/*
|
* Copyright 2006 The Android Open Source Project
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkBlurMask.h"
|
|
#include "SkColorPriv.h"
|
#include "SkEndian.h"
|
#include "SkMaskBlurFilter.h"
|
#include "SkMath.h"
|
#include "SkMathPriv.h"
|
#include "SkTemplates.h"
|
#include "SkTo.h"
|
|
// This constant approximates the scaling done in the software path's
|
// "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
|
// IMHO, it actually should be 1: we blur "less" than we should do
|
// according to the CSS and canvas specs, simply because Safari does the same.
|
// Firefox used to do the same too, until 4.0 where they fixed it. So at some
|
// point we should probably get rid of these scaling constants and rebaseline
|
// all the blur tests.
|
static const SkScalar kBLUR_SIGMA_SCALE = 0.57735f;
|
|
SkScalar SkBlurMask::ConvertRadiusToSigma(SkScalar radius) {
|
return radius > 0 ? kBLUR_SIGMA_SCALE * radius + 0.5f : 0.0f;
|
}
|
|
SkScalar SkBlurMask::ConvertSigmaToRadius(SkScalar sigma) {
|
return sigma > 0.5f ? (sigma - 0.5f) / kBLUR_SIGMA_SCALE : 0.0f;
|
}
|
|
|
template <typename AlphaIter>
|
static void merge_src_with_blur(uint8_t dst[], int dstRB,
|
AlphaIter src, int srcRB,
|
const uint8_t blur[], int blurRB,
|
int sw, int sh) {
|
dstRB -= sw;
|
blurRB -= sw;
|
while (--sh >= 0) {
|
AlphaIter rowSrc(src);
|
for (int x = sw - 1; x >= 0; --x) {
|
*dst = SkToU8(SkAlphaMul(*blur, SkAlpha255To256(*rowSrc)));
|
++dst;
|
++rowSrc;
|
++blur;
|
}
|
dst += dstRB;
|
src >>= srcRB;
|
blur += blurRB;
|
}
|
}
|
|
template <typename AlphaIter>
|
static void clamp_solid_with_orig(uint8_t dst[], int dstRowBytes,
|
AlphaIter src, int srcRowBytes,
|
int sw, int sh) {
|
int x;
|
while (--sh >= 0) {
|
AlphaIter rowSrc(src);
|
for (x = sw - 1; x >= 0; --x) {
|
int s = *rowSrc;
|
int d = *dst;
|
*dst = SkToU8(s + d - SkMulDiv255Round(s, d));
|
++dst;
|
++rowSrc;
|
}
|
dst += dstRowBytes - sw;
|
src >>= srcRowBytes;
|
}
|
}
|
|
template <typename AlphaIter>
|
static void clamp_outer_with_orig(uint8_t dst[], int dstRowBytes,
|
AlphaIter src, int srcRowBytes,
|
int sw, int sh) {
|
int x;
|
while (--sh >= 0) {
|
AlphaIter rowSrc(src);
|
for (x = sw - 1; x >= 0; --x) {
|
int srcValue = *rowSrc;
|
if (srcValue) {
|
*dst = SkToU8(SkAlphaMul(*dst, SkAlpha255To256(255 - srcValue)));
|
}
|
++dst;
|
++rowSrc;
|
}
|
dst += dstRowBytes - sw;
|
src >>= srcRowBytes;
|
}
|
}
|
///////////////////////////////////////////////////////////////////////////////
|
|
// we use a local function to wrap the class static method to work around
|
// a bug in gcc98
|
void SkMask_FreeImage(uint8_t* image);
|
void SkMask_FreeImage(uint8_t* image) {
|
SkMask::FreeImage(image);
|
}
|
|
bool SkBlurMask::BoxBlur(SkMask* dst, const SkMask& src, SkScalar sigma, SkBlurStyle style,
|
SkIPoint* margin) {
|
if (src.fFormat != SkMask::kBW_Format &&
|
src.fFormat != SkMask::kA8_Format &&
|
src.fFormat != SkMask::kARGB32_Format &&
|
src.fFormat != SkMask::kLCD16_Format)
|
{
|
return false;
|
}
|
|
SkMaskBlurFilter blurFilter{sigma, sigma};
|
if (blurFilter.hasNoBlur()) {
|
// If there is no effective blur most styles will just produce the original mask.
|
// However, kOuter_SkBlurStyle will produce an empty mask.
|
if (style == kOuter_SkBlurStyle) {
|
dst->fImage = nullptr;
|
dst->fBounds = SkIRect::MakeEmpty();
|
dst->fRowBytes = dst->fBounds.width();
|
dst->fFormat = SkMask::kA8_Format;
|
if (margin != nullptr) {
|
// This filter will disregard the src.fImage completely.
|
// The margin is actually {-(src.fBounds.width() / 2), -(src.fBounds.height() / 2)}
|
// but it is not clear if callers will fall over with negative margins.
|
*margin = SkIPoint{0,0};
|
}
|
return true;
|
}
|
return false;
|
}
|
const SkIPoint border = blurFilter.blur(src, dst);
|
// If src.fImage is null, then this call is only to calculate the border.
|
if (src.fImage != nullptr && dst->fImage == nullptr) {
|
return false;
|
}
|
|
if (margin != nullptr) {
|
*margin = border;
|
}
|
|
if (src.fImage == nullptr) {
|
if (style == kInner_SkBlurStyle) {
|
dst->fBounds = src.fBounds; // restore trimmed bounds
|
dst->fRowBytes = dst->fBounds.width();
|
}
|
return true;
|
}
|
|
switch (style) {
|
case kNormal_SkBlurStyle:
|
break;
|
case kSolid_SkBlurStyle: {
|
auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes];
|
switch (src.fFormat) {
|
case SkMask::kBW_Format:
|
clamp_solid_with_orig(
|
dstStart, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
break;
|
case SkMask::kA8_Format:
|
clamp_solid_with_orig(
|
dstStart, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
break;
|
case SkMask::kARGB32_Format: {
|
uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage);
|
clamp_solid_with_orig(
|
dstStart, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
} break;
|
case SkMask::kLCD16_Format: {
|
uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage);
|
clamp_solid_with_orig(
|
dstStart, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
} break;
|
default:
|
SK_ABORT("Unhandled format.");
|
}
|
} break;
|
case kOuter_SkBlurStyle: {
|
auto dstStart = &dst->fImage[border.x() + border.y() * dst->fRowBytes];
|
switch (src.fFormat) {
|
case SkMask::kBW_Format:
|
clamp_outer_with_orig(
|
dstStart, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
break;
|
case SkMask::kA8_Format:
|
clamp_outer_with_orig(
|
dstStart, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
break;
|
case SkMask::kARGB32_Format: {
|
uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage);
|
clamp_outer_with_orig(
|
dstStart, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
} break;
|
case SkMask::kLCD16_Format: {
|
uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage);
|
clamp_outer_with_orig(
|
dstStart, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
} break;
|
default:
|
SK_ABORT("Unhandled format.");
|
}
|
} break;
|
case kInner_SkBlurStyle: {
|
// now we allocate the "real" dst, mirror the size of src
|
SkMask blur = *dst;
|
SkAutoMaskFreeImage autoFreeBlurMask(blur.fImage);
|
dst->fBounds = src.fBounds;
|
dst->fRowBytes = dst->fBounds.width();
|
size_t dstSize = dst->computeImageSize();
|
if (0 == dstSize) {
|
return false; // too big to allocate, abort
|
}
|
dst->fImage = SkMask::AllocImage(dstSize);
|
auto blurStart = &blur.fImage[border.x() + border.y() * blur.fRowBytes];
|
switch (src.fFormat) {
|
case SkMask::kBW_Format:
|
merge_src_with_blur(
|
dst->fImage, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kBW_Format>(src.fImage, 0), src.fRowBytes,
|
blurStart, blur.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
break;
|
case SkMask::kA8_Format:
|
merge_src_with_blur(
|
dst->fImage, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kA8_Format>(src.fImage), src.fRowBytes,
|
blurStart, blur.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
break;
|
case SkMask::kARGB32_Format: {
|
uint32_t* srcARGB = reinterpret_cast<uint32_t*>(src.fImage);
|
merge_src_with_blur(
|
dst->fImage, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kARGB32_Format>(srcARGB), src.fRowBytes,
|
blurStart, blur.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
} break;
|
case SkMask::kLCD16_Format: {
|
uint16_t* srcLCD = reinterpret_cast<uint16_t*>(src.fImage);
|
merge_src_with_blur(
|
dst->fImage, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kLCD16_Format>(srcLCD), src.fRowBytes,
|
blurStart, blur.fRowBytes,
|
src.fBounds.width(), src.fBounds.height());
|
} break;
|
default:
|
SK_ABORT("Unhandled format.");
|
}
|
} break;
|
}
|
|
return true;
|
}
|
|
/* Convolving a box with itself three times results in a piecewise
|
quadratic function:
|
|
0 x <= -1.5
|
9/8 + 3/2 x + 1/2 x^2 -1.5 < x <= -.5
|
3/4 - x^2 -.5 < x <= .5
|
9/8 - 3/2 x + 1/2 x^2 0.5 < x <= 1.5
|
0 1.5 < x
|
|
Mathematica:
|
|
g[x_] := Piecewise [ {
|
{9/8 + 3/2 x + 1/2 x^2 , -1.5 < x <= -.5},
|
{3/4 - x^2 , -.5 < x <= .5},
|
{9/8 - 3/2 x + 1/2 x^2 , 0.5 < x <= 1.5}
|
}, 0]
|
|
To get the profile curve of the blurred step function at the rectangle
|
edge, we evaluate the indefinite integral, which is piecewise cubic:
|
|
0 x <= -1.5
|
9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3 -1.5 < x <= -0.5
|
1/2 + 3/4 x - 1/3 x^3 -.5 < x <= .5
|
7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3 .5 < x <= 1.5
|
1 1.5 < x
|
|
in Mathematica code:
|
|
gi[x_] := Piecewise[ {
|
{ 0 , x <= -1.5 },
|
{ 9/16 + 9/8 x + 3/4 x^2 + 1/6 x^3, -1.5 < x <= -0.5 },
|
{ 1/2 + 3/4 x - 1/3 x^3 , -.5 < x <= .5},
|
{ 7/16 + 9/8 x - 3/4 x^2 + 1/6 x^3, .5 < x <= 1.5}
|
},1]
|
*/
|
|
static float gaussianIntegral(float x) {
|
if (x > 1.5f) {
|
return 0.0f;
|
}
|
if (x < -1.5f) {
|
return 1.0f;
|
}
|
|
float x2 = x*x;
|
float x3 = x2*x;
|
|
if ( x > 0.5f ) {
|
return 0.5625f - (x3 / 6.0f - 3.0f * x2 * 0.25f + 1.125f * x);
|
}
|
if ( x > -0.5f ) {
|
return 0.5f - (0.75f * x - x3 / 3.0f);
|
}
|
return 0.4375f + (-x3 / 6.0f - 3.0f * x2 * 0.25f - 1.125f * x);
|
}
|
|
/* ComputeBlurProfile fills in an array of floating
|
point values between 0 and 255 for the profile signature of
|
a blurred half-plane with the given blur radius. Since we're
|
going to be doing screened multiplications (i.e., 1 - (1-x)(1-y))
|
all the time, we actually fill in the profile pre-inverted
|
(already done 255-x).
|
*/
|
|
void SkBlurMask::ComputeBlurProfile(uint8_t* profile, int size, SkScalar sigma) {
|
SkASSERT(SkScalarCeilToInt(6*sigma) == size);
|
|
int center = size >> 1;
|
|
float invr = 1.f/(2*sigma);
|
|
profile[0] = 255;
|
for (int x = 1 ; x < size ; ++x) {
|
float scaled_x = (center - x - .5f) * invr;
|
float gi = gaussianIntegral(scaled_x);
|
profile[x] = 255 - (uint8_t) (255.f * gi);
|
}
|
}
|
|
// TODO MAYBE: Maintain a profile cache to avoid recomputing this for
|
// commonly used radii. Consider baking some of the most common blur radii
|
// directly in as static data?
|
|
// Implementation adapted from Michael Herf's approach:
|
// http://stereopsis.com/shadowrect/
|
|
uint8_t SkBlurMask::ProfileLookup(const uint8_t *profile, int loc,
|
int blurredWidth, int sharpWidth) {
|
// how far are we from the original edge?
|
int dx = SkAbs32(((loc << 1) + 1) - blurredWidth) - sharpWidth;
|
int ox = dx >> 1;
|
if (ox < 0) {
|
ox = 0;
|
}
|
|
return profile[ox];
|
}
|
|
void SkBlurMask::ComputeBlurredScanline(uint8_t *pixels, const uint8_t *profile,
|
unsigned int width, SkScalar sigma) {
|
|
unsigned int profile_size = SkScalarCeilToInt(6*sigma);
|
SkAutoTMalloc<uint8_t> horizontalScanline(width);
|
|
unsigned int sw = width - profile_size;
|
// nearest odd number less than the profile size represents the center
|
// of the (2x scaled) profile
|
int center = ( profile_size & ~1 ) - 1;
|
|
int w = sw - center;
|
|
for (unsigned int x = 0 ; x < width ; ++x) {
|
if (profile_size <= sw) {
|
pixels[x] = ProfileLookup(profile, x, width, w);
|
} else {
|
float span = float(sw)/(2*sigma);
|
float giX = 1.5f - (x+.5f)/(2*sigma);
|
pixels[x] = (uint8_t) (255 * (gaussianIntegral(giX) - gaussianIntegral(giX + span)));
|
}
|
}
|
}
|
|
bool SkBlurMask::BlurRect(SkScalar sigma, SkMask *dst,
|
const SkRect &src, SkBlurStyle style,
|
SkIPoint *margin, SkMask::CreateMode createMode) {
|
int profileSize = SkScalarCeilToInt(6*sigma);
|
if (profileSize <= 0) {
|
return false; // no blur to compute
|
}
|
|
int pad = profileSize/2;
|
if (margin) {
|
margin->set( pad, pad );
|
}
|
|
dst->fBounds.set(SkScalarRoundToInt(src.fLeft - pad),
|
SkScalarRoundToInt(src.fTop - pad),
|
SkScalarRoundToInt(src.fRight + pad),
|
SkScalarRoundToInt(src.fBottom + pad));
|
|
dst->fRowBytes = dst->fBounds.width();
|
dst->fFormat = SkMask::kA8_Format;
|
dst->fImage = nullptr;
|
|
int sw = SkScalarFloorToInt(src.width());
|
int sh = SkScalarFloorToInt(src.height());
|
|
if (createMode == SkMask::kJustComputeBounds_CreateMode) {
|
if (style == kInner_SkBlurStyle) {
|
dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
|
SkScalarRoundToInt(src.fTop),
|
SkScalarRoundToInt(src.fRight),
|
SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
|
dst->fRowBytes = sw;
|
}
|
return true;
|
}
|
|
SkAutoTMalloc<uint8_t> profile(profileSize);
|
|
ComputeBlurProfile(profile, profileSize, sigma);
|
|
size_t dstSize = dst->computeImageSize();
|
if (0 == dstSize) {
|
return false; // too big to allocate, abort
|
}
|
|
uint8_t* dp = SkMask::AllocImage(dstSize);
|
|
dst->fImage = dp;
|
|
int dstHeight = dst->fBounds.height();
|
int dstWidth = dst->fBounds.width();
|
|
uint8_t *outptr = dp;
|
|
SkAutoTMalloc<uint8_t> horizontalScanline(dstWidth);
|
SkAutoTMalloc<uint8_t> verticalScanline(dstHeight);
|
|
ComputeBlurredScanline(horizontalScanline, profile, dstWidth, sigma);
|
ComputeBlurredScanline(verticalScanline, profile, dstHeight, sigma);
|
|
for (int y = 0 ; y < dstHeight ; ++y) {
|
for (int x = 0 ; x < dstWidth ; x++) {
|
unsigned int maskval = SkMulDiv255Round(horizontalScanline[x], verticalScanline[y]);
|
*(outptr++) = maskval;
|
}
|
}
|
|
if (style == kInner_SkBlurStyle) {
|
// now we allocate the "real" dst, mirror the size of src
|
size_t srcSize = (size_t)(src.width() * src.height());
|
if (0 == srcSize) {
|
return false; // too big to allocate, abort
|
}
|
dst->fImage = SkMask::AllocImage(srcSize);
|
for (int y = 0 ; y < sh ; y++) {
|
uint8_t *blur_scanline = dp + (y+pad)*dstWidth + pad;
|
uint8_t *inner_scanline = dst->fImage + y*sw;
|
memcpy(inner_scanline, blur_scanline, sw);
|
}
|
SkMask::FreeImage(dp);
|
|
dst->fBounds.set(SkScalarRoundToInt(src.fLeft),
|
SkScalarRoundToInt(src.fTop),
|
SkScalarRoundToInt(src.fRight),
|
SkScalarRoundToInt(src.fBottom)); // restore trimmed bounds
|
dst->fRowBytes = sw;
|
|
} else if (style == kOuter_SkBlurStyle) {
|
for (int y = pad ; y < dstHeight-pad ; y++) {
|
uint8_t *dst_scanline = dp + y*dstWidth + pad;
|
memset(dst_scanline, 0, sw);
|
}
|
} else if (style == kSolid_SkBlurStyle) {
|
for (int y = pad ; y < dstHeight-pad ; y++) {
|
uint8_t *dst_scanline = dp + y*dstWidth + pad;
|
memset(dst_scanline, 0xff, sw);
|
}
|
}
|
// normal and solid styles are the same for analytic rect blurs, so don't
|
// need to handle solid specially.
|
|
return true;
|
}
|
|
bool SkBlurMask::BlurRRect(SkScalar sigma, SkMask *dst,
|
const SkRRect &src, SkBlurStyle style,
|
SkIPoint *margin, SkMask::CreateMode createMode) {
|
// Temporary for now -- always fail, should cause caller to fall back
|
// to old path. Plumbing just to land API and parallelize effort.
|
|
return false;
|
}
|
|
// The "simple" blur is a direct implementation of separable convolution with a discrete
|
// gaussian kernel. It's "ground truth" in a sense; too slow to be used, but very
|
// useful for correctness comparisons.
|
|
bool SkBlurMask::BlurGroundTruth(SkScalar sigma, SkMask* dst, const SkMask& src,
|
SkBlurStyle style, SkIPoint* margin) {
|
|
if (src.fFormat != SkMask::kA8_Format) {
|
return false;
|
}
|
|
float variance = sigma * sigma;
|
|
int windowSize = SkScalarCeilToInt(sigma*6);
|
// round window size up to nearest odd number
|
windowSize |= 1;
|
|
SkAutoTMalloc<float> gaussWindow(windowSize);
|
|
int halfWindow = windowSize >> 1;
|
|
gaussWindow[halfWindow] = 1;
|
|
float windowSum = 1;
|
for (int x = 1 ; x <= halfWindow ; ++x) {
|
float gaussian = expf(-x*x / (2*variance));
|
gaussWindow[halfWindow + x] = gaussWindow[halfWindow-x] = gaussian;
|
windowSum += 2*gaussian;
|
}
|
|
// leave the filter un-normalized for now; we will divide by the normalization
|
// sum later;
|
|
int pad = halfWindow;
|
if (margin) {
|
margin->set( pad, pad );
|
}
|
|
dst->fBounds = src.fBounds;
|
dst->fBounds.outset(pad, pad);
|
|
dst->fRowBytes = dst->fBounds.width();
|
dst->fFormat = SkMask::kA8_Format;
|
dst->fImage = nullptr;
|
|
if (src.fImage) {
|
|
size_t dstSize = dst->computeImageSize();
|
if (0 == dstSize) {
|
return false; // too big to allocate, abort
|
}
|
|
int srcWidth = src.fBounds.width();
|
int srcHeight = src.fBounds.height();
|
int dstWidth = dst->fBounds.width();
|
|
const uint8_t* srcPixels = src.fImage;
|
uint8_t* dstPixels = SkMask::AllocImage(dstSize);
|
SkAutoMaskFreeImage autoFreeDstPixels(dstPixels);
|
|
// do the actual blur. First, make a padded copy of the source.
|
// use double pad so we never have to check if we're outside anything
|
|
int padWidth = srcWidth + 4*pad;
|
int padHeight = srcHeight;
|
int padSize = padWidth * padHeight;
|
|
SkAutoTMalloc<uint8_t> padPixels(padSize);
|
memset(padPixels, 0, padSize);
|
|
for (int y = 0 ; y < srcHeight; ++y) {
|
uint8_t* padptr = padPixels + y * padWidth + 2*pad;
|
const uint8_t* srcptr = srcPixels + y * srcWidth;
|
memcpy(padptr, srcptr, srcWidth);
|
}
|
|
// blur in X, transposing the result into a temporary floating point buffer.
|
// also double-pad the intermediate result so that the second blur doesn't
|
// have to do extra conditionals.
|
|
int tmpWidth = padHeight + 4*pad;
|
int tmpHeight = padWidth - 2*pad;
|
int tmpSize = tmpWidth * tmpHeight;
|
|
SkAutoTMalloc<float> tmpImage(tmpSize);
|
memset(tmpImage, 0, tmpSize*sizeof(tmpImage[0]));
|
|
for (int y = 0 ; y < padHeight ; ++y) {
|
uint8_t *srcScanline = padPixels + y*padWidth;
|
for (int x = pad ; x < padWidth - pad ; ++x) {
|
float *outPixel = tmpImage + (x-pad)*tmpWidth + y + 2*pad; // transposed output
|
uint8_t *windowCenter = srcScanline + x;
|
for (int i = -pad ; i <= pad ; ++i) {
|
*outPixel += gaussWindow[pad+i]*windowCenter[i];
|
}
|
*outPixel /= windowSum;
|
}
|
}
|
|
// blur in Y; now filling in the actual desired destination. We have to do
|
// the transpose again; these transposes guarantee that we read memory in
|
// linear order.
|
|
for (int y = 0 ; y < tmpHeight ; ++y) {
|
float *srcScanline = tmpImage + y*tmpWidth;
|
for (int x = pad ; x < tmpWidth - pad ; ++x) {
|
float *windowCenter = srcScanline + x;
|
float finalValue = 0;
|
for (int i = -pad ; i <= pad ; ++i) {
|
finalValue += gaussWindow[pad+i]*windowCenter[i];
|
}
|
finalValue /= windowSum;
|
uint8_t *outPixel = dstPixels + (x-pad)*dstWidth + y; // transposed output
|
int integerPixel = int(finalValue + 0.5f);
|
*outPixel = SkClampMax( SkClampPos(integerPixel), 255 );
|
}
|
}
|
|
dst->fImage = dstPixels;
|
switch (style) {
|
case kNormal_SkBlurStyle:
|
break;
|
case kSolid_SkBlurStyle: {
|
clamp_solid_with_orig(
|
dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes,
|
srcWidth, srcHeight);
|
} break;
|
case kOuter_SkBlurStyle: {
|
clamp_outer_with_orig(
|
dstPixels + pad*dst->fRowBytes + pad, dst->fRowBytes,
|
SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes,
|
srcWidth, srcHeight);
|
} break;
|
case kInner_SkBlurStyle: {
|
// now we allocate the "real" dst, mirror the size of src
|
size_t srcSize = src.computeImageSize();
|
if (0 == srcSize) {
|
return false; // too big to allocate, abort
|
}
|
dst->fImage = SkMask::AllocImage(srcSize);
|
merge_src_with_blur(dst->fImage, src.fRowBytes,
|
SkMask::AlphaIter<SkMask::kA8_Format>(srcPixels), src.fRowBytes,
|
dstPixels + pad*dst->fRowBytes + pad,
|
dst->fRowBytes, srcWidth, srcHeight);
|
SkMask::FreeImage(dstPixels);
|
} break;
|
}
|
autoFreeDstPixels.release();
|
}
|
|
if (style == kInner_SkBlurStyle) {
|
dst->fBounds = src.fBounds; // restore trimmed bounds
|
dst->fRowBytes = src.fRowBytes;
|
}
|
|
return true;
|
}
|