lin
2025-02-25 a02983e50ab34c3e7366b27cdeca427a327faebd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
#include "prepare_for_register_allocation.h"
 
#include "dex/dex_file_types.h"
#include "driver/compiler_options.h"
#include "jni/jni_internal.h"
#include "optimizing_compiler_stats.h"
#include "well_known_classes.h"
 
namespace art {
 
void PrepareForRegisterAllocation::Run() {
  // Order does not matter.
  for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
    // No need to visit the phis.
    for (HInstructionIteratorHandleChanges inst_it(block->GetInstructions()); !inst_it.Done();
         inst_it.Advance()) {
      inst_it.Current()->Accept(this);
    }
  }
}
 
void PrepareForRegisterAllocation::VisitCheckCast(HCheckCast* check_cast) {
  // Record only those bitstring type checks that make it to the codegen stage.
  if (check_cast->GetTypeCheckKind() == TypeCheckKind::kBitstringCheck) {
    MaybeRecordStat(stats_, MethodCompilationStat::kBitstringTypeCheck);
  }
}
 
void PrepareForRegisterAllocation::VisitInstanceOf(HInstanceOf* instance_of) {
  // Record only those bitstring type checks that make it to the codegen stage.
  if (instance_of->GetTypeCheckKind() == TypeCheckKind::kBitstringCheck) {
    MaybeRecordStat(stats_, MethodCompilationStat::kBitstringTypeCheck);
  }
}
 
void PrepareForRegisterAllocation::VisitNullCheck(HNullCheck* check) {
  check->ReplaceWith(check->InputAt(0));
  if (compiler_options_.GetImplicitNullChecks()) {
    HInstruction* next = check->GetNext();
 
    // The `PrepareForRegisterAllocation` pass removes `HBoundType` from the graph,
    // so do it ourselves now to not prevent optimizations.
    while (next->IsBoundType()) {
      next = next->GetNext();
      VisitBoundType(next->GetPrevious()->AsBoundType());
    }
    if (next->CanDoImplicitNullCheckOn(check->InputAt(0))) {
      check->MarkEmittedAtUseSite();
    }
  }
}
 
void PrepareForRegisterAllocation::VisitDivZeroCheck(HDivZeroCheck* check) {
  check->ReplaceWith(check->InputAt(0));
}
 
void PrepareForRegisterAllocation::VisitDeoptimize(HDeoptimize* deoptimize) {
  if (deoptimize->GuardsAnInput()) {
    // Replace the uses with the actual guarded instruction.
    deoptimize->ReplaceWith(deoptimize->GuardedInput());
    deoptimize->RemoveGuard();
  }
}
 
void PrepareForRegisterAllocation::VisitBoundsCheck(HBoundsCheck* check) {
  check->ReplaceWith(check->InputAt(0));
  if (check->IsStringCharAt()) {
    // Add a fake environment for String.charAt() inline info as we want the exception
    // to appear as being thrown from there. Skip if we're compiling String.charAt() itself.
    ArtMethod* char_at_method = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
    if (GetGraph()->GetArtMethod() != char_at_method) {
      ArenaAllocator* allocator = GetGraph()->GetAllocator();
      HEnvironment* environment = new (allocator) HEnvironment(allocator,
                                                               /* number_of_vregs= */ 0u,
                                                               char_at_method,
                                                               /* dex_pc= */ dex::kDexNoIndex,
                                                               check);
      check->InsertRawEnvironment(environment);
    }
  }
}
 
void PrepareForRegisterAllocation::VisitBoundType(HBoundType* bound_type) {
  bound_type->ReplaceWith(bound_type->InputAt(0));
  bound_type->GetBlock()->RemoveInstruction(bound_type);
}
 
void PrepareForRegisterAllocation::VisitArraySet(HArraySet* instruction) {
  HInstruction* value = instruction->GetValue();
  // PrepareForRegisterAllocation::VisitBoundType may have replaced a
  // BoundType (as value input of this ArraySet) with a NullConstant.
  // If so, this ArraySet no longer needs a type check.
  if (value->IsNullConstant()) {
    DCHECK_EQ(value->GetType(), DataType::Type::kReference);
    if (instruction->NeedsTypeCheck()) {
      instruction->ClearNeedsTypeCheck();
    }
  }
}
 
void PrepareForRegisterAllocation::VisitClinitCheck(HClinitCheck* check) {
  // Try to find a static invoke or a new-instance from which this check originated.
  HInstruction* implicit_clinit = nullptr;
  for (const HUseListNode<HInstruction*>& use : check->GetUses()) {
    HInstruction* user = use.GetUser();
    if ((user->IsInvokeStaticOrDirect() || user->IsNewInstance()) &&
        CanMoveClinitCheck(check, user)) {
      implicit_clinit = user;
      if (user->IsInvokeStaticOrDirect()) {
        DCHECK(user->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck());
        user->AsInvokeStaticOrDirect()->RemoveExplicitClinitCheck(
            HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
      } else {
        DCHECK(user->IsNewInstance());
        // We delegate the initialization duty to the allocation.
        if (user->AsNewInstance()->GetEntrypoint() == kQuickAllocObjectInitialized) {
          user->AsNewInstance()->SetEntrypoint(kQuickAllocObjectResolved);
        }
      }
      break;
    }
  }
  // If we found a static invoke or new-instance for merging, remove the check
  // from dominated static invokes.
  if (implicit_clinit != nullptr) {
    const HUseList<HInstruction*>& uses = check->GetUses();
    for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
      HInstruction* user = it->GetUser();
      // All other uses must be dominated.
      DCHECK(implicit_clinit->StrictlyDominates(user) || (implicit_clinit == user));
      ++it;  // Advance before we remove the node, reference to the next node is preserved.
      if (user->IsInvokeStaticOrDirect()) {
        user->AsInvokeStaticOrDirect()->RemoveExplicitClinitCheck(
            HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
      }
    }
  }
 
  HLoadClass* load_class = check->GetLoadClass();
  bool can_merge_with_load_class = CanMoveClinitCheck(load_class, check);
 
  check->ReplaceWith(load_class);
 
  if (implicit_clinit != nullptr) {
    // Remove the check from the graph. It has been merged into the invoke or new-instance.
    check->GetBlock()->RemoveInstruction(check);
    // Check if we can merge the load class as well.
    if (can_merge_with_load_class && !load_class->HasUses()) {
      load_class->GetBlock()->RemoveInstruction(load_class);
    }
  } else if (can_merge_with_load_class &&
             load_class->GetLoadKind() != HLoadClass::LoadKind::kRuntimeCall) {
    DCHECK(!load_class->NeedsAccessCheck());
    // Pass the initialization duty to the `HLoadClass` instruction,
    // and remove the instruction from the graph.
    DCHECK(load_class->HasEnvironment());
    load_class->SetMustGenerateClinitCheck(true);
    check->GetBlock()->RemoveInstruction(check);
  }
}
 
bool PrepareForRegisterAllocation::CanEmitConditionAt(HCondition* condition,
                                                      HInstruction* user) const {
  if (condition->GetNext() != user) {
    return false;
  }
 
  if (user->IsIf() || user->IsDeoptimize()) {
    return true;
  }
 
  if (user->IsSelect() && user->AsSelect()->GetCondition() == condition) {
    return true;
  }
 
  return false;
}
 
void PrepareForRegisterAllocation::VisitCondition(HCondition* condition) {
  if (condition->HasOnlyOneNonEnvironmentUse()) {
    HInstruction* user = condition->GetUses().front().GetUser();
    if (CanEmitConditionAt(condition, user)) {
      condition->MarkEmittedAtUseSite();
    }
  }
}
 
void PrepareForRegisterAllocation::VisitConstructorFence(HConstructorFence* constructor_fence) {
  // Trivially remove redundant HConstructorFence when it immediately follows an HNewInstance
  // to an uninitialized class. In this special case, the art_quick_alloc_object_resolved
  // will already have the 'dmb' which is strictly stronger than an HConstructorFence.
  //
  // The instruction builder always emits "x = HNewInstance; HConstructorFence(x)" so this
  // is effectively pattern-matching that particular case and undoing the redundancy the builder
  // had introduced.
  //
  // TODO: Move this to a separate pass.
  HInstruction* allocation_inst = constructor_fence->GetAssociatedAllocation();
  if (allocation_inst != nullptr && allocation_inst->IsNewInstance()) {
    HNewInstance* new_inst = allocation_inst->AsNewInstance();
    // This relies on the entrypoint already being set to the more optimized version;
    // as that happens in this pass, this redundancy removal also cannot happen any earlier.
    if (new_inst != nullptr && new_inst->GetEntrypoint() == kQuickAllocObjectResolved) {
      // If this was done in an earlier pass, we would want to match that `previous` was an input
      // to the `constructor_fence`. However, since this pass removes the inputs to the fence,
      // we can ignore the inputs and just remove the instruction from its block.
      DCHECK_EQ(1u, constructor_fence->InputCount());
      // TODO: GetAssociatedAllocation should not care about multiple inputs
      // if we are in prepare_for_register_allocation pass only.
      constructor_fence->GetBlock()->RemoveInstruction(constructor_fence);
      MaybeRecordStat(stats_,
                      MethodCompilationStat::kConstructorFenceRemovedPFRA);
      return;
    }
 
    // HNewArray does not need this check because the art_quick_alloc_array does not itself
    // have a dmb in any normal situation (i.e. the array class is never exactly in the
    // "resolved" state). If the array class is not yet loaded, it will always go from
    // Unloaded->Initialized state.
  }
 
  // Remove all the inputs to the constructor fence;
  // they aren't used by the InstructionCodeGenerator and this lets us avoid creating a
  // LocationSummary in the LocationsBuilder.
  constructor_fence->RemoveAllInputs();
}
 
void PrepareForRegisterAllocation::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
  if (invoke->IsStaticWithExplicitClinitCheck()) {
    HInstruction* last_input = invoke->GetInputs().back();
    DCHECK(last_input->IsLoadClass())
        << "Last input is not HLoadClass. It is " << last_input->DebugName();
 
    // Detach the explicit class initialization check from the invoke.
    // Keeping track of the initializing instruction is no longer required
    // at this stage (i.e., after inlining has been performed).
    invoke->RemoveExplicitClinitCheck(HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
 
    // Merging with load class should have happened in VisitClinitCheck().
    DCHECK(!CanMoveClinitCheck(last_input, invoke));
  }
}
 
bool PrepareForRegisterAllocation::CanMoveClinitCheck(HInstruction* input,
                                                      HInstruction* user) const {
  // Determine if input and user come from the same dex instruction, so that we can move
  // the clinit check responsibility from one to the other, i.e. from HClinitCheck (user)
  // to HLoadClass (input), or from HClinitCheck (input) to HInvokeStaticOrDirect (user),
  // or from HLoadClass (input) to HNewInstance (user).
 
  // Start with a quick dex pc check.
  if (user->GetDexPc() != input->GetDexPc()) {
    return false;
  }
 
  // Now do a thorough environment check that this is really coming from the same instruction in
  // the same inlined graph. Unfortunately, we have to go through the whole environment chain.
  HEnvironment* user_environment = user->GetEnvironment();
  HEnvironment* input_environment = input->GetEnvironment();
  while (user_environment != nullptr || input_environment != nullptr) {
    if (user_environment == nullptr || input_environment == nullptr) {
      // Different environment chain length. This happens when a method is called
      // once directly and once indirectly through another inlined method.
      return false;
    }
    if (user_environment->GetDexPc() != input_environment->GetDexPc() ||
        user_environment->GetMethod() != input_environment->GetMethod()) {
      return false;
    }
    user_environment = user_environment->GetParent();
    input_environment = input_environment->GetParent();
  }
 
  // Check for code motion taking the input to a different block.
  if (user->GetBlock() != input->GetBlock()) {
    return false;
  }
 
  // In debug mode, check that we have not inserted a throwing instruction
  // or an instruction with side effects between input and user.
  if (kIsDebugBuild) {
    for (HInstruction* between = input->GetNext(); between != user; between = between->GetNext()) {
      CHECK(between != nullptr);  // User must be after input in the same block.
      CHECK(!between->CanThrow());
      CHECK(!between->HasSideEffects());
    }
  }
  return true;
}
 
void PrepareForRegisterAllocation::VisitTypeConversion(HTypeConversion* instruction) {
  // For simplicity, our code generators don't handle implicit type conversion, so ensure
  // there are none before hitting codegen.
  if (instruction->IsImplicitConversion()) {
    instruction->ReplaceWith(instruction->GetInput());
    instruction->GetBlock()->RemoveInstruction(instruction);
  }
}
 
}  // namespace art