1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
| /*
| * Copyright 2006 The Android Open Source Project
| *
| * Use of this source code is governed by a BSD-style license that can be
| * found in the LICENSE file.
| */
|
| #include "SkAnalyticEdge.h"
| #include "SkFDot6.h"
| #include "SkMathPriv.h"
| #include "SkTo.h"
| #include <utility>
|
| static const int kInverseTableSize = 1024; // SK_FDot6One * 16
|
| static inline SkFixed quick_inverse(SkFDot6 x) {
| SkASSERT(SkAbs32(x) < kInverseTableSize);
| static const int32_t table[kInverseTableSize * 2] = {
| -4096, -4100, -4104, -4108, -4112, -4116, -4120, -4124, -4128, -4132, -4136,
| -4140, -4144, -4148, -4152, -4156, -4161, -4165, -4169, -4173, -4177, -4181,
| -4185, -4190, -4194, -4198, -4202, -4206, -4211, -4215, -4219, -4223, -4228,
| -4232, -4236, -4240, -4245, -4249, -4253, -4258, -4262, -4266, -4271, -4275,
| -4279, -4284, -4288, -4293, -4297, -4301, -4306, -4310, -4315, -4319, -4324,
| -4328, -4332, -4337, -4341, -4346, -4350, -4355, -4359, -4364, -4369, -4373,
| -4378, -4382, -4387, -4391, -4396, -4401, -4405, -4410, -4415, -4419, -4424,
| -4429, -4433, -4438, -4443, -4447, -4452, -4457, -4462, -4466, -4471, -4476,
| -4481, -4485, -4490, -4495, -4500, -4505, -4510, -4514, -4519, -4524, -4529,
| -4534, -4539, -4544, -4549, -4554, -4559, -4563, -4568, -4573, -4578, -4583,
| -4588, -4593, -4599, -4604, -4609, -4614, -4619, -4624, -4629, -4634, -4639,
| -4644, -4650, -4655, -4660, -4665, -4670, -4675, -4681, -4686, -4691, -4696,
| -4702, -4707, -4712, -4718, -4723, -4728, -4733, -4739, -4744, -4750, -4755,
| -4760, -4766, -4771, -4777, -4782, -4788, -4793, -4798, -4804, -4809, -4815,
| -4821, -4826, -4832, -4837, -4843, -4848, -4854, -4860, -4865, -4871, -4877,
| -4882, -4888, -4894, -4899, -4905, -4911, -4917, -4922, -4928, -4934, -4940,
| -4946, -4951, -4957, -4963, -4969, -4975, -4981, -4987, -4993, -4999, -5005,
| -5011, -5017, -5023, -5029, -5035, -5041, -5047, -5053, -5059, -5065, -5071,
| -5077, -5084, -5090, -5096, -5102, -5108, -5115, -5121, -5127, -5133, -5140,
| -5146, -5152, -5159, -5165, -5171, -5178, -5184, -5190, -5197, -5203, -5210,
| -5216, -5223, -5229, -5236, -5242, -5249, -5256, -5262, -5269, -5275, -5282,
| -5289, -5295, -5302, -5309, -5315, -5322, -5329, -5336, -5343, -5349, -5356,
| -5363, -5370, -5377, -5384, -5391, -5398, -5405, -5412, -5418, -5426, -5433,
| -5440, -5447, -5454, -5461, -5468, -5475, -5482, -5489, -5497, -5504, -5511,
| -5518, -5526, -5533, -5540, -5548, -5555, -5562, -5570, -5577, -5584, -5592,
| -5599, -5607, -5614, -5622, -5629, -5637, -5645, -5652, -5660, -5667, -5675,
| -5683, -5691, -5698, -5706, -5714, -5722, -5729, -5737, -5745, -5753, -5761,
| -5769, -5777, -5785, -5793, -5801, -5809, -5817, -5825, -5833, -5841, -5849,
| -5857, -5866, -5874, -5882, -5890, -5899, -5907, -5915, -5924, -5932, -5940,
| -5949, -5957, -5966, -5974, -5983, -5991, -6000, -6009, -6017, -6026, -6034,
| -6043, -6052, -6061, -6069, -6078, -6087, -6096, -6105, -6114, -6123, -6132,
| -6141, -6150, -6159, -6168, -6177, -6186, -6195, -6204, -6213, -6223, -6232,
| -6241, -6250, -6260, -6269, -6278, -6288, -6297, -6307, -6316, -6326, -6335,
| -6345, -6355, -6364, -6374, -6384, -6393, -6403, -6413, -6423, -6432, -6442,
| -6452, -6462, -6472, -6482, -6492, -6502, -6512, -6523, -6533, -6543, -6553,
| -6563, -6574, -6584, -6594, -6605, -6615, -6626, -6636, -6647, -6657, -6668,
| -6678, -6689, -6700, -6710, -6721, -6732, -6743, -6754, -6765, -6775, -6786,
| -6797, -6808, -6820, -6831, -6842, -6853, -6864, -6875, -6887, -6898, -6909,
| -6921, -6932, -6944, -6955, -6967, -6978, -6990, -7002, -7013, -7025, -7037,
| -7049, -7061, -7073, -7084, -7096, -7108, -7121, -7133, -7145, -7157, -7169,
| -7182, -7194, -7206, -7219, -7231, -7244, -7256, -7269, -7281, -7294, -7307,
| -7319, -7332, -7345, -7358, -7371, -7384, -7397, -7410, -7423, -7436, -7449,
| -7463, -7476, -7489, -7503, -7516, -7530, -7543, -7557, -7570, -7584, -7598,
| -7612, -7626, -7639, -7653, -7667, -7681, -7695, -7710, -7724, -7738, -7752,
| -7767, -7781, -7796, -7810, -7825, -7839, -7854, -7869, -7884, -7898, -7913,
| -7928, -7943, -7958, -7973, -7989, -8004, -8019, -8035, -8050, -8065, -8081,
| -8097, -8112, -8128, -8144, -8160, -8176, -8192, -8208, -8224, -8240, -8256,
| -8272, -8289, -8305, -8322, -8338, -8355, -8371, -8388, -8405, -8422, -8439,
| -8456, -8473, -8490, -8507, -8525, -8542, -8559, -8577, -8594, -8612, -8630,
| -8648, -8665, -8683, -8701, -8719, -8738, -8756, -8774, -8793, -8811, -8830,
| -8848, -8867, -8886, -8905, -8924, -8943, -8962, -8981, -9000, -9020, -9039,
| -9058, -9078, -9098, -9118, -9137, -9157, -9177, -9198, -9218, -9238, -9258,
| -9279, -9300, -9320, -9341, -9362, -9383, -9404, -9425, -9446, -9467, -9489,
| -9510, -9532, -9554, -9576, -9597, -9619, -9642, -9664, -9686, -9709, -9731,
| -9754, -9776, -9799, -9822, -9845, -9868, -9892, -9915, -9939, -9962, -9986,
| -10010, -10034, -10058, -10082, -10106, -10131, -10155, -10180, -10205, -10230,
| -10255, -10280, -10305, -10330, -10356, -10381, -10407, -10433, -10459, -10485,
| -10512, -10538, -10564, -10591, -10618, -10645, -10672, -10699, -10727, -10754,
| -10782, -10810, -10837, -10866, -10894, -10922, -10951, -10979, -11008, -11037,
| -11066, -11096, -11125, -11155, -11184, -11214, -11244, -11275, -11305, -11335,
| -11366, -11397, -11428, -11459, -11491, -11522, -11554, -11586, -11618, -11650,
| -11683, -11715, -11748, -11781, -11814, -11848, -11881, -11915, -11949, -11983,
| -12018, -12052, -12087, -12122, -12157, -12192, -12228, -12264, -12300, -12336,
| -12372, -12409, -12446, -12483, -12520, -12557, -12595, -12633, -12671, -12710,
| -12748, -12787, -12826, -12865, -12905, -12945, -12985, -13025, -13066, -13107,
| -13148, -13189, -13231, -13273, -13315, -13357, -13400, -13443, -13486, -13530,
| -13573, -13617, -13662, -13706, -13751, -13797, -13842, -13888, -13934, -13981,
| -14027, -14074, -14122, -14169, -14217, -14266, -14315, -14364, -14413, -14463,
| -14513, -14563, -14614, -14665, -14716, -14768, -14820, -14873, -14926, -14979,
| -15033, -15087, -15141, -15196, -15252, -15307, -15363, -15420, -15477, -15534,
| -15592, -15650, -15709, -15768, -15827, -15887, -15947, -16008, -16070, -16131,
| -16194, -16256, -16320, -16384, -16448, -16513, -16578, -16644, -16710, -16777,
| -16844, -16912, -16980, -17050, -17119, -17189, -17260, -17331, -17403, -17476,
| -17549, -17623, -17697, -17772, -17848, -17924, -18001, -18078, -18157, -18236,
| -18315, -18396, -18477, -18558, -18641, -18724, -18808, -18893, -18978, -19065,
| -19152, -19239, -19328, -19418, -19508, -19599, -19691, -19784, -19878, -19972,
| -20068, -20164, -20262, -20360, -20460, -20560, -20661, -20763, -20867, -20971,
| -21076, -21183, -21290, -21399, -21509, -21620, -21732, -21845, -21959, -22075,
| -22192, -22310, -22429, -22550, -22671, -22795, -22919, -23045, -23172, -23301,
| -23431, -23563, -23696, -23831, -23967, -24105, -24244, -24385, -24528, -24672,
| -24818, -24966, -25115, -25266, -25420, -25575, -25731, -25890, -26051, -26214,
| -26379, -26546, -26715, -26886, -27060, -27235, -27413, -27594, -27776, -27962,
| -28149, -28339, -28532, -28728, -28926, -29127, -29330, -29537, -29746, -29959,
| -30174, -30393, -30615, -30840, -31068, -31300, -31536, -31775, -32017, -32263,
| -32513, -32768, -33026, -33288, -33554, -33825, -34100, -34379, -34663, -34952,
| -35246, -35544, -35848, -36157, -36472, -36792, -37117, -37449, -37786, -38130,
| -38479, -38836, -39199, -39568, -39945, -40329, -40721, -41120, -41527, -41943,
| -42366, -42799, -43240, -43690, -44150, -44620, -45100, -45590, -46091, -46603,
| -47127, -47662, -48210, -48770, -49344, -49932, -50533, -51150, -51781, -52428,
| -53092, -53773, -54471, -55188, -55924, -56679, -57456, -58254, -59074, -59918,
| -60787, -61680, -62601, -63550, -64527, -65536, -66576, -67650, -68759, -69905,
| -71089, -72315, -73584, -74898, -76260, -77672, -79137, -80659, -82241, -83886,
| -85598, -87381, -89240, -91180, -93206, -95325, -97541, -99864, -102300,
| -104857, -107546, -110376, -113359, -116508, -119837, -123361, -127100, -131072,
| -135300, -139810, -144631, -149796, -155344, -161319, -167772, -174762, -182361,
| -190650, -199728, -209715, -220752, -233016, -246723, -262144, -279620, -299593,
| -322638, -349525, -381300, -419430, -466033, -524288, -599186, -699050, -838860,
| -1048576, -1398101, -2097152, -4194304, 0, 4194304, 2097152, 1398101, 1048576,
| 838860, 699050, 599186, 524288, 466033, 419430, 381300, 349525, 322638, 299593,
| 279620, 262144, 246723, 233016, 220752, 209715, 199728, 190650, 182361, 174762,
| 167772, 161319, 155344, 149796, 144631, 139810, 135300, 131072, 127100, 123361,
| 119837, 116508, 113359, 110376, 107546, 104857, 102300, 99864, 97541, 95325,
| 93206, 91180, 89240, 87381, 85598, 83886, 82241, 80659, 79137, 77672, 76260,
| 74898, 73584, 72315, 71089, 69905, 68759, 67650, 66576, 65536, 64527, 63550,
| 62601, 61680, 60787, 59918, 59074, 58254, 57456, 56679, 55924, 55188, 54471,
| 53773, 53092, 52428, 51781, 51150, 50533, 49932, 49344, 48770, 48210, 47662,
| 47127, 46603, 46091, 45590, 45100, 44620, 44150, 43690, 43240, 42799, 42366,
| 41943, 41527, 41120, 40721, 40329, 39945, 39568, 39199, 38836, 38479, 38130,
| 37786, 37449, 37117, 36792, 36472, 36157, 35848, 35544, 35246, 34952, 34663,
| 34379, 34100, 33825, 33554, 33288, 33026, 32768, 32513, 32263, 32017, 31775,
| 31536, 31300, 31068, 30840, 30615, 30393, 30174, 29959, 29746, 29537, 29330,
| 29127, 28926, 28728, 28532, 28339, 28149, 27962, 27776, 27594, 27413, 27235,
| 27060, 26886, 26715, 26546, 26379, 26214, 26051, 25890, 25731, 25575, 25420,
| 25266, 25115, 24966, 24818, 24672, 24528, 24385, 24244, 24105, 23967, 23831,
| 23696, 23563, 23431, 23301, 23172, 23045, 22919, 22795, 22671, 22550, 22429,
| 22310, 22192, 22075, 21959, 21845, 21732, 21620, 21509, 21399, 21290, 21183,
| 21076, 20971, 20867, 20763, 20661, 20560, 20460, 20360, 20262, 20164, 20068,
| 19972, 19878, 19784, 19691, 19599, 19508, 19418, 19328, 19239, 19152, 19065,
| 18978, 18893, 18808, 18724, 18641, 18558, 18477, 18396, 18315, 18236, 18157,
| 18078, 18001, 17924, 17848, 17772, 17697, 17623, 17549, 17476, 17403, 17331,
| 17260, 17189, 17119, 17050, 16980, 16912, 16844, 16777, 16710, 16644, 16578,
| 16513, 16448, 16384, 16320, 16256, 16194, 16131, 16070, 16008, 15947, 15887,
| 15827, 15768, 15709, 15650, 15592, 15534, 15477, 15420, 15363, 15307, 15252,
| 15196, 15141, 15087, 15033, 14979, 14926, 14873, 14820, 14768, 14716, 14665,
| 14614, 14563, 14513, 14463, 14413, 14364, 14315, 14266, 14217, 14169, 14122,
| 14074, 14027, 13981, 13934, 13888, 13842, 13797, 13751, 13706, 13662, 13617,
| 13573, 13530, 13486, 13443, 13400, 13357, 13315, 13273, 13231, 13189, 13148,
| 13107, 13066, 13025, 12985, 12945, 12905, 12865, 12826, 12787, 12748, 12710,
| 12671, 12633, 12595, 12557, 12520, 12483, 12446, 12409, 12372, 12336, 12300,
| 12264, 12228, 12192, 12157, 12122, 12087, 12052, 12018, 11983, 11949, 11915,
| 11881, 11848, 11814, 11781, 11748, 11715, 11683, 11650, 11618, 11586, 11554,
| 11522, 11491, 11459, 11428, 11397, 11366, 11335, 11305, 11275, 11244, 11214,
| 11184, 11155, 11125, 11096, 11066, 11037, 11008, 10979, 10951, 10922, 10894,
| 10866, 10837, 10810, 10782, 10754, 10727, 10699, 10672, 10645, 10618, 10591,
| 10564, 10538, 10512, 10485, 10459, 10433, 10407, 10381, 10356, 10330, 10305,
| 10280, 10255, 10230, 10205, 10180, 10155, 10131, 10106, 10082, 10058, 10034,
| 10010, 9986, 9962, 9939, 9915, 9892, 9868, 9845, 9822, 9799, 9776, 9754, 9731,
| 9709, 9686, 9664, 9642, 9619, 9597, 9576, 9554, 9532, 9510, 9489, 9467, 9446,
| 9425, 9404, 9383, 9362, 9341, 9320, 9300, 9279, 9258, 9238, 9218, 9198, 9177,
| 9157, 9137, 9118, 9098, 9078, 9058, 9039, 9020, 9000, 8981, 8962, 8943, 8924,
| 8905, 8886, 8867, 8848, 8830, 8811, 8793, 8774, 8756, 8738, 8719, 8701, 8683,
| 8665, 8648, 8630, 8612, 8594, 8577, 8559, 8542, 8525, 8507, 8490, 8473, 8456,
| 8439, 8422, 8405, 8388, 8371, 8355, 8338, 8322, 8305, 8289, 8272, 8256, 8240,
| 8224, 8208, 8192, 8176, 8160, 8144, 8128, 8112, 8097, 8081, 8065, 8050, 8035,
| 8019, 8004, 7989, 7973, 7958, 7943, 7928, 7913, 7898, 7884, 7869, 7854, 7839,
| 7825, 7810, 7796, 7781, 7767, 7752, 7738, 7724, 7710, 7695, 7681, 7667, 7653,
| 7639, 7626, 7612, 7598, 7584, 7570, 7557, 7543, 7530, 7516, 7503, 7489, 7476,
| 7463, 7449, 7436, 7423, 7410, 7397, 7384, 7371, 7358, 7345, 7332, 7319, 7307,
| 7294, 7281, 7269, 7256, 7244, 7231, 7219, 7206, 7194, 7182, 7169, 7157, 7145,
| 7133, 7121, 7108, 7096, 7084, 7073, 7061, 7049, 7037, 7025, 7013, 7002, 6990,
| 6978, 6967, 6955, 6944, 6932, 6921, 6909, 6898, 6887, 6875, 6864, 6853, 6842,
| 6831, 6820, 6808, 6797, 6786, 6775, 6765, 6754, 6743, 6732, 6721, 6710, 6700,
| 6689, 6678, 6668, 6657, 6647, 6636, 6626, 6615, 6605, 6594, 6584, 6574, 6563,
| 6553, 6543, 6533, 6523, 6512, 6502, 6492, 6482, 6472, 6462, 6452, 6442, 6432,
| 6423, 6413, 6403, 6393, 6384, 6374, 6364, 6355, 6345, 6335, 6326, 6316, 6307,
| 6297, 6288, 6278, 6269, 6260, 6250, 6241, 6232, 6223, 6213, 6204, 6195, 6186,
| 6177, 6168, 6159, 6150, 6141, 6132, 6123, 6114, 6105, 6096, 6087, 6078, 6069,
| 6061, 6052, 6043, 6034, 6026, 6017, 6009, 6000, 5991, 5983, 5974, 5966, 5957,
| 5949, 5940, 5932, 5924, 5915, 5907, 5899, 5890, 5882, 5874, 5866, 5857, 5849,
| 5841, 5833, 5825, 5817, 5809, 5801, 5793, 5785, 5777, 5769, 5761, 5753, 5745,
| 5737, 5729, 5722, 5714, 5706, 5698, 5691, 5683, 5675, 5667, 5660, 5652, 5645,
| 5637, 5629, 5622, 5614, 5607, 5599, 5592, 5584, 5577, 5570, 5562, 5555, 5548,
| 5540, 5533, 5526, 5518, 5511, 5504, 5497, 5489, 5482, 5475, 5468, 5461, 5454,
| 5447, 5440, 5433, 5426, 5418, 5412, 5405, 5398, 5391, 5384, 5377, 5370, 5363,
| 5356, 5349, 5343, 5336, 5329, 5322, 5315, 5309, 5302, 5295, 5289, 5282, 5275,
| 5269, 5262, 5256, 5249, 5242, 5236, 5229, 5223, 5216, 5210, 5203, 5197, 5190,
| 5184, 5178, 5171, 5165, 5159, 5152, 5146, 5140, 5133, 5127, 5121, 5115, 5108,
| 5102, 5096, 5090, 5084, 5077, 5071, 5065, 5059, 5053, 5047, 5041, 5035, 5029,
| 5023, 5017, 5011, 5005, 4999, 4993, 4987, 4981, 4975, 4969, 4963, 4957, 4951,
| 4946, 4940, 4934, 4928, 4922, 4917, 4911, 4905, 4899, 4894, 4888, 4882, 4877,
| 4871, 4865, 4860, 4854, 4848, 4843, 4837, 4832, 4826, 4821, 4815, 4809, 4804,
| 4798, 4793, 4788, 4782, 4777, 4771, 4766, 4760, 4755, 4750, 4744, 4739, 4733,
| 4728, 4723, 4718, 4712, 4707, 4702, 4696, 4691, 4686, 4681, 4675, 4670, 4665,
| 4660, 4655, 4650, 4644, 4639, 4634, 4629, 4624, 4619, 4614, 4609, 4604, 4599,
| 4593, 4588, 4583, 4578, 4573, 4568, 4563, 4559, 4554, 4549, 4544, 4539, 4534,
| 4529, 4524, 4519, 4514, 4510, 4505, 4500, 4495, 4490, 4485, 4481, 4476, 4471,
| 4466, 4462, 4457, 4452, 4447, 4443, 4438, 4433, 4429, 4424, 4419, 4415, 4410,
| 4405, 4401, 4396, 4391, 4387, 4382, 4378, 4373, 4369, 4364, 4359, 4355, 4350,
| 4346, 4341, 4337, 4332, 4328, 4324, 4319, 4315, 4310, 4306, 4301, 4297, 4293,
| 4288, 4284, 4279, 4275, 4271, 4266, 4262, 4258, 4253, 4249, 4245, 4240, 4236,
| 4232, 4228, 4223, 4219, 4215, 4211, 4206, 4202, 4198, 4194, 4190, 4185, 4181,
| 4177, 4173, 4169, 4165, 4161, 4156, 4152, 4148, 4144, 4140, 4136, 4132, 4128,
| 4124, 4120, 4116, 4112, 4108, 4104, 4100
| };
| return table[kInverseTableSize + x];
| }
|
| static inline SkFixed quick_div(SkFDot6 a, SkFDot6 b) {
| const int kMinBits = 3; // abs(b) should be at least (1 << kMinBits) for quick division
| const int kMaxBits = 31; // Number of bits available in signed int
| // Given abs(b) <= (1 << kMinBits), the inverse of abs(b) is at most 1 << (22 - kMinBits) in
| // SkFixed format. Hence abs(a) should be less than kMaxAbsA
| const int kMaxAbsA = 1 << (kMaxBits - (22 - kMinBits));
| SkFDot6 abs_a = SkAbs32(a);
| SkFDot6 abs_b = SkAbs32(b);
| if (abs_b >= (1 << kMinBits) && abs_b < kInverseTableSize && abs_a < kMaxAbsA) {
| SkASSERT((int64_t)a * quick_inverse(b) <= SK_MaxS32
| && (int64_t)a * quick_inverse(b) >= SK_MinS32);
| SkFixed ourAnswer = (a * quick_inverse(b)) >> 6;
| SkASSERT(
| (SkFDot6Div(a,b) == 0 && ourAnswer == 0) ||
| SkFixedDiv(SkAbs32(SkFDot6Div(a,b) - ourAnswer), SkAbs32(SkFDot6Div(a,b))) <= 1 << 10
| );
| return ourAnswer;
| }
| return SkFDot6Div(a, b);
| }
|
| bool SkAnalyticEdge::setLine(const SkPoint& p0, const SkPoint& p1) {
| fRiteE = nullptr;
|
| // We must set X/Y using the same way (e.g., times 4, to FDot6, then to Fixed) as Quads/Cubics.
| // Otherwise the order of the edge might be wrong due to precision limit.
| const int accuracy = kDefaultAccuracy;
| #ifdef SK_RASTERIZE_EVEN_ROUNDING
| SkFixed x0 = SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fX, accuracy)) >> accuracy;
| SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p0.fY, accuracy)) >> accuracy);
| SkFixed x1 = SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fX, accuracy)) >> accuracy;
| SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarRoundToFDot6(p1.fY, accuracy)) >> accuracy);
| #else
| const int multiplier = (1 << kDefaultAccuracy);
| SkFixed x0 = SkFDot6ToFixed(SkScalarToFDot6(p0.fX * multiplier)) >> accuracy;
| SkFixed y0 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p0.fY * multiplier)) >> accuracy);
| SkFixed x1 = SkFDot6ToFixed(SkScalarToFDot6(p1.fX * multiplier)) >> accuracy;
| SkFixed y1 = SnapY(SkFDot6ToFixed(SkScalarToFDot6(p1.fY * multiplier)) >> accuracy);
| #endif
|
| int winding = 1;
|
| if (y0 > y1) {
| using std::swap;
| swap(x0, x1);
| swap(y0, y1);
| winding = -1;
| }
|
| // are we a zero-height line?
| SkFDot6 dy = SkFixedToFDot6(y1 - y0);
| if (dy == 0) {
| return false;
| }
| SkFDot6 dx = SkFixedToFDot6(x1 - x0);
| SkFixed slope = quick_div(dx, dy);
| SkFixed absSlope = SkAbs32(slope);
|
| fX = x0;
| fDX = slope;
| fUpperX = x0;
| fY = y0;
| fUpperY = y0;
| fLowerY = y1;
| fDY = dx == 0 || slope == 0 ? SK_MaxS32 : absSlope < kInverseTableSize
| ? quick_inverse(absSlope)
| : SkAbs32(quick_div(dy, dx));
| fCurveCount = 0;
| fWinding = SkToS8(winding);
| fCurveShift = 0;
|
| return true;
| }
|
| // This will become a bottleneck for small ovals rendering if we call SkFixedDiv twice here.
| // Therefore, we'll let the outter function compute the slope once and send in the value.
| // Moreover, we'll compute fDY by quickly lookup the inverse table (if possible).
| bool SkAnalyticEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1, SkFixed slope) {
| // Since we send in the slope, we can no longer snap y inside this function.
| // If we don't send in the slope, or we do some more sophisticated snapping, this function
| // could be a performance bottleneck.
| SkASSERT(fWinding == 1 || fWinding == -1);
| SkASSERT(fCurveCount != 0);
|
| // We don't chop at y extrema for cubics so the y is not guaranteed to be increasing for them.
| // In that case, we have to swap x/y and negate the winding.
| if (y0 > y1) {
| using std::swap;
| swap(x0, x1);
| swap(y0, y1);
| fWinding = -fWinding;
| }
|
| SkASSERT(y0 <= y1);
|
| SkFDot6 dx = SkFixedToFDot6(x1 - x0);
| SkFDot6 dy = SkFixedToFDot6(y1 - y0);
|
| // are we a zero-height line?
| if (dy == 0) {
| return false;
| }
|
| SkASSERT(slope < SK_MaxS32);
|
| SkFDot6 absSlope = SkAbs32(SkFixedToFDot6(slope));
| fX = x0;
| fDX = slope;
| fUpperX = x0;
| fY = y0;
| fUpperY = y0;
| fLowerY = y1;
| fDY = (dx == 0 || slope == 0)
| ? SK_MaxS32
| : absSlope < kInverseTableSize
| ? quick_inverse(absSlope)
| : SkAbs32(quick_div(dy, dx));
|
| return true;
| }
|
| bool SkAnalyticEdge::update(SkFixed last_y, bool sortY) {
| SkASSERT(last_y >= fLowerY); // we shouldn't update edge if last_y < fLowerY
| if (fCurveCount < 0) {
| return static_cast<SkAnalyticCubicEdge*>(this)->updateCubic(sortY);
| } else if (fCurveCount > 0) {
| return static_cast<SkAnalyticQuadraticEdge*>(this)->updateQuadratic();
| }
| return false;
| }
|
| bool SkAnalyticQuadraticEdge::setQuadratic(const SkPoint pts[3]) {
| fRiteE = nullptr;
|
| if (!fQEdge.setQuadraticWithoutUpdate(pts, kDefaultAccuracy)) {
| return false;
| }
| fQEdge.fQx >>= kDefaultAccuracy;
| fQEdge.fQy >>= kDefaultAccuracy;
| fQEdge.fQDx >>= kDefaultAccuracy;
| fQEdge.fQDy >>= kDefaultAccuracy;
| fQEdge.fQDDx >>= kDefaultAccuracy;
| fQEdge.fQDDy >>= kDefaultAccuracy;
| fQEdge.fQLastX >>= kDefaultAccuracy;
| fQEdge.fQLastY >>= kDefaultAccuracy;
| fQEdge.fQy = SnapY(fQEdge.fQy);
| fQEdge.fQLastY = SnapY(fQEdge.fQLastY);
|
| fWinding = fQEdge.fWinding;
| fCurveCount = fQEdge.fCurveCount;
| fCurveShift = fQEdge.fCurveShift;
|
| fSnappedX = fQEdge.fQx;
| fSnappedY = fQEdge.fQy;
|
| return this->updateQuadratic();
| }
|
| bool SkAnalyticQuadraticEdge::updateQuadratic() {
| int success = 0; // initialize to fail!
| int count = fCurveCount;
| SkFixed oldx = fQEdge.fQx;
| SkFixed oldy = fQEdge.fQy;
| SkFixed dx = fQEdge.fQDx;
| SkFixed dy = fQEdge.fQDy;
| SkFixed newx, newy, newSnappedX, newSnappedY;
| int shift = fCurveShift;
|
| SkASSERT(count > 0);
|
| do {
| SkFixed slope;
| if (--count > 0)
| {
| newx = oldx + (dx >> shift);
| newy = oldy + (dy >> shift);
| if (SkAbs32(dy >> shift) >= SK_Fixed1 * 2) { // only snap when dy is large enough
| SkFDot6 diffY = SkFixedToFDot6(newy - fSnappedY);
| slope = diffY ? quick_div(SkFixedToFDot6(newx - fSnappedX), diffY)
| : SK_MaxS32;
| newSnappedY = SkTMin<SkFixed>(fQEdge.fQLastY, SkFixedRoundToFixed(newy));
| newSnappedX = newx - SkFixedMul(slope, newy - newSnappedY);
| } else {
| newSnappedY = SkTMin(fQEdge.fQLastY, SnapY(newy));
| newSnappedX = newx;
| SkFDot6 diffY = SkFixedToFDot6(newSnappedY - fSnappedY);
| slope = diffY ? quick_div(SkFixedToFDot6(newx - fSnappedX), diffY)
| : SK_MaxS32;
| }
| dx += fQEdge.fQDDx;
| dy += fQEdge.fQDDy;
| }
| else // last segment
| {
| newx = fQEdge.fQLastX;
| newy = fQEdge.fQLastY;
| newSnappedY = newy;
| newSnappedX = newx;
| SkFDot6 diffY = (newy - fSnappedY) >> 10;
| slope = diffY ? quick_div((newx - fSnappedX) >> 10, diffY) : SK_MaxS32;
| }
| if (slope < SK_MaxS32) {
| success = this->updateLine(fSnappedX, fSnappedY, newSnappedX, newSnappedY, slope);
| }
| oldx = newx;
| oldy = newy;
| } while (count > 0 && !success);
|
| SkASSERT(newSnappedY <= fQEdge.fQLastY);
|
| fQEdge.fQx = newx;
| fQEdge.fQy = newy;
| fQEdge.fQDx = dx;
| fQEdge.fQDy = dy;
| fSnappedX = newSnappedX;
| fSnappedY = newSnappedY;
| fCurveCount = SkToS8(count);
| return success;
| }
|
| bool SkAnalyticCubicEdge::setCubic(const SkPoint pts[4], bool sortY) {
| fRiteE = nullptr;
|
| if (!fCEdge.setCubicWithoutUpdate(pts, kDefaultAccuracy, sortY)) {
| return false;
| }
|
| fCEdge.fCx >>= kDefaultAccuracy;
| fCEdge.fCy >>= kDefaultAccuracy;
| fCEdge.fCDx >>= kDefaultAccuracy;
| fCEdge.fCDy >>= kDefaultAccuracy;
| fCEdge.fCDDx >>= kDefaultAccuracy;
| fCEdge.fCDDy >>= kDefaultAccuracy;
| fCEdge.fCDDDx >>= kDefaultAccuracy;
| fCEdge.fCDDDy >>= kDefaultAccuracy;
| fCEdge.fCLastX >>= kDefaultAccuracy;
| fCEdge.fCLastY >>= kDefaultAccuracy;
| fCEdge.fCy = SnapY(fCEdge.fCy);
| fCEdge.fCLastY = SnapY(fCEdge.fCLastY);
|
| fWinding = fCEdge.fWinding;
| fCurveCount = fCEdge.fCurveCount;
| fCurveShift = fCEdge.fCurveShift;
| fCubicDShift = fCEdge.fCubicDShift;
|
| fSnappedY = fCEdge.fCy;
|
| return this->updateCubic(sortY);
| }
|
| bool SkAnalyticCubicEdge::updateCubic(bool sortY) {
| int success;
| int count = fCurveCount;
| SkFixed oldx = fCEdge.fCx;
| SkFixed oldy = fCEdge.fCy;
| SkFixed newx, newy;
| const int ddshift = fCurveShift;
| const int dshift = fCubicDShift;
|
| SkASSERT(count < 0);
|
| do {
| if (++count < 0) {
| newx = oldx + (fCEdge.fCDx >> dshift);
| fCEdge.fCDx += fCEdge.fCDDx >> ddshift;
| fCEdge.fCDDx += fCEdge.fCDDDx;
|
| newy = oldy + (fCEdge.fCDy >> dshift);
| fCEdge.fCDy += fCEdge.fCDDy >> ddshift;
| fCEdge.fCDDy += fCEdge.fCDDDy;
| }
| else { // last segment
| newx = fCEdge.fCLastX;
| newy = fCEdge.fCLastY;
| }
|
| // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
| // doesn't always achieve that, so we have to explicitly pin it here.
| if (sortY && newy < oldy) {
| newy = oldy;
| }
|
| SkFixed newSnappedY = SnapY(newy);
| // we want to SkASSERT(snappedNewY <= fCEdge.fCLastY), but our finite fixedpoint
| // doesn't always achieve that, so we have to explicitly pin it here.
| if (sortY && fCEdge.fCLastY < newSnappedY) {
| newSnappedY = fCEdge.fCLastY;
| count = 0;
| }
|
| SkFixed slope = SkFixedToFDot6(newSnappedY - fSnappedY) == 0
| ? SK_MaxS32
| : SkFDot6Div(SkFixedToFDot6(newx - oldx),
| SkFixedToFDot6(newSnappedY - fSnappedY));
|
| success = this->updateLine(oldx, fSnappedY, newx, newSnappedY, slope);
|
| oldx = newx;
| oldy = newy;
| fSnappedY = newSnappedY;
| } while (count < 0 && !success);
|
| fCEdge.fCx = newx;
| fCEdge.fCy = newy;
| fCurveCount = SkToS8(count);
| return success;
| }
|
|