUpperRight_Corner;
|
canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX),
|
y - (fRect.fTop + fRadii[kUpperRight_Corner].fY));
|
SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0);
|
} else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX &&
|
y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) {
|
// LR corner
|
index = kLowerRight_Corner;
|
canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX),
|
y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY));
|
SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0);
|
} else {
|
// not in any of the corners
|
return true;
|
}
|
}
|
|
// A point is in an ellipse (in standard position) if:
|
// x^2 y^2
|
// ----- + ----- <= 1
|
// a^2 b^2
|
// or :
|
// b^2*x^2 + a^2*y^2 <= (ab)^2
|
SkScalar dist = SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) +
|
SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX);
|
return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY);
|
}
|
|
bool SkRRectPriv::AllCornersCircular(const SkRRect& rr, SkScalar tolerance) {
|
return SkScalarNearlyEqual(rr.fRadii[0].fX, rr.fRadii[0].fY, tolerance) &&
|
SkScalarNearlyEqual(rr.fRadii[1].fX, rr.fRadii[1].fY, tolerance) &&
|
SkScalarNearlyEqual(rr.fRadii[2].fX, rr.fRadii[2].fY, tolerance) &&
|
SkScalarNearlyEqual(rr.fRadii[3].fX, rr.fRadii[3].fY, tolerance);
|
}
|
|
bool SkRRect::contains(const SkRect& rect) const {
|
if (!this->getBounds().contains(rect)) {
|
// If 'rect' isn't contained by the RR's bounds then the
|
// RR definitely doesn't contain it
|
return false;
|
}
|
|
if (this->isRect()) {
|
// the prior test was sufficient
|
return true;
|
}
|
|
// At this point we know all four corners of 'rect' are inside the
|
// bounds of of this RR. Check to make sure all the corners are inside
|
// all the curves
|
return this->checkCornerContainment(rect.fLeft, rect.fTop) &&
|
this->checkCornerContainment(rect.fRight, rect.fTop) &&
|
this->checkCornerContainment(rect.fRight, rect.fBottom) &&
|
this->checkCornerContainment(rect.fLeft, rect.fBottom);
|
}
|
|
static bool radii_are_nine_patch(const SkVector radii[4]) {
|
return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX &&
|
radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY &&
|
radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX &&
|
radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY;
|
}
|
|
// There is a simplified version of this method in setRectXY
|
void SkRRect::computeType() {
|
if (fRect.isEmpty()) {
|
SkASSERT(fRect.isSorted());
|
for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) {
|
SkASSERT((fRadii[i] == SkVector{0, 0}));
|
}
|
fType = kEmpty_Type;
|
SkASSERT(this->isValid());
|
return;
|
}
|
|
bool allRadiiEqual = true; // are all x radii equal and all y radii?
|
bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY;
|
|
for (int i = 1; i < 4; ++i) {
|
if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
|
// if either radius is zero the corner is square so both have to
|
// be non-zero to have a rounded corner
|
allCornersSquare = false;
|
}
|
if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
|
allRadiiEqual = false;
|
}
|
}
|
|
if (allCornersSquare) {
|
fType = kRect_Type;
|
SkASSERT(this->isValid());
|
return;
|
}
|
|
if (allRadiiEqual) {
|
if (fRadii[0].fX >= SkScalarHalf(fRect.width()) &&
|
fRadii[0].fY >= SkScalarHalf(fRect.height())) {
|
fType = kOval_Type;
|
} else {
|
fType = kSimple_Type;
|
}
|
SkASSERT(this->isValid());
|
return;
|
}
|
|
if (radii_are_nine_patch(fRadii)) {
|
fType = kNinePatch_Type;
|
} else {
|
fType = kComplex_Type;
|
}
|
SkASSERT(this->isValid());
|
}
|
|
bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const {
|
if (nullptr == dst) {
|
return false;
|
}
|
|
// Assert that the caller is not trying to do this in place, which
|
// would violate const-ness. Do not return false though, so that
|
// if they know what they're doing and want to violate it they can.
|
SkASSERT(dst != this);
|
|
if (matrix.isIdentity()) {
|
*dst = *this;
|
return true;
|
}
|
|
// If transform supported 90 degree rotations (which it could), we could
|
// use SkMatrix::rectStaysRect() to check for a valid transformation.
|
if (!matrix.isScaleTranslate()) {
|
return false;
|
}
|
|
SkRect newRect;
|
if (!matrix.mapRect(&newRect, fRect)) {
|
return false;
|
}
|
|
// The matrix may have scaled us to zero (or due to float madness, we now have collapsed
|
// some dimension of the rect, so we need to check for that. Note that matrix must be
|
// scale and translate and mapRect() produces a sorted rect. So an empty rect indicates
|
// loss of precision.
|
if (!newRect.isFinite() || newRect.isEmpty()) {
|
return false;
|
}
|
|
// At this point, this is guaranteed to succeed, so we can modify dst.
|
dst->fRect = newRect;
|
|
// Since the only transforms that were allowed are scale and translate, the type
|
// remains unchanged.
|
dst->fType = fType;
|
|
if (kRect_Type == fType) {
|
SkASSERT(dst->isValid());
|
return true;
|
}
|
if (kOval_Type == fType) {
|
for (int i = 0; i < 4; ++i) {
|
dst->fRadii[i].fX = SkScalarHalf(newRect.width());
|
dst->fRadii[i].fY = SkScalarHalf(newRect.height());
|
}
|
SkASSERT(dst->isValid());
|
return true;
|
}
|
|
// Now scale each corner
|
SkScalar xScale = matrix.getScaleX();
|
const bool flipX = xScale < 0;
|
if (flipX) {
|
xScale = -xScale;
|
}
|
SkScalar yScale = matrix.getScaleY();
|
const bool flipY = yScale < 0;
|
if (flipY) {
|
yScale = -yScale;
|
}
|
|
// Scale the radii without respecting the flip.
|
for (int i = 0; i < 4; ++i) {
|
dst->fRadii[i].fX = fRadii[i].fX * xScale;
|
dst->fRadii[i].fY = fRadii[i].fY * yScale;
|
}
|
|
// Now swap as necessary.
|
using std::swap;
|
if (flipX) {
|
if (flipY) {
|
// Swap with opposite corners
|
swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]);
|
swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]);
|
} else {
|
// Only swap in x
|
swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]);
|
swap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]);
|
}
|
} else if (flipY) {
|
// Only swap in y
|
swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]);
|
swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]);
|
}
|
|
if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) {
|
return false;
|
}
|
|
dst->scaleRadii(dst->fRect);
|
dst->isValid();
|
|
return true;
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const {
|
SkRect r = fRect.makeInset(dx, dy);
|
bool degenerate = false;
|
if (r.fRight <= r.fLeft) {
|
degenerate = true;
|
r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight);
|
}
|
if (r.fBottom <= r.fTop) {
|
degenerate = true;
|
r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom);
|
}
|
if (degenerate) {
|
dst->fRect = r;
|
memset(dst->fRadii, 0, sizeof(dst->fRadii));
|
dst->fType = kEmpty_Type;
|
return;
|
}
|
if (!r.isFinite()) {
|
*dst = SkRRect();
|
return;
|
}
|
|
SkVector radii[4];
|
memcpy(radii, fRadii, sizeof(radii));
|
for (int i = 0; i < 4; ++i) {
|
if (radii[i].fX) {
|
radii[i].fX -= dx;
|
}
|
if (radii[i].fY) {
|
radii[i].fY -= dy;
|
}
|
}
|
dst->setRectRadii(r, radii);
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
size_t SkRRect::writeToMemory(void* buffer) const {
|
// Serialize only the rect and corners, but not the derived type tag.
|
memcpy(buffer, this, kSizeInMemory);
|
return kSizeInMemory;
|
}
|
|
void SkRRectPriv::WriteToBuffer(const SkRRect& rr, SkWBuffer* buffer) {
|
// Serialize only the rect and corners, but not the derived type tag.
|
buffer->write(&rr, SkRRect::kSizeInMemory);
|
}
|
|
size_t SkRRect::readFromMemory(const void* buffer, size_t length) {
|
if (length < kSizeInMemory) {
|
return 0;
|
}
|
|
SkRRect raw;
|
memcpy(&raw, buffer, kSizeInMemory);
|
this->setRectRadii(raw.fRect, raw.fRadii);
|
return kSizeInMemory;
|
}
|
|
bool SkRRectPriv::ReadFromBuffer(SkRBuffer* buffer, SkRRect* rr) {
|
if (buffer->available() < SkRRect::kSizeInMemory) {
|
return false;
|
}
|
SkRRect storage;
|
return buffer->read(&storage, SkRRect::kSizeInMemory) &&
|
(rr->readFromMemory(&storage, SkRRect::kSizeInMemory) == SkRRect::kSizeInMemory);
|
}
|
|
#include "SkString.h"
|
#include "SkStringUtils.h"
|
|
void SkRRect::dump(bool asHex) const {
|
SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;
|
|
fRect.dump(asHex);
|
SkString line("const SkPoint corners[] = {\n");
|
for (int i = 0; i < 4; ++i) {
|
SkString strX, strY;
|
SkAppendScalar(&strX, fRadii[i].x(), asType);
|
SkAppendScalar(&strY, fRadii[i].y(), asType);
|
line.appendf(" { %s, %s },", strX.c_str(), strY.c_str());
|
if (asHex) {
|
line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y());
|
}
|
line.append("\n");
|
}
|
line.append("};");
|
SkDebugf("%s\n", line.c_str());
|
}
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
/**
|
* We need all combinations of predicates to be true to have a "safe" radius value.
|
*/
|
static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) {
|
return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) &&
|
rad >= 0;
|
}
|
|
bool SkRRect::isValid() const {
|
if (!AreRectAndRadiiValid(fRect, fRadii)) {
|
return false;
|
}
|
|
bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY);
|
bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY);
|
bool allRadiiSame = true;
|
|
for (int i = 1; i < 4; ++i) {
|
if (0 != fRadii[i].fX || 0 != fRadii[i].fY) {
|
allRadiiZero = false;
|
}
|
|
if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
|
allRadiiSame = false;
|
}
|
|
if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
|
allCornersSquare = false;
|
}
|
}
|
bool patchesOfNine = radii_are_nine_patch(fRadii);
|
|
if (fType < 0 || fType > kLastType) {
|
return false;
|
}
|
|
switch (fType) {
|
case kEmpty_Type:
|
if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) {
|
return false;
|
}
|
break;
|
case kRect_Type:
|
if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) {
|
return false;
|
}
|
break;
|
case kOval_Type:
|
if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) {
|
return false;
|
}
|
|
for (int i = 0; i < 4; ++i) {
|
if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) ||
|
!SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) {
|
return false;
|
}
|
}
|
break;
|
case kSimple_Type:
|
if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) {
|
return false;
|
}
|
break;
|
case kNinePatch_Type:
|
if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare ||
|
!patchesOfNine) {
|
return false;
|
}
|
break;
|
case kComplex_Type:
|
if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare ||
|
patchesOfNine) {
|
return false;
|
}
|
break;
|
}
|
|
return true;
|
}
|
|
bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) {
|
if (!rect.isFinite() || !rect.isSorted()) {
|
return false;
|
}
|
for (int i = 0; i < 4; ++i) {
|
if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) ||
|
!are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) {
|
return false;
|
}
|
}
|
return true;
|
}
|
///////////////////////////////////////////////////////////////////////////////
|