lin
2025-02-25 a02983e50ab34c3e7366b27cdeca427a327faebd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
#include "register_allocation_resolver.h"
 
#include "base/bit_vector-inl.h"
#include "code_generator.h"
#include "linear_order.h"
#include "ssa_liveness_analysis.h"
 
namespace art {
 
RegisterAllocationResolver::RegisterAllocationResolver(CodeGenerator* codegen,
                                                       const SsaLivenessAnalysis& liveness)
      : allocator_(codegen->GetGraph()->GetAllocator()),
        codegen_(codegen),
        liveness_(liveness) {}
 
void RegisterAllocationResolver::Resolve(ArrayRef<HInstruction* const> safepoints,
                                         size_t reserved_out_slots,
                                         size_t int_spill_slots,
                                         size_t long_spill_slots,
                                         size_t float_spill_slots,
                                         size_t double_spill_slots,
                                         size_t catch_phi_spill_slots,
                                         ArrayRef<LiveInterval* const> temp_intervals) {
  size_t spill_slots = int_spill_slots
                     + long_spill_slots
                     + float_spill_slots
                     + double_spill_slots
                     + catch_phi_spill_slots;
 
  // Update safepoints and calculate the size of the spills.
  UpdateSafepointLiveRegisters();
  size_t maximum_safepoint_spill_size = CalculateMaximumSafepointSpillSize(safepoints);
 
  // Computes frame size and spill mask.
  codegen_->InitializeCodeGeneration(spill_slots,
                                     maximum_safepoint_spill_size,
                                     reserved_out_slots,  // Includes slot(s) for the art method.
                                     codegen_->GetGraph()->GetLinearOrder());
 
  // Resolve outputs, including stack locations.
  // TODO: Use pointers of Location inside LiveInterval to avoid doing another iteration.
  for (size_t i = 0, e = liveness_.GetNumberOfSsaValues(); i < e; ++i) {
    HInstruction* instruction = liveness_.GetInstructionFromSsaIndex(i);
    LiveInterval* current = instruction->GetLiveInterval();
    LocationSummary* locations = instruction->GetLocations();
    Location location = locations->Out();
    if (instruction->IsParameterValue()) {
      // Now that we know the frame size, adjust the parameter's location.
      if (location.IsStackSlot()) {
        location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
        current->SetSpillSlot(location.GetStackIndex());
        locations->UpdateOut(location);
      } else if (location.IsDoubleStackSlot()) {
        location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
        current->SetSpillSlot(location.GetStackIndex());
        locations->UpdateOut(location);
      } else if (current->HasSpillSlot()) {
        current->SetSpillSlot(current->GetSpillSlot() + codegen_->GetFrameSize());
      }
    } else if (instruction->IsCurrentMethod()) {
      // The current method is always at offset 0.
      DCHECK(!current->HasSpillSlot() || (current->GetSpillSlot() == 0));
    } else if (instruction->IsPhi() && instruction->AsPhi()->IsCatchPhi()) {
      DCHECK(current->HasSpillSlot());
      size_t slot = current->GetSpillSlot()
                    + spill_slots
                    + reserved_out_slots
                    - catch_phi_spill_slots;
      current->SetSpillSlot(slot * kVRegSize);
    } else if (current->HasSpillSlot()) {
      // Adjust the stack slot, now that we know the number of them for each type.
      // The way this implementation lays out the stack is the following:
      // [parameter slots       ]
      // [art method (caller)   ]
      // [entry spill (core)    ]
      // [entry spill (float)   ]
      // [should_deoptimize flag] (this is optional)
      // [catch phi spill slots ]
      // [double spill slots    ]
      // [long spill slots      ]
      // [float spill slots     ]
      // [int/ref values        ]
      // [maximum out values    ] (number of arguments for calls)
      // [art method            ].
      size_t slot = current->GetSpillSlot();
      switch (current->GetType()) {
        case DataType::Type::kFloat64:
          slot += long_spill_slots;
          FALLTHROUGH_INTENDED;
        case DataType::Type::kUint64:
        case DataType::Type::kInt64:
          slot += float_spill_slots;
          FALLTHROUGH_INTENDED;
        case DataType::Type::kFloat32:
          slot += int_spill_slots;
          FALLTHROUGH_INTENDED;
        case DataType::Type::kReference:
        case DataType::Type::kUint32:
        case DataType::Type::kInt32:
        case DataType::Type::kUint16:
        case DataType::Type::kUint8:
        case DataType::Type::kInt8:
        case DataType::Type::kBool:
        case DataType::Type::kInt16:
          slot += reserved_out_slots;
          break;
        case DataType::Type::kVoid:
          LOG(FATAL) << "Unexpected type for interval " << current->GetType();
      }
      current->SetSpillSlot(slot * kVRegSize);
    }
 
    Location source = current->ToLocation();
 
    if (location.IsUnallocated()) {
      if (location.GetPolicy() == Location::kSameAsFirstInput) {
        if (locations->InAt(0).IsUnallocated()) {
          locations->SetInAt(0, source);
        } else {
          DCHECK(locations->InAt(0).Equals(source));
        }
      }
      locations->UpdateOut(source);
    } else {
      DCHECK(source.Equals(location));
    }
  }
 
  // Connect siblings and resolve inputs.
  for (size_t i = 0, e = liveness_.GetNumberOfSsaValues(); i < e; ++i) {
    HInstruction* instruction = liveness_.GetInstructionFromSsaIndex(i);
    ConnectSiblings(instruction->GetLiveInterval());
  }
 
  // Resolve non-linear control flow across branches. Order does not matter.
  for (HBasicBlock* block : codegen_->GetGraph()->GetLinearOrder()) {
    if (block->IsCatchBlock() ||
        (block->IsLoopHeader() && block->GetLoopInformation()->IsIrreducible())) {
      // Instructions live at the top of catch blocks or irreducible loop header
      // were forced to spill.
      if (kIsDebugBuild) {
        BitVector* live = liveness_.GetLiveInSet(*block);
        for (uint32_t idx : live->Indexes()) {
          LiveInterval* interval = liveness_.GetInstructionFromSsaIndex(idx)->GetLiveInterval();
          LiveInterval* sibling = interval->GetSiblingAt(block->GetLifetimeStart());
          // `GetSiblingAt` returns the sibling that contains a position, but there could be
          // a lifetime hole in it. `CoversSlow` returns whether the interval is live at that
          // position.
          if ((sibling != nullptr) && sibling->CoversSlow(block->GetLifetimeStart())) {
            DCHECK(!sibling->HasRegister());
          }
        }
      }
    } else {
      BitVector* live = liveness_.GetLiveInSet(*block);
      for (uint32_t idx : live->Indexes()) {
        LiveInterval* interval = liveness_.GetInstructionFromSsaIndex(idx)->GetLiveInterval();
        for (HBasicBlock* predecessor : block->GetPredecessors()) {
          ConnectSplitSiblings(interval, predecessor, block);
        }
      }
    }
  }
 
  // Resolve phi inputs. Order does not matter.
  for (HBasicBlock* block : codegen_->GetGraph()->GetLinearOrder()) {
    if (block->IsCatchBlock()) {
      // Catch phi values are set at runtime by the exception delivery mechanism.
    } else {
      for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
        HInstruction* phi = inst_it.Current();
        for (size_t i = 0, e = block->GetPredecessors().size(); i < e; ++i) {
          HBasicBlock* predecessor = block->GetPredecessors()[i];
          DCHECK_EQ(predecessor->GetNormalSuccessors().size(), 1u);
          HInstruction* input = phi->InputAt(i);
          Location source = input->GetLiveInterval()->GetLocationAt(
              predecessor->GetLifetimeEnd() - 1);
          Location destination = phi->GetLiveInterval()->ToLocation();
          InsertParallelMoveAtExitOf(predecessor, phi, source, destination);
        }
      }
    }
  }
 
  // Resolve temp locations.
  for (LiveInterval* temp : temp_intervals) {
    if (temp->IsHighInterval()) {
      // High intervals can be skipped, they are already handled by the low interval.
      continue;
    }
    HInstruction* at = liveness_.GetTempUser(temp);
    size_t temp_index = liveness_.GetTempIndex(temp);
    LocationSummary* locations = at->GetLocations();
    switch (temp->GetType()) {
      case DataType::Type::kInt32:
        locations->SetTempAt(temp_index, Location::RegisterLocation(temp->GetRegister()));
        break;
 
      case DataType::Type::kFloat64:
        if (codegen_->NeedsTwoRegisters(DataType::Type::kFloat64)) {
          Location location = Location::FpuRegisterPairLocation(
              temp->GetRegister(), temp->GetHighInterval()->GetRegister());
          locations->SetTempAt(temp_index, location);
        } else {
          locations->SetTempAt(temp_index, Location::FpuRegisterLocation(temp->GetRegister()));
        }
        break;
 
      default:
        LOG(FATAL) << "Unexpected type for temporary location "
                   << temp->GetType();
    }
  }
}
 
void RegisterAllocationResolver::UpdateSafepointLiveRegisters() {
  for (size_t i = 0, e = liveness_.GetNumberOfSsaValues(); i < e; ++i) {
    HInstruction* instruction = liveness_.GetInstructionFromSsaIndex(i);
    for (LiveInterval* current = instruction->GetLiveInterval();
         current != nullptr;
         current = current->GetNextSibling()) {
      if (!current->HasRegister()) {
        continue;
      }
      Location source = current->ToLocation();
      for (SafepointPosition* safepoint_position = current->GetFirstSafepoint();
           safepoint_position != nullptr;
           safepoint_position = safepoint_position->GetNext()) {
        DCHECK(current->CoversSlow(safepoint_position->GetPosition()));
        LocationSummary* locations = safepoint_position->GetLocations();
        switch (source.GetKind()) {
          case Location::kRegister:
          case Location::kFpuRegister: {
            locations->AddLiveRegister(source);
            break;
          }
          case Location::kRegisterPair:
          case Location::kFpuRegisterPair: {
            locations->AddLiveRegister(source.ToLow());
            locations->AddLiveRegister(source.ToHigh());
            break;
          }
          case Location::kStackSlot:  // Fall-through
          case Location::kDoubleStackSlot:  // Fall-through
          case Location::kConstant: {
            // Nothing to do.
            break;
          }
          default: {
            LOG(FATAL) << "Unexpected location for object";
          }
        }
      }
    }
  }
}
 
size_t RegisterAllocationResolver::CalculateMaximumSafepointSpillSize(
    ArrayRef<HInstruction* const> safepoints) {
  size_t core_register_spill_size = codegen_->GetWordSize();
  size_t fp_register_spill_size = codegen_->GetFloatingPointSpillSlotSize();
  size_t maximum_safepoint_spill_size = 0u;
  for (HInstruction* instruction : safepoints) {
    LocationSummary* locations = instruction->GetLocations();
    if (locations->OnlyCallsOnSlowPath()) {
      size_t core_spills =
          codegen_->GetNumberOfSlowPathSpills(locations, /* core_registers= */ true);
      size_t fp_spills =
          codegen_->GetNumberOfSlowPathSpills(locations, /* core_registers= */ false);
      size_t spill_size =
          core_register_spill_size * core_spills + fp_register_spill_size * fp_spills;
      maximum_safepoint_spill_size = std::max(maximum_safepoint_spill_size, spill_size);
    } else if (locations->CallsOnMainAndSlowPath()) {
      // Nothing to spill on the slow path if the main path already clobbers caller-saves.
      DCHECK_EQ(0u, codegen_->GetNumberOfSlowPathSpills(locations, /* core_registers= */ true));
      DCHECK_EQ(0u, codegen_->GetNumberOfSlowPathSpills(locations, /* core_registers= */ false));
    }
  }
  return maximum_safepoint_spill_size;
}
 
void RegisterAllocationResolver::ConnectSiblings(LiveInterval* interval) {
  LiveInterval* current = interval;
  if (current->HasSpillSlot()
      && current->HasRegister()
      // Currently, we spill unconditionnally the current method in the code generators.
      && !interval->GetDefinedBy()->IsCurrentMethod()) {
    // We spill eagerly, so move must be at definition.
    Location loc;
    switch (interval->NumberOfSpillSlotsNeeded()) {
      case 1: loc = Location::StackSlot(interval->GetParent()->GetSpillSlot()); break;
      case 2: loc = Location::DoubleStackSlot(interval->GetParent()->GetSpillSlot()); break;
      case 4: loc = Location::SIMDStackSlot(interval->GetParent()->GetSpillSlot()); break;
      default: LOG(FATAL) << "Unexpected number of spill slots"; UNREACHABLE();
    }
    InsertMoveAfter(interval->GetDefinedBy(), interval->ToLocation(), loc);
  }
  UsePositionList::const_iterator use_it = current->GetUses().begin();
  const UsePositionList::const_iterator use_end = current->GetUses().end();
  EnvUsePositionList::const_iterator env_use_it = current->GetEnvironmentUses().begin();
  const EnvUsePositionList::const_iterator env_use_end = current->GetEnvironmentUses().end();
 
  // Walk over all siblings, updating locations of use positions, and
  // connecting them when they are adjacent.
  do {
    Location source = current->ToLocation();
 
    // Walk over all uses covered by this interval, and update the location
    // information.
 
    LiveRange* range = current->GetFirstRange();
    while (range != nullptr) {
      // Process uses in the closed interval [range->GetStart(), range->GetEnd()].
      // FindMatchingUseRange() expects a half-open interval, so pass `range->GetEnd() + 1u`.
      size_t range_begin = range->GetStart();
      size_t range_end = range->GetEnd() + 1u;
      auto matching_use_range =
          FindMatchingUseRange(use_it, use_end, range_begin, range_end);
      DCHECK(std::all_of(use_it,
                         matching_use_range.begin(),
                         [](const UsePosition& pos) { return pos.IsSynthesized(); }));
      for (const UsePosition& use : matching_use_range) {
        DCHECK(current->CoversSlow(use.GetPosition()) || (use.GetPosition() == range->GetEnd()));
        if (!use.IsSynthesized()) {
          LocationSummary* locations = use.GetUser()->GetLocations();
          Location expected_location = locations->InAt(use.GetInputIndex());
          // The expected (actual) location may be invalid in case the input is unused. Currently
          // this only happens for intrinsics.
          if (expected_location.IsValid()) {
            if (expected_location.IsUnallocated()) {
              locations->SetInAt(use.GetInputIndex(), source);
            } else if (!expected_location.IsConstant()) {
              AddInputMoveFor(
                  interval->GetDefinedBy(), use.GetUser(), source, expected_location);
            }
          } else {
            DCHECK(use.GetUser()->IsInvoke());
            DCHECK(use.GetUser()->AsInvoke()->GetIntrinsic() != Intrinsics::kNone);
          }
        }
      }
      use_it = matching_use_range.end();
 
      // Walk over the environment uses, and update their locations.
      auto matching_env_use_range =
          FindMatchingUseRange(env_use_it, env_use_end, range_begin, range_end);
      for (const EnvUsePosition& env_use : matching_env_use_range) {
        DCHECK(current->CoversSlow(env_use.GetPosition())
               || (env_use.GetPosition() == range->GetEnd()));
        HEnvironment* environment = env_use.GetEnvironment();
        environment->SetLocationAt(env_use.GetInputIndex(), source);
      }
      env_use_it = matching_env_use_range.end();
 
      range = range->GetNext();
    }
 
    // If the next interval starts just after this one, and has a register,
    // insert a move.
    LiveInterval* next_sibling = current->GetNextSibling();
    if (next_sibling != nullptr
        && next_sibling->HasRegister()
        && current->GetEnd() == next_sibling->GetStart()) {
      Location destination = next_sibling->ToLocation();
      InsertParallelMoveAt(current->GetEnd(), interval->GetDefinedBy(), source, destination);
    }
 
    for (SafepointPosition* safepoint_position = current->GetFirstSafepoint();
         safepoint_position != nullptr;
         safepoint_position = safepoint_position->GetNext()) {
      DCHECK(current->CoversSlow(safepoint_position->GetPosition()));
 
      if (current->GetType() == DataType::Type::kReference) {
        DCHECK(interval->GetDefinedBy()->IsActualObject())
            << interval->GetDefinedBy()->DebugName()
            << '(' << interval->GetDefinedBy()->GetId() << ')'
            << "@" << safepoint_position->GetInstruction()->DebugName()
            << '(' << safepoint_position->GetInstruction()->GetId() << ')';
        LocationSummary* locations = safepoint_position->GetLocations();
        if (current->GetParent()->HasSpillSlot()) {
          locations->SetStackBit(current->GetParent()->GetSpillSlot() / kVRegSize);
        }
        if (source.GetKind() == Location::kRegister) {
          locations->SetRegisterBit(source.reg());
        }
      }
    }
    current = next_sibling;
  } while (current != nullptr);
 
  // Following uses can only be synthesized uses.
  DCHECK(std::all_of(use_it, use_end, [](const UsePosition& pos) { return pos.IsSynthesized(); }));
}
 
static bool IsMaterializableEntryBlockInstructionOfGraphWithIrreducibleLoop(
    HInstruction* instruction) {
  return instruction->GetBlock()->GetGraph()->HasIrreducibleLoops() &&
         (instruction->IsConstant() || instruction->IsCurrentMethod());
}
 
void RegisterAllocationResolver::ConnectSplitSiblings(LiveInterval* interval,
                                                      HBasicBlock* from,
                                                      HBasicBlock* to) const {
  if (interval->GetNextSibling() == nullptr) {
    // Nothing to connect. The whole range was allocated to the same location.
    return;
  }
 
  // Find the intervals that cover `from` and `to`.
  size_t destination_position = to->GetLifetimeStart();
  size_t source_position = from->GetLifetimeEnd() - 1;
  LiveInterval* destination = interval->GetSiblingAt(destination_position);
  LiveInterval* source = interval->GetSiblingAt(source_position);
 
  if (destination == source) {
    // Interval was not split.
    return;
  }
 
  LiveInterval* parent = interval->GetParent();
  HInstruction* defined_by = parent->GetDefinedBy();
  if (codegen_->GetGraph()->HasIrreducibleLoops() &&
      (destination == nullptr || !destination->CoversSlow(destination_position))) {
    // Our live_in fixed point calculation has found that the instruction is live
    // in the `to` block because it will eventually enter an irreducible loop. Our
    // live interval computation however does not compute a fixed point, and
    // therefore will not have a location for that instruction for `to`.
    // Because the instruction is a constant or the ArtMethod, we don't need to
    // do anything: it will be materialized in the irreducible loop.
    DCHECK(IsMaterializableEntryBlockInstructionOfGraphWithIrreducibleLoop(defined_by))
        << defined_by->DebugName() << ":" << defined_by->GetId()
        << " " << from->GetBlockId() << " -> " << to->GetBlockId();
    return;
  }
 
  if (!destination->HasRegister()) {
    // Values are eagerly spilled. Spill slot already contains appropriate value.
    return;
  }
 
  Location location_source;
  // `GetSiblingAt` returns the interval whose start and end cover `position`,
  // but does not check whether the interval is inactive at that position.
  // The only situation where the interval is inactive at that position is in the
  // presence of irreducible loops for constants and ArtMethod.
  if (codegen_->GetGraph()->HasIrreducibleLoops() &&
      (source == nullptr || !source->CoversSlow(source_position))) {
    DCHECK(IsMaterializableEntryBlockInstructionOfGraphWithIrreducibleLoop(defined_by));
    if (defined_by->IsConstant()) {
      location_source = defined_by->GetLocations()->Out();
    } else {
      DCHECK(defined_by->IsCurrentMethod());
      switch (parent->NumberOfSpillSlotsNeeded()) {
        case 1: location_source = Location::StackSlot(parent->GetSpillSlot()); break;
        case 2: location_source = Location::DoubleStackSlot(parent->GetSpillSlot()); break;
        case 4: location_source = Location::SIMDStackSlot(parent->GetSpillSlot()); break;
        default: LOG(FATAL) << "Unexpected number of spill slots"; UNREACHABLE();
      }
    }
  } else {
    DCHECK(source != nullptr);
    DCHECK(source->CoversSlow(source_position));
    DCHECK(destination->CoversSlow(destination_position));
    location_source = source->ToLocation();
  }
 
  // If `from` has only one successor, we can put the moves at the exit of it. Otherwise
  // we need to put the moves at the entry of `to`.
  if (from->GetNormalSuccessors().size() == 1) {
    InsertParallelMoveAtExitOf(from,
                               defined_by,
                               location_source,
                               destination->ToLocation());
  } else {
    DCHECK_EQ(to->GetPredecessors().size(), 1u);
    InsertParallelMoveAtEntryOf(to,
                                defined_by,
                                location_source,
                                destination->ToLocation());
  }
}
 
static bool IsValidDestination(Location destination) {
  return destination.IsRegister()
      || destination.IsRegisterPair()
      || destination.IsFpuRegister()
      || destination.IsFpuRegisterPair()
      || destination.IsStackSlot()
      || destination.IsDoubleStackSlot()
      || destination.IsSIMDStackSlot();
}
 
void RegisterAllocationResolver::AddMove(HParallelMove* move,
                                         Location source,
                                         Location destination,
                                         HInstruction* instruction,
                                         DataType::Type type) const {
  if (type == DataType::Type::kInt64
      && codegen_->ShouldSplitLongMoves()
      // The parallel move resolver knows how to deal with long constants.
      && !source.IsConstant()) {
    move->AddMove(source.ToLow(), destination.ToLow(), DataType::Type::kInt32, instruction);
    move->AddMove(source.ToHigh(), destination.ToHigh(), DataType::Type::kInt32, nullptr);
  } else {
    move->AddMove(source, destination, type, instruction);
  }
}
 
void RegisterAllocationResolver::AddInputMoveFor(HInstruction* input,
                                                 HInstruction* user,
                                                 Location source,
                                                 Location destination) const {
  if (source.Equals(destination)) return;
 
  DCHECK(!user->IsPhi());
 
  HInstruction* previous = user->GetPrevious();
  HParallelMove* move = nullptr;
  if (previous == nullptr
      || !previous->IsParallelMove()
      || previous->GetLifetimePosition() < user->GetLifetimePosition()) {
    move = new (allocator_) HParallelMove(allocator_);
    move->SetLifetimePosition(user->GetLifetimePosition());
    user->GetBlock()->InsertInstructionBefore(move, user);
  } else {
    move = previous->AsParallelMove();
  }
  DCHECK_EQ(move->GetLifetimePosition(), user->GetLifetimePosition());
  AddMove(move, source, destination, nullptr, input->GetType());
}
 
static bool IsInstructionStart(size_t position) {
  return (position & 1) == 0;
}
 
static bool IsInstructionEnd(size_t position) {
  return (position & 1) == 1;
}
 
void RegisterAllocationResolver::InsertParallelMoveAt(size_t position,
                                                      HInstruction* instruction,
                                                      Location source,
                                                      Location destination) const {
  DCHECK(IsValidDestination(destination)) << destination;
  if (source.Equals(destination)) return;
 
  HInstruction* at = liveness_.GetInstructionFromPosition(position / 2);
  HParallelMove* move;
  if (at == nullptr) {
    if (IsInstructionStart(position)) {
      // Block boundary, don't do anything the connection of split siblings will handle it.
      return;
    } else {
      // Move must happen before the first instruction of the block.
      at = liveness_.GetInstructionFromPosition((position + 1) / 2);
      // Note that parallel moves may have already been inserted, so we explicitly
      // ask for the first instruction of the block: `GetInstructionFromPosition` does
      // not contain the `HParallelMove` instructions.
      at = at->GetBlock()->GetFirstInstruction();
 
      if (at->GetLifetimePosition() < position) {
        // We may insert moves for split siblings and phi spills at the beginning of the block.
        // Since this is a different lifetime position, we need to go to the next instruction.
        DCHECK(at->IsParallelMove());
        at = at->GetNext();
      }
 
      if (at->GetLifetimePosition() != position) {
        DCHECK_GT(at->GetLifetimePosition(), position);
        move = new (allocator_) HParallelMove(allocator_);
        move->SetLifetimePosition(position);
        at->GetBlock()->InsertInstructionBefore(move, at);
      } else {
        DCHECK(at->IsParallelMove());
        move = at->AsParallelMove();
      }
    }
  } else if (IsInstructionEnd(position)) {
    // Move must happen after the instruction.
    DCHECK(!at->IsControlFlow());
    move = at->GetNext()->AsParallelMove();
    // This is a parallel move for connecting siblings in a same block. We need to
    // differentiate it with moves for connecting blocks, and input moves.
    if (move == nullptr || move->GetLifetimePosition() > position) {
      move = new (allocator_) HParallelMove(allocator_);
      move->SetLifetimePosition(position);
      at->GetBlock()->InsertInstructionBefore(move, at->GetNext());
    }
  } else {
    // Move must happen before the instruction.
    HInstruction* previous = at->GetPrevious();
    if (previous == nullptr
        || !previous->IsParallelMove()
        || previous->GetLifetimePosition() != position) {
      // If the previous is a parallel move, then its position must be lower
      // than the given `position`: it was added just after the non-parallel
      // move instruction that precedes `instruction`.
      DCHECK(previous == nullptr
             || !previous->IsParallelMove()
             || previous->GetLifetimePosition() < position);
      move = new (allocator_) HParallelMove(allocator_);
      move->SetLifetimePosition(position);
      at->GetBlock()->InsertInstructionBefore(move, at);
    } else {
      move = previous->AsParallelMove();
    }
  }
  DCHECK_EQ(move->GetLifetimePosition(), position);
  AddMove(move, source, destination, instruction, instruction->GetType());
}
 
void RegisterAllocationResolver::InsertParallelMoveAtExitOf(HBasicBlock* block,
                                                            HInstruction* instruction,
                                                            Location source,
                                                            Location destination) const {
  DCHECK(IsValidDestination(destination)) << destination;
  if (source.Equals(destination)) return;
 
  DCHECK_EQ(block->GetNormalSuccessors().size(), 1u);
  HInstruction* last = block->GetLastInstruction();
  // We insert moves at exit for phi predecessors and connecting blocks.
  // A block ending with an if or a packed switch cannot branch to a block
  // with phis because we do not allow critical edges. It can also not connect
  // a split interval between two blocks: the move has to happen in the successor.
  DCHECK(!last->IsIf() && !last->IsPackedSwitch());
  HInstruction* previous = last->GetPrevious();
  HParallelMove* move;
  // This is a parallel move for connecting blocks. We need to differentiate
  // it with moves for connecting siblings in a same block, and output moves.
  size_t position = last->GetLifetimePosition();
  if (previous == nullptr || !previous->IsParallelMove()
      || previous->AsParallelMove()->GetLifetimePosition() != position) {
    move = new (allocator_) HParallelMove(allocator_);
    move->SetLifetimePosition(position);
    block->InsertInstructionBefore(move, last);
  } else {
    move = previous->AsParallelMove();
  }
  AddMove(move, source, destination, instruction, instruction->GetType());
}
 
void RegisterAllocationResolver::InsertParallelMoveAtEntryOf(HBasicBlock* block,
                                                             HInstruction* instruction,
                                                             Location source,
                                                             Location destination) const {
  DCHECK(IsValidDestination(destination)) << destination;
  if (source.Equals(destination)) return;
 
  HInstruction* first = block->GetFirstInstruction();
  HParallelMove* move = first->AsParallelMove();
  size_t position = block->GetLifetimeStart();
  // This is a parallel move for connecting blocks. We need to differentiate
  // it with moves for connecting siblings in a same block, and input moves.
  if (move == nullptr || move->GetLifetimePosition() != position) {
    move = new (allocator_) HParallelMove(allocator_);
    move->SetLifetimePosition(position);
    block->InsertInstructionBefore(move, first);
  }
  AddMove(move, source, destination, instruction, instruction->GetType());
}
 
void RegisterAllocationResolver::InsertMoveAfter(HInstruction* instruction,
                                                 Location source,
                                                 Location destination) const {
  DCHECK(IsValidDestination(destination)) << destination;
  if (source.Equals(destination)) return;
 
  if (instruction->IsPhi()) {
    InsertParallelMoveAtEntryOf(instruction->GetBlock(), instruction, source, destination);
    return;
  }
 
  size_t position = instruction->GetLifetimePosition() + 1;
  HParallelMove* move = instruction->GetNext()->AsParallelMove();
  // This is a parallel move for moving the output of an instruction. We need
  // to differentiate with input moves, moves for connecting siblings in a
  // and moves for connecting blocks.
  if (move == nullptr || move->GetLifetimePosition() != position) {
    move = new (allocator_) HParallelMove(allocator_);
    move->SetLifetimePosition(position);
    instruction->GetBlock()->InsertInstructionBefore(move, instruction->GetNext());
  }
  AddMove(move, source, destination, instruction, instruction->GetType());
}
 
}  // namespace art