tzh
2024-08-14 a57e9b48676d47d3f6874b492fe8fb8ec26dfdbb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/*
 * ACPI 5.1 based NUMA setup for ARM64
 * Lots of code was borrowed from arch/x86/mm/srat.c
 *
 * Copyright 2004 Andi Kleen, SuSE Labs.
 * Copyright (C) 2013-2016, Linaro Ltd.
 *        Author: Hanjun Guo <hanjun.guo@linaro.org>
 *
 * Reads the ACPI SRAT table to figure out what memory belongs to which CPUs.
 *
 * Called from acpi_numa_init while reading the SRAT and SLIT tables.
 * Assumes all memory regions belonging to a single proximity domain
 * are in one chunk. Holes between them will be included in the node.
 */
 
#define pr_fmt(fmt) "ACPI: NUMA: " fmt
 
#include <linux/acpi.h>
#include <linux/bitmap.h>
#include <linux/bootmem.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/memblock.h>
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/topology.h>
 
#include <acpi/processor.h>
#include <asm/numa.h>
 
static int cpus_in_srat;
 
struct __node_cpu_hwid {
   u32 node_id;    /* logical node containing this CPU */
   u64 cpu_hwid;   /* MPIDR for this CPU */
};
 
static struct __node_cpu_hwid early_node_cpu_hwid[NR_CPUS] = {
[0 ... NR_CPUS - 1] = {NUMA_NO_NODE, PHYS_CPUID_INVALID} };
 
int acpi_numa_get_nid(unsigned int cpu, u64 hwid)
{
   int i;
 
   for (i = 0; i < cpus_in_srat; i++) {
       if (hwid == early_node_cpu_hwid[i].cpu_hwid)
           return early_node_cpu_hwid[i].node_id;
   }
 
   return NUMA_NO_NODE;
}
 
/* Callback for Proximity Domain -> ACPI processor UID mapping */
void __init acpi_numa_gicc_affinity_init(struct acpi_srat_gicc_affinity *pa)
{
   int pxm, node;
   phys_cpuid_t mpidr;
 
   if (srat_disabled())
       return;
 
   if (pa->header.length < sizeof(struct acpi_srat_gicc_affinity)) {
       pr_err("SRAT: Invalid SRAT header length: %d\n",
           pa->header.length);
       bad_srat();
       return;
   }
 
   if (!(pa->flags & ACPI_SRAT_GICC_ENABLED))
       return;
 
   if (cpus_in_srat >= NR_CPUS) {
       pr_warn_once("SRAT: cpu_to_node_map[%d] is too small, may not be able to use all cpus\n",
                NR_CPUS);
       return;
   }
 
   pxm = pa->proximity_domain;
   node = acpi_map_pxm_to_node(pxm);
 
   if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
       pr_err("SRAT: Too many proximity domains %d\n", pxm);
       bad_srat();
       return;
   }
 
   mpidr = acpi_map_madt_entry(pa->acpi_processor_uid);
   if (mpidr == PHYS_CPUID_INVALID) {
       pr_err("SRAT: PXM %d with ACPI ID %d has no valid MPIDR in MADT\n",
           pxm, pa->acpi_processor_uid);
       bad_srat();
       return;
   }
 
   early_node_cpu_hwid[cpus_in_srat].node_id = node;
   early_node_cpu_hwid[cpus_in_srat].cpu_hwid =  mpidr;
   node_set(node, numa_nodes_parsed);
   cpus_in_srat++;
   pr_info("SRAT: PXM %d -> MPIDR 0x%Lx -> Node %d\n",
       pxm, mpidr, node);
}
 
int __init arm64_acpi_numa_init(void)
{
   int ret;
 
   ret = acpi_numa_init();
   if (ret) {
       pr_info("Failed to initialise from firmware\n");
       return ret;
   }
 
   return srat_disabled() ? -EINVAL : 0;
}