/*
|
* Copyright (C) 2009 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
/* this implements a sensors hardware library for the Android emulator.
|
* the following code should be built as a shared library that will be
|
* placed into /system/lib/hw/sensors.goldfish.so
|
*
|
* it will be loaded by the code in hardware/libhardware/hardware.c
|
* which is itself called from com_android_server_SensorService.cpp
|
*/
|
|
|
/* we connect with the emulator through the "sensors" qemud service
|
*/
|
#define SENSORS_SERVICE_NAME "sensors"
|
|
#define LOG_TAG "QemuSensors"
|
|
#include <unistd.h>
|
#include <fcntl.h>
|
#include <errno.h>
|
#include <string.h>
|
#include <log/log.h>
|
#include <cutils/sockets.h>
|
#include <hardware/sensors.h>
|
|
#if 0
|
#define D(...) ALOGD(__VA_ARGS__)
|
#else
|
#define D(...) ((void)0)
|
#endif
|
|
#define E(...) ALOGE(__VA_ARGS__)
|
|
#include "qemud.h"
|
|
/** SENSOR IDS AND NAMES
|
**/
|
|
#define MAX_NUM_SENSORS 10
|
|
#define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1)
|
|
#define ID_BASE SENSORS_HANDLE_BASE
|
#define ID_ACCELERATION (ID_BASE+0)
|
#define ID_GYROSCOPE (ID_BASE+1)
|
#define ID_MAGNETIC_FIELD (ID_BASE+2)
|
#define ID_ORIENTATION (ID_BASE+3)
|
#define ID_TEMPERATURE (ID_BASE+4)
|
#define ID_PROXIMITY (ID_BASE+5)
|
#define ID_LIGHT (ID_BASE+6)
|
#define ID_PRESSURE (ID_BASE+7)
|
#define ID_HUMIDITY (ID_BASE+8)
|
#define ID_MAGNETIC_FIELD_UNCALIBRATED (ID_BASE+9)
|
|
#define SENSORS_ACCELERATION (1 << ID_ACCELERATION)
|
#define SENSORS_GYROSCOPE (1 << ID_GYROSCOPE)
|
#define SENSORS_MAGNETIC_FIELD (1 << ID_MAGNETIC_FIELD)
|
#define SENSORS_ORIENTATION (1 << ID_ORIENTATION)
|
#define SENSORS_TEMPERATURE (1 << ID_TEMPERATURE)
|
#define SENSORS_PROXIMITY (1 << ID_PROXIMITY)
|
#define SENSORS_LIGHT (1 << ID_LIGHT)
|
#define SENSORS_PRESSURE (1 << ID_PRESSURE)
|
#define SENSORS_HUMIDITY (1 << ID_HUMIDITY)
|
#define SENSORS_MAGNETIC_FIELD_UNCALIBRATED (1 << ID_MAGNETIC_FIELD_UNCALIBRATED)
|
|
#define ID_CHECK(x) ((unsigned)((x) - ID_BASE) < MAX_NUM_SENSORS)
|
|
#define SENSORS_LIST \
|
SENSOR_(ACCELERATION,"acceleration") \
|
SENSOR_(GYROSCOPE,"gyroscope") \
|
SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
|
SENSOR_(ORIENTATION,"orientation") \
|
SENSOR_(TEMPERATURE,"temperature") \
|
SENSOR_(PROXIMITY,"proximity") \
|
SENSOR_(LIGHT, "light") \
|
SENSOR_(PRESSURE, "pressure") \
|
SENSOR_(HUMIDITY, "humidity") \
|
SENSOR_(MAGNETIC_FIELD_UNCALIBRATED,"magnetic-field-uncalibrated") \
|
|
static const struct {
|
const char* name;
|
int id; } _sensorIds[MAX_NUM_SENSORS] =
|
{
|
#define SENSOR_(x,y) { y, ID_##x },
|
SENSORS_LIST
|
#undef SENSOR_
|
};
|
|
static const char*
|
_sensorIdToName( int id )
|
{
|
int nn;
|
for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
|
if (id == _sensorIds[nn].id)
|
return _sensorIds[nn].name;
|
return "<UNKNOWN>";
|
}
|
|
static int
|
_sensorIdFromName( const char* name )
|
{
|
int nn;
|
|
if (name == NULL)
|
return -1;
|
|
for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
|
if (!strcmp(name, _sensorIds[nn].name))
|
return _sensorIds[nn].id;
|
|
return -1;
|
}
|
|
/* return the current time in nanoseconds */
|
static int64_t now_ns(void) {
|
struct timespec ts;
|
clock_gettime(CLOCK_BOOTTIME, &ts);
|
return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
|
}
|
|
/** SENSORS POLL DEVICE
|
**
|
** This one is used to read sensor data from the hardware.
|
** We implement this by simply reading the data from the
|
** emulator through the QEMUD channel.
|
**/
|
|
typedef struct SensorDevice {
|
struct sensors_poll_device_1 device;
|
sensors_event_t sensors[MAX_NUM_SENSORS];
|
uint32_t pendingSensors;
|
int64_t timeStart;
|
int64_t timeOffset;
|
uint32_t active_sensors;
|
int fd;
|
int flush_count[MAX_NUM_SENSORS];
|
pthread_mutex_t lock;
|
} SensorDevice;
|
|
/* Grab the file descriptor to the emulator's sensors service pipe.
|
* This function returns a file descriptor on success, or -errno on
|
* failure, and assumes the SensorDevice instance's lock is held.
|
*
|
* This is needed because set_delay(), poll() and activate() can be called
|
* from different threads, and poll() is blocking.
|
*
|
* Note that the emulator's sensors service creates a new client for each
|
* connection through qemud_channel_open(), where each client has its own
|
* delay and set of activated sensors. This precludes calling
|
* qemud_channel_open() on each request, because a typical emulated system
|
* will do something like:
|
*
|
* 1) On a first thread, de-activate() all sensors first, then call poll(),
|
* which results in the thread blocking.
|
*
|
* 2) On a second thread, slightly later, call set_delay() then activate()
|
* to enable the acceleration sensor.
|
*
|
* The system expects this to unblock the first thread which will receive
|
* new sensor events after the activate() call in 2).
|
*
|
* This cannot work if both threads don't use the same connection.
|
*
|
* TODO(digit): This protocol is brittle, implement another control channel
|
* for set_delay()/activate()/batch() when supporting HAL 1.3
|
*/
|
static int sensor_device_get_fd_locked(SensorDevice* dev) {
|
/* Create connection to service on first call */
|
if (dev->fd < 0) {
|
dev->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
|
if (dev->fd < 0) {
|
int ret = -errno;
|
E("%s: Could not open connection to service: %s", __FUNCTION__,
|
strerror(-ret));
|
return ret;
|
}
|
}
|
return dev->fd;
|
}
|
|
/* Send a command to the sensors virtual device. |dev| is a device instance and
|
* |cmd| is a zero-terminated command string. Return 0 on success, or -errno
|
* on failure. */
|
static int sensor_device_send_command_locked(SensorDevice* dev,
|
const char* cmd) {
|
int fd = sensor_device_get_fd_locked(dev);
|
if (fd < 0) {
|
return fd;
|
}
|
|
int ret = 0;
|
if (qemud_channel_send(fd, cmd, strlen(cmd)) < 0) {
|
ret = -errno;
|
E("%s(fd=%d): ERROR: %s", __FUNCTION__, fd, strerror(errno));
|
}
|
return ret;
|
}
|
|
/* Pick up one pending sensor event. On success, this returns the sensor
|
* id, and sets |*event| accordingly. On failure, i.e. if there are no
|
* pending events, return -EINVAL.
|
*
|
* Note: The device's lock must be acquired.
|
*/
|
static int sensor_device_pick_pending_event_locked(SensorDevice* d,
|
sensors_event_t* event)
|
{
|
uint32_t mask = SUPPORTED_SENSORS & d->pendingSensors;
|
if (mask) {
|
uint32_t i = 31 - __builtin_clz(mask);
|
d->pendingSensors &= ~(1U << i);
|
// Copy the structure
|
*event = d->sensors[i];
|
|
if (d->sensors[i].type == SENSOR_TYPE_META_DATA) {
|
if (d->flush_count[i] > 0) {
|
// Another 'flush' is queued after this one.
|
// Don't clear this event; just decrement the count.
|
(d->flush_count[i])--;
|
// And re-mark it as pending
|
d->pendingSensors |= (1U << i);
|
} else {
|
// We are done flushing
|
// sensor_device_poll_event_locked() will leave
|
// the meta-data in place until we have it.
|
// Set |type| to something other than META_DATA
|
// so sensor_device_poll_event_locked() can
|
// continue.
|
d->sensors[i].type = SENSOR_TYPE_META_DATA + 1;
|
}
|
} else {
|
event->sensor = i;
|
event->version = sizeof(*event);
|
}
|
|
D("%s: %d [%f, %f, %f]", __FUNCTION__,
|
i,
|
event->data[0],
|
event->data[1],
|
event->data[2]);
|
return i;
|
}
|
E("No sensor to return!!! pendingSensors=0x%08x", d->pendingSensors);
|
// we may end-up in a busy loop, slow things down, just in case.
|
usleep(1000);
|
return -EINVAL;
|
}
|
|
/* Block until new sensor events are reported by the emulator, or if a
|
* 'wake' command is received through the service. On succes, return 0
|
* and updates the |pendingEvents| and |sensors| fields of |dev|.
|
* On failure, return -errno.
|
*
|
* Note: The device lock must be acquired when calling this function, and
|
* will still be held on return. However, the function releases the
|
* lock temporarily during the blocking wait.
|
*/
|
static int sensor_device_poll_event_locked(SensorDevice* dev)
|
{
|
D("%s: dev=%p", __FUNCTION__, dev);
|
|
int fd = sensor_device_get_fd_locked(dev);
|
if (fd < 0) {
|
E("%s: Could not get pipe channel: %s", __FUNCTION__, strerror(-fd));
|
return fd;
|
}
|
|
// Accumulate pending events into |events| and |new_sensors| mask
|
// until a 'sync' or 'wake' command is received. This also simplifies the
|
// code a bit.
|
uint32_t new_sensors = 0U;
|
sensors_event_t* events = dev->sensors;
|
|
int64_t event_time = -1;
|
int ret = 0;
|
|
int64_t guest_event_time = -1;
|
int has_guest_event_time = 0;
|
|
|
for (;;) {
|
/* Release the lock since we're going to block on recv() */
|
pthread_mutex_unlock(&dev->lock);
|
|
/* read the next event */
|
char buff[256];
|
int len = qemud_channel_recv(fd, buff, sizeof(buff) - 1U);
|
/* re-acquire the lock to modify the device state. */
|
pthread_mutex_lock(&dev->lock);
|
|
if (len < 0) {
|
ret = -errno;
|
E("%s(fd=%d): Could not receive event data len=%d, errno=%d: %s",
|
__FUNCTION__, fd, len, errno, strerror(errno));
|
break;
|
}
|
buff[len] = 0;
|
D("%s(fd=%d): received [%s]", __FUNCTION__, fd, buff);
|
|
|
/* "wake" is sent from the emulator to exit this loop. */
|
/* TODO(digit): Is it still needed? */
|
if (!strcmp((const char*)buff, "wake")) {
|
ret = 0x7FFFFFFF;
|
break;
|
}
|
|
float params[3];
|
|
// If the existing entry for this sensor is META_DATA,
|
// do not overwrite it. We can resume saving sensor
|
// values after that meta data has been received.
|
|
/* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
|
if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2)
|
== 3) {
|
new_sensors |= SENSORS_ACCELERATION;
|
if (events[ID_ACCELERATION].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_ACCELERATION].acceleration.x = params[0];
|
events[ID_ACCELERATION].acceleration.y = params[1];
|
events[ID_ACCELERATION].acceleration.z = params[2];
|
events[ID_ACCELERATION].type = SENSOR_TYPE_ACCELEROMETER;
|
continue;
|
}
|
|
/* "gyroscope:<x>:<y>:<z>" corresponds to a gyroscope event */
|
if (sscanf(buff, "gyroscope:%g:%g:%g", params+0, params+1, params+2)
|
== 3) {
|
new_sensors |= SENSORS_GYROSCOPE;
|
if (events[ID_GYROSCOPE].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_GYROSCOPE].gyro.x = params[0];
|
events[ID_GYROSCOPE].gyro.y = params[1];
|
events[ID_GYROSCOPE].gyro.z = params[2];
|
events[ID_GYROSCOPE].type = SENSOR_TYPE_GYROSCOPE;
|
continue;
|
}
|
|
/* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation
|
* changes */
|
if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2)
|
== 3) {
|
new_sensors |= SENSORS_ORIENTATION;
|
if (events[ID_ORIENTATION].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_ORIENTATION].orientation.azimuth = params[0];
|
events[ID_ORIENTATION].orientation.pitch = params[1];
|
events[ID_ORIENTATION].orientation.roll = params[2];
|
events[ID_ORIENTATION].orientation.status =
|
SENSOR_STATUS_ACCURACY_HIGH;
|
events[ID_ORIENTATION].type = SENSOR_TYPE_ORIENTATION;
|
continue;
|
}
|
|
/* "magnetic:<x>:<y>:<z>" is sent for the params of the magnetic
|
* field */
|
if (sscanf(buff, "magnetic:%g:%g:%g", params+0, params+1, params+2)
|
== 3) {
|
new_sensors |= SENSORS_MAGNETIC_FIELD;
|
if (events[ID_MAGNETIC_FIELD].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_MAGNETIC_FIELD].magnetic.x = params[0];
|
events[ID_MAGNETIC_FIELD].magnetic.y = params[1];
|
events[ID_MAGNETIC_FIELD].magnetic.z = params[2];
|
events[ID_MAGNETIC_FIELD].magnetic.status =
|
SENSOR_STATUS_ACCURACY_HIGH;
|
events[ID_MAGNETIC_FIELD].type = SENSOR_TYPE_MAGNETIC_FIELD;
|
continue;
|
}
|
|
if (sscanf(buff, "magnetic-uncalibrated:%g:%g:%g", params+0, params+1, params+2)
|
== 3) {
|
new_sensors |= SENSORS_MAGNETIC_FIELD_UNCALIBRATED;
|
if (events[ID_MAGNETIC_FIELD_UNCALIBRATED].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.x = params[0];
|
events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.y = params[1];
|
events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.z = params[2];
|
events[ID_MAGNETIC_FIELD_UNCALIBRATED].magnetic.status =
|
SENSOR_STATUS_ACCURACY_HIGH;
|
events[ID_MAGNETIC_FIELD_UNCALIBRATED].type = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED;
|
continue;
|
}
|
|
/* "temperature:<celsius>" */
|
if (sscanf(buff, "temperature:%g", params+0) == 1) {
|
new_sensors |= SENSORS_TEMPERATURE;
|
if (events[ID_TEMPERATURE].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_TEMPERATURE].temperature = params[0];
|
events[ID_TEMPERATURE].type = SENSOR_TYPE_AMBIENT_TEMPERATURE;
|
continue;
|
}
|
|
/* "proximity:<value>" */
|
if (sscanf(buff, "proximity:%g", params+0) == 1) {
|
new_sensors |= SENSORS_PROXIMITY;
|
if (events[ID_PROXIMITY].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_PROXIMITY].distance = params[0];
|
events[ID_PROXIMITY].type = SENSOR_TYPE_PROXIMITY;
|
continue;
|
}
|
/* "light:<lux>" */
|
if (sscanf(buff, "light:%g", params+0) == 1) {
|
new_sensors |= SENSORS_LIGHT;
|
if (events[ID_LIGHT].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_LIGHT].light = params[0];
|
events[ID_LIGHT].type = SENSOR_TYPE_LIGHT;
|
continue;
|
}
|
|
/* "pressure:<hpa>" */
|
if (sscanf(buff, "pressure:%g", params+0) == 1) {
|
new_sensors |= SENSORS_PRESSURE;
|
if (events[ID_PRESSURE].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_PRESSURE].pressure = params[0];
|
events[ID_PRESSURE].type = SENSOR_TYPE_PRESSURE;
|
continue;
|
}
|
|
/* "humidity:<percent>" */
|
if (sscanf(buff, "humidity:%g", params+0) == 1) {
|
new_sensors |= SENSORS_HUMIDITY;
|
if (events[ID_HUMIDITY].type == SENSOR_TYPE_META_DATA) continue;
|
events[ID_HUMIDITY].relative_humidity = params[0];
|
events[ID_HUMIDITY].type = SENSOR_TYPE_RELATIVE_HUMIDITY;
|
continue;
|
}
|
|
/* "guest-sync:<time>" is sent after a series of sensor events.
|
* where 'time' is expressed in micro-seconds and corresponds
|
* to the VM time when the real poll occured.
|
*/
|
if (sscanf(buff, "guest-sync:%lld", &guest_event_time) == 1) {
|
has_guest_event_time = 1;
|
continue;
|
}
|
|
/* "sync:<time>" is sent after a series of sensor events.
|
* where 'time' is expressed in micro-seconds and corresponds
|
* to the VM time when the real poll occured.
|
*/
|
if (sscanf(buff, "sync:%lld", &event_time) == 1) {
|
if (new_sensors) {
|
goto out;
|
}
|
D("huh ? sync without any sensor data ?");
|
continue;
|
}
|
D("huh ? unsupported command");
|
}
|
out:
|
if (new_sensors) {
|
/* update the time of each new sensor event. */
|
dev->pendingSensors |= new_sensors;
|
int64_t t = (event_time < 0) ? 0 : event_time * 1000LL;
|
|
/* Use the time at the first "sync:" as the base for later
|
* time values.
|
* CTS tests require sensors to return an event timestamp (sync) that is
|
* strictly before the time of the event arrival. We don't actually have
|
* a time syncronization protocol here, and the only data point is the
|
* "sync:" timestamp - which is an emulator's timestamp of a clock that
|
* is synced with the guest clock, and it only the timestamp after all
|
* events were sent.
|
* To make it work, let's compare the calculated timestamp with current
|
* time and take the lower value - we don't believe in events from the
|
* future anyway.
|
*/
|
const int64_t now = now_ns();
|
|
if (dev->timeStart == 0) {
|
dev->timeStart = now;
|
dev->timeOffset = dev->timeStart - t;
|
}
|
t += dev->timeOffset;
|
if (t > now) {
|
t = now;
|
}
|
|
if (has_guest_event_time) {
|
if (guest_event_time > now) {
|
guest_event_time = now;
|
}
|
}
|
|
while (new_sensors) {
|
uint32_t i = 31 - __builtin_clz(new_sensors);
|
new_sensors &= ~(1U << i);
|
dev->sensors[i].timestamp =
|
has_guest_event_time ? guest_event_time : t;
|
}
|
}
|
return ret;
|
}
|
|
/** SENSORS POLL DEVICE FUNCTIONS **/
|
|
static int sensor_device_close(struct hw_device_t* dev0)
|
{
|
SensorDevice* dev = (void*)dev0;
|
// Assume that there are no other threads blocked on poll()
|
if (dev->fd >= 0) {
|
close(dev->fd);
|
dev->fd = -1;
|
}
|
pthread_mutex_destroy(&dev->lock);
|
free(dev);
|
return 0;
|
}
|
|
/* Return an array of sensor data. This function blocks until there is sensor
|
* related events to report. On success, it will write the events into the
|
* |data| array, which contains |count| items. The function returns the number
|
* of events written into the array, which shall never be greater than |count|.
|
* On error, return -errno code.
|
*
|
* Note that according to the sensor HAL [1], it shall never return 0!
|
*
|
* [1] http://source.android.com/devices/sensors/hal-interface.html
|
*/
|
static int sensor_device_poll(struct sensors_poll_device_t *dev0,
|
sensors_event_t* data, int count)
|
{
|
SensorDevice* dev = (void*)dev0;
|
D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
|
|
if (count <= 0) {
|
return -EINVAL;
|
}
|
|
int result = 0;
|
pthread_mutex_lock(&dev->lock);
|
if (!dev->pendingSensors) {
|
/* Block until there are pending events. Note that this releases
|
* the lock during the blocking call, then re-acquires it before
|
* returning. */
|
int ret = sensor_device_poll_event_locked(dev);
|
if (ret < 0) {
|
result = ret;
|
goto out;
|
}
|
if (!dev->pendingSensors) {
|
/* 'wake' event received before any sensor data. */
|
result = -EIO;
|
goto out;
|
}
|
}
|
/* Now read as many pending events as needed. */
|
int i;
|
for (i = 0; i < count; i++) {
|
if (!dev->pendingSensors) {
|
break;
|
}
|
int ret = sensor_device_pick_pending_event_locked(dev, data);
|
if (ret < 0) {
|
if (!result) {
|
result = ret;
|
}
|
break;
|
}
|
data++;
|
result++;
|
}
|
out:
|
pthread_mutex_unlock(&dev->lock);
|
D("%s: result=%d", __FUNCTION__, result);
|
return result;
|
}
|
|
static int sensor_device_activate(struct sensors_poll_device_t *dev0,
|
int handle,
|
int enabled)
|
{
|
SensorDevice* dev = (void*)dev0;
|
|
D("%s: handle=%s (%d) enabled=%d", __FUNCTION__,
|
_sensorIdToName(handle), handle, enabled);
|
|
/* Sanity check */
|
if (!ID_CHECK(handle)) {
|
E("%s: bad handle ID", __FUNCTION__);
|
return -EINVAL;
|
}
|
|
/* Exit early if sensor is already enabled/disabled. */
|
uint32_t mask = (1U << handle);
|
uint32_t sensors = enabled ? mask : 0;
|
|
pthread_mutex_lock(&dev->lock);
|
|
uint32_t active = dev->active_sensors;
|
uint32_t new_sensors = (active & ~mask) | (sensors & mask);
|
uint32_t changed = active ^ new_sensors;
|
|
int ret = 0;
|
if (changed) {
|
/* Send command to the emulator. */
|
char command[64];
|
snprintf(command,
|
sizeof command,
|
"set:%s:%d",
|
_sensorIdToName(handle),
|
enabled != 0);
|
|
ret = sensor_device_send_command_locked(dev, command);
|
if (ret < 0) {
|
E("%s: when sending command errno=%d: %s", __FUNCTION__, -ret,
|
strerror(-ret));
|
} else {
|
dev->active_sensors = new_sensors;
|
}
|
}
|
pthread_mutex_unlock(&dev->lock);
|
return ret;
|
}
|
|
static int sensor_device_default_flush(
|
struct sensors_poll_device_1* dev0,
|
int handle) {
|
|
SensorDevice* dev = (void*)dev0;
|
|
D("%s: handle=%s (%d)", __FUNCTION__,
|
_sensorIdToName(handle), handle);
|
|
/* Sanity check */
|
if (!ID_CHECK(handle)) {
|
E("%s: bad handle ID", __FUNCTION__);
|
return -EINVAL;
|
}
|
|
pthread_mutex_lock(&dev->lock);
|
if ((dev->pendingSensors & (1U << handle)) &&
|
dev->sensors[handle].type == SENSOR_TYPE_META_DATA)
|
{
|
// A 'flush' operation is already pending. Just increment the count.
|
(dev->flush_count[handle])++;
|
} else {
|
dev->flush_count[handle] = 0;
|
dev->sensors[handle].version = META_DATA_VERSION;
|
dev->sensors[handle].type = SENSOR_TYPE_META_DATA;
|
dev->sensors[handle].sensor = 0;
|
dev->sensors[handle].timestamp = 0;
|
dev->sensors[handle].meta_data.sensor = handle;
|
dev->sensors[handle].meta_data.what = META_DATA_FLUSH_COMPLETE;
|
dev->pendingSensors |= (1U << handle);
|
}
|
pthread_mutex_unlock(&dev->lock);
|
|
return 0;
|
}
|
|
static int sensor_device_set_delay(struct sensors_poll_device_t *dev0,
|
int handle __unused,
|
int64_t ns)
|
{
|
SensorDevice* dev = (void*)dev0;
|
|
int ms = (int)(ns / 1000000);
|
D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
|
|
char command[64];
|
snprintf(command, sizeof command, "set-delay:%d", ms);
|
|
pthread_mutex_lock(&dev->lock);
|
int ret = sensor_device_send_command_locked(dev, command);
|
pthread_mutex_unlock(&dev->lock);
|
if (ret < 0) {
|
E("%s: Could not send command: %s", __FUNCTION__, strerror(-ret));
|
}
|
return ret;
|
}
|
|
static int sensor_device_default_batch(
|
struct sensors_poll_device_1* dev,
|
int sensor_handle,
|
int flags,
|
int64_t sampling_period_ns,
|
int64_t max_report_latency_ns) {
|
return sensor_device_set_delay(dev, sensor_handle, sampling_period_ns);
|
}
|
|
/** MODULE REGISTRATION SUPPORT
|
**
|
** This is required so that hardware/libhardware/hardware.c
|
** will dlopen() this library appropriately.
|
**/
|
|
/*
|
* the following is the list of all supported sensors.
|
* this table is used to build sSensorList declared below
|
* according to which hardware sensors are reported as
|
* available from the emulator (see get_sensors_list below)
|
*
|
* note: numerical values for maxRange/resolution/power for
|
* all sensors but light, pressure and humidity were
|
* taken from the reference AK8976A implementation
|
*/
|
static const struct sensor_t sSensorListInit[] = {
|
{ .name = "Goldfish 3-axis Accelerometer",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_ACCELERATION,
|
.type = SENSOR_TYPE_ACCELEROMETER,
|
.maxRange = 39.3f,
|
.resolution = 1.0f/4032.0f,
|
.power = 3.0f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.fifoReservedEventCount = 0,
|
.fifoMaxEventCount = 0,
|
.stringType = "android.sensor.accelerometer",
|
.requiredPermission = 0,
|
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
|
.reserved = {}
|
},
|
|
{ .name = "Goldfish 3-axis Gyroscope",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_GYROSCOPE,
|
.type = SENSOR_TYPE_GYROSCOPE,
|
.maxRange = 16.46f,
|
.resolution = 1.0f/1000.0f,
|
.power = 3.0f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.stringType = "android.sensor.gyroscope",
|
.reserved = {}
|
},
|
|
{ .name = "Goldfish 3-axis Magnetic field sensor",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_MAGNETIC_FIELD,
|
.type = SENSOR_TYPE_MAGNETIC_FIELD,
|
.maxRange = 2000.0f,
|
.resolution = 0.5f,
|
.power = 6.7f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.fifoReservedEventCount = 0,
|
.fifoMaxEventCount = 0,
|
.stringType = "android.sensor.magnetic_field",
|
.requiredPermission = 0,
|
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
|
.reserved = {}
|
},
|
|
{ .name = "Goldfish Orientation sensor",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_ORIENTATION,
|
.type = SENSOR_TYPE_ORIENTATION,
|
.maxRange = 360.0f,
|
.resolution = 1.0f,
|
.power = 9.7f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.fifoReservedEventCount = 0,
|
.fifoMaxEventCount = 0,
|
.stringType = "android.sensor.orientation",
|
.requiredPermission = 0,
|
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
|
.reserved = {}
|
},
|
|
{ .name = "Goldfish Ambient Temperature sensor",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_TEMPERATURE,
|
.type = SENSOR_TYPE_AMBIENT_TEMPERATURE,
|
.maxRange = 80.0f,
|
.resolution = 1.0f,
|
.power = 0.0f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.fifoReservedEventCount = 0,
|
.fifoMaxEventCount = 0,
|
.stringType = "android.sensor.ambient_temperature",
|
.requiredPermission = 0,
|
.flags = SENSOR_FLAG_ON_CHANGE_MODE,
|
.reserved = {}
|
},
|
|
{ .name = "Goldfish Proximity sensor",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_PROXIMITY,
|
.type = SENSOR_TYPE_PROXIMITY,
|
.maxRange = 1.0f,
|
.resolution = 1.0f,
|
.power = 20.0f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.fifoReservedEventCount = 0,
|
.fifoMaxEventCount = 0,
|
.stringType = "android.sensor.proximity",
|
.requiredPermission = 0,
|
.flags = SENSOR_FLAG_WAKE_UP | SENSOR_FLAG_ON_CHANGE_MODE,
|
.reserved = {}
|
},
|
|
{ .name = "Goldfish Light sensor",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_LIGHT,
|
.type = SENSOR_TYPE_LIGHT,
|
.maxRange = 40000.0f,
|
.resolution = 1.0f,
|
.power = 20.0f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.fifoReservedEventCount = 0,
|
.fifoMaxEventCount = 0,
|
.stringType = "android.sensor.light",
|
.requiredPermission = 0,
|
.flags = SENSOR_FLAG_ON_CHANGE_MODE,
|
.reserved = {}
|
},
|
|
{ .name = "Goldfish Pressure sensor",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_PRESSURE,
|
.type = SENSOR_TYPE_PRESSURE,
|
.maxRange = 800.0f,
|
.resolution = 1.0f,
|
.power = 20.0f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.fifoReservedEventCount = 0,
|
.fifoMaxEventCount = 0,
|
.stringType = "android.sensor.pressure",
|
.requiredPermission = 0,
|
.flags = SENSOR_FLAG_CONTINUOUS_MODE,
|
.reserved = {}
|
},
|
|
{ .name = "Goldfish Humidity sensor",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_HUMIDITY,
|
.type = SENSOR_TYPE_RELATIVE_HUMIDITY,
|
.maxRange = 100.0f,
|
.resolution = 1.0f,
|
.power = 20.0f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.fifoReservedEventCount = 0,
|
.fifoMaxEventCount = 0,
|
.stringType = "android.sensor.relative_humidity",
|
.requiredPermission = 0,
|
.flags = SENSOR_FLAG_ON_CHANGE_MODE,
|
.reserved = {}
|
},
|
|
{ .name = "Goldfish 3-axis Magnetic field sensor (uncalibrated)",
|
.vendor = "The Android Open Source Project",
|
.version = 1,
|
.handle = ID_MAGNETIC_FIELD_UNCALIBRATED,
|
.type = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED,
|
.maxRange = 2000.0f,
|
.resolution = 0.5f,
|
.power = 6.7f,
|
.minDelay = 10000,
|
.maxDelay = 500 * 1000,
|
.stringType = "android.sensor.magnetic_field_uncalibrated",
|
.reserved = {}
|
},
|
};
|
|
static struct sensor_t sSensorList[MAX_NUM_SENSORS];
|
|
static int sensors__get_sensors_list(struct sensors_module_t* module __unused,
|
struct sensor_t const** list)
|
{
|
int fd = qemud_channel_open(SENSORS_SERVICE_NAME);
|
char buffer[12];
|
int mask, nn, count;
|
int ret = 0;
|
|
if (fd < 0) {
|
E("%s: no qemud connection", __FUNCTION__);
|
goto out;
|
}
|
ret = qemud_channel_send(fd, "list-sensors", -1);
|
if (ret < 0) {
|
E("%s: could not query sensor list: %s", __FUNCTION__,
|
strerror(errno));
|
goto out;
|
}
|
ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
|
if (ret < 0) {
|
E("%s: could not receive sensor list: %s", __FUNCTION__,
|
strerror(errno));
|
goto out;
|
}
|
buffer[ret] = 0;
|
|
/* the result is a integer used as a mask for available sensors */
|
mask = atoi(buffer);
|
count = 0;
|
for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
|
if (((1 << nn) & mask) == 0)
|
continue;
|
sSensorList[count++] = sSensorListInit[nn];
|
}
|
D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
|
*list = sSensorList;
|
|
ret = count;
|
out:
|
if (fd >= 0) {
|
close(fd);
|
}
|
return ret;
|
}
|
|
|
static int
|
open_sensors(const struct hw_module_t* module,
|
const char* name,
|
struct hw_device_t* *device)
|
{
|
int status = -EINVAL;
|
|
D("%s: name=%s", __FUNCTION__, name);
|
|
if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
|
SensorDevice *dev = malloc(sizeof(*dev));
|
|
memset(dev, 0, sizeof(*dev));
|
|
dev->device.common.tag = HARDWARE_DEVICE_TAG;
|
dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
|
dev->device.common.module = (struct hw_module_t*) module;
|
dev->device.common.close = sensor_device_close;
|
dev->device.poll = sensor_device_poll;
|
dev->device.activate = sensor_device_activate;
|
dev->device.setDelay = sensor_device_set_delay;
|
|
// (dev->sensors[i].type == SENSOR_TYPE_META_DATA) is
|
// sticky. Don't start off with that setting.
|
for (int idx = 0; idx < MAX_NUM_SENSORS; idx++) {
|
dev->sensors[idx].type = SENSOR_TYPE_META_DATA + 1;
|
dev->flush_count[idx] = 0;
|
}
|
|
// Version 1.3-specific functions
|
dev->device.batch = sensor_device_default_batch;
|
dev->device.flush = sensor_device_default_flush;
|
|
dev->fd = -1;
|
pthread_mutex_init(&dev->lock, NULL);
|
|
int64_t now = now_ns();
|
char command[64];
|
sprintf(command, "time:%lld", now);
|
sensor_device_send_command_locked(dev, command);
|
|
*device = &dev->device.common;
|
status = 0;
|
}
|
return status;
|
}
|
|
|
static struct hw_module_methods_t sensors_module_methods = {
|
.open = open_sensors
|
};
|
|
struct sensors_module_t HAL_MODULE_INFO_SYM = {
|
.common = {
|
.tag = HARDWARE_MODULE_TAG,
|
.version_major = 1,
|
.version_minor = 3,
|
.id = SENSORS_HARDWARE_MODULE_ID,
|
.name = "Goldfish SENSORS Module",
|
.author = "The Android Open Source Project",
|
.methods = &sensors_module_methods,
|
},
|
.get_sensors_list = sensors__get_sensors_list
|
};
|