//
|
// Copyright (C) 2012 The Android Open Source Project
|
//
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
// you may not use this file except in compliance with the License.
|
// You may obtain a copy of the License at
|
//
|
// http://www.apache.org/licenses/LICENSE-2.0
|
//
|
// Unless required by applicable law or agreed to in writing, software
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
// See the License for the specific language governing permissions and
|
// limitations under the License.
|
//
|
|
#include "update_engine/payload_consumer/delta_performer.h"
|
|
#include <inttypes.h>
|
#include <sys/mount.h>
|
|
#include <algorithm>
|
#include <string>
|
#include <vector>
|
|
#include <base/files/file_path.h>
|
#include <base/files/file_util.h>
|
#include <base/strings/string_util.h>
|
#include <base/strings/stringprintf.h>
|
#include <google/protobuf/repeated_field.h>
|
#include <gtest/gtest.h>
|
#include <openssl/pem.h>
|
|
#include "update_engine/common/constants.h"
|
#include "update_engine/common/fake_boot_control.h"
|
#include "update_engine/common/fake_hardware.h"
|
#include "update_engine/common/mock_prefs.h"
|
#include "update_engine/common/test_utils.h"
|
#include "update_engine/common/utils.h"
|
#include "update_engine/payload_consumer/mock_download_action.h"
|
#include "update_engine/payload_consumer/payload_constants.h"
|
#include "update_engine/payload_consumer/payload_metadata.h"
|
#include "update_engine/payload_consumer/payload_verifier.h"
|
#include "update_engine/payload_generator/delta_diff_generator.h"
|
#include "update_engine/payload_generator/payload_signer.h"
|
#include "update_engine/update_metadata.pb.h"
|
|
namespace chromeos_update_engine {
|
|
using std::string;
|
using std::vector;
|
using test_utils::GetBuildArtifactsPath;
|
using test_utils::kRandomString;
|
using test_utils::ScopedLoopMounter;
|
using test_utils::System;
|
using testing::_;
|
using testing::Return;
|
|
extern const char* kUnittestPrivateKeyPath;
|
extern const char* kUnittestPublicKeyPath;
|
extern const char* kUnittestPrivateKey2Path;
|
extern const char* kUnittestPublicKey2Path;
|
|
static const uint32_t kDefaultKernelSize = 4096; // Something small for a test
|
// clang-format off
|
static const uint8_t kNewData[] = {'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
|
'n', 'e', 'w', ' ', 'd', 'a', 't', 'a', '.'};
|
// clang-format on
|
|
namespace {
|
struct DeltaState {
|
string a_img;
|
string b_img;
|
string result_img;
|
size_t image_size;
|
|
string delta_path;
|
uint64_t metadata_size;
|
|
string old_kernel;
|
brillo::Blob old_kernel_data;
|
|
string new_kernel;
|
brillo::Blob new_kernel_data;
|
|
string result_kernel;
|
brillo::Blob result_kernel_data;
|
size_t kernel_size;
|
|
// The InstallPlan referenced by the DeltaPerformer. This needs to outlive
|
// the DeltaPerformer.
|
InstallPlan install_plan;
|
|
// The in-memory copy of delta file.
|
brillo::Blob delta;
|
|
// Mock and fake instances used by the delta performer.
|
FakeBootControl fake_boot_control_;
|
FakeHardware fake_hardware_;
|
MockDownloadActionDelegate mock_delegate_;
|
};
|
|
enum SignatureTest {
|
kSignatureNone, // No payload signing.
|
kSignatureGenerator, // Sign the payload at generation time.
|
kSignatureGenerated, // Sign the payload after it's generated.
|
kSignatureGeneratedPlaceholder, // Insert placeholder signatures, then real.
|
kSignatureGeneratedPlaceholderMismatch, // Insert a wrong sized placeholder.
|
kSignatureGeneratedShell, // Sign the generated payload through shell cmds.
|
kSignatureGeneratedShellBadKey, // Sign with a bad key through shell cmds.
|
kSignatureGeneratedShellRotateCl1, // Rotate key, test client v1
|
kSignatureGeneratedShellRotateCl2, // Rotate key, test client v2
|
};
|
|
enum OperationHashTest {
|
kInvalidOperationData,
|
kValidOperationData,
|
};
|
|
} // namespace
|
|
class DeltaPerformerIntegrationTest : public ::testing::Test {};
|
|
static void CompareFilesByBlock(const string& a_file,
|
const string& b_file,
|
size_t image_size) {
|
EXPECT_EQ(0U, image_size % kBlockSize);
|
|
brillo::Blob a_data, b_data;
|
EXPECT_TRUE(utils::ReadFile(a_file, &a_data)) << "file failed: " << a_file;
|
EXPECT_TRUE(utils::ReadFile(b_file, &b_data)) << "file failed: " << b_file;
|
|
EXPECT_GE(a_data.size(), image_size);
|
EXPECT_GE(b_data.size(), image_size);
|
for (size_t i = 0; i < image_size; i += kBlockSize) {
|
EXPECT_EQ(0U, i % kBlockSize);
|
brillo::Blob a_sub(&a_data[i], &a_data[i + kBlockSize]);
|
brillo::Blob b_sub(&b_data[i], &b_data[i + kBlockSize]);
|
EXPECT_TRUE(a_sub == b_sub) << "Block " << (i / kBlockSize) << " differs";
|
}
|
if (::testing::Test::HasNonfatalFailure()) {
|
LOG(INFO) << "Compared filesystems with size " << image_size
|
<< ", partition A " << a_file << " size: " << a_data.size()
|
<< ", partition B " << b_file << " size: " << b_data.size();
|
}
|
}
|
|
static bool WriteSparseFile(const string& path, off_t size) {
|
int fd = open(path.c_str(), O_CREAT | O_TRUNC | O_WRONLY, 0644);
|
TEST_AND_RETURN_FALSE_ERRNO(fd >= 0);
|
ScopedFdCloser fd_closer(&fd);
|
off_t rc = lseek(fd, size + 1, SEEK_SET);
|
TEST_AND_RETURN_FALSE_ERRNO(rc != static_cast<off_t>(-1));
|
int return_code = ftruncate(fd, size);
|
TEST_AND_RETURN_FALSE_ERRNO(return_code == 0);
|
return true;
|
}
|
|
static bool WriteByteAtOffset(const string& path, off_t offset) {
|
int fd = open(path.c_str(), O_CREAT | O_WRONLY, 0644);
|
TEST_AND_RETURN_FALSE_ERRNO(fd >= 0);
|
ScopedFdCloser fd_closer(&fd);
|
EXPECT_TRUE(utils::PWriteAll(fd, "\0", 1, offset));
|
return true;
|
}
|
|
static size_t GetSignatureSize(const string& private_key_path) {
|
const brillo::Blob data(1, 'x');
|
brillo::Blob hash;
|
EXPECT_TRUE(HashCalculator::RawHashOfData(data, &hash));
|
brillo::Blob signature;
|
EXPECT_TRUE(PayloadSigner::SignHash(hash, private_key_path, &signature));
|
return signature.size();
|
}
|
|
static bool InsertSignaturePlaceholder(int signature_size,
|
const string& payload_path,
|
uint64_t* out_metadata_size) {
|
vector<brillo::Blob> signatures;
|
signatures.push_back(brillo::Blob(signature_size, 0));
|
|
return PayloadSigner::AddSignatureToPayload(
|
payload_path, signatures, {}, payload_path, out_metadata_size);
|
}
|
|
static void SignGeneratedPayload(const string& payload_path,
|
uint64_t* out_metadata_size) {
|
string private_key_path = GetBuildArtifactsPath(kUnittestPrivateKeyPath);
|
int signature_size = GetSignatureSize(private_key_path);
|
brillo::Blob hash;
|
ASSERT_TRUE(PayloadSigner::HashPayloadForSigning(
|
payload_path, {signature_size}, &hash, nullptr));
|
brillo::Blob signature;
|
ASSERT_TRUE(PayloadSigner::SignHash(hash, private_key_path, &signature));
|
ASSERT_TRUE(PayloadSigner::AddSignatureToPayload(
|
payload_path, {signature}, {}, payload_path, out_metadata_size));
|
EXPECT_TRUE(PayloadSigner::VerifySignedPayload(
|
payload_path, GetBuildArtifactsPath(kUnittestPublicKeyPath)));
|
}
|
|
static void SignGeneratedShellPayload(SignatureTest signature_test,
|
const string& payload_path) {
|
string private_key_path = GetBuildArtifactsPath(kUnittestPrivateKeyPath);
|
if (signature_test == kSignatureGeneratedShellBadKey) {
|
ASSERT_TRUE(utils::MakeTempFile("key.XXXXXX", &private_key_path, nullptr));
|
} else {
|
ASSERT_TRUE(signature_test == kSignatureGeneratedShell ||
|
signature_test == kSignatureGeneratedShellRotateCl1 ||
|
signature_test == kSignatureGeneratedShellRotateCl2);
|
}
|
ScopedPathUnlinker key_unlinker(private_key_path);
|
key_unlinker.set_should_remove(signature_test ==
|
kSignatureGeneratedShellBadKey);
|
// Generates a new private key that will not match the public key.
|
if (signature_test == kSignatureGeneratedShellBadKey) {
|
LOG(INFO) << "Generating a mismatched private key.";
|
// The code below executes the equivalent of:
|
// openssl genrsa -out <private_key_path> 2048
|
RSA* rsa = RSA_new();
|
BIGNUM* e = BN_new();
|
EXPECT_EQ(1, BN_set_word(e, RSA_F4));
|
EXPECT_EQ(1, RSA_generate_key_ex(rsa, 2048, e, nullptr));
|
BN_free(e);
|
FILE* fprikey = fopen(private_key_path.c_str(), "w");
|
EXPECT_NE(nullptr, fprikey);
|
EXPECT_EQ(1,
|
PEM_write_RSAPrivateKey(
|
fprikey, rsa, nullptr, nullptr, 0, nullptr, nullptr));
|
fclose(fprikey);
|
RSA_free(rsa);
|
}
|
int signature_size = GetSignatureSize(private_key_path);
|
test_utils::ScopedTempFile hash_file("hash.XXXXXX");
|
string signature_size_string;
|
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
|
signature_test == kSignatureGeneratedShellRotateCl2)
|
signature_size_string =
|
base::StringPrintf("%d:%d", signature_size, signature_size);
|
else
|
signature_size_string = base::StringPrintf("%d", signature_size);
|
string delta_generator_path = GetBuildArtifactsPath("delta_generator");
|
ASSERT_EQ(0,
|
System(base::StringPrintf(
|
"%s -in_file=%s -signature_size=%s -out_hash_file=%s",
|
delta_generator_path.c_str(),
|
payload_path.c_str(),
|
signature_size_string.c_str(),
|
hash_file.path().c_str())));
|
|
// Sign the hash
|
brillo::Blob hash, signature;
|
ASSERT_TRUE(utils::ReadFile(hash_file.path(), &hash));
|
ASSERT_TRUE(PayloadSigner::SignHash(hash, private_key_path, &signature));
|
|
test_utils::ScopedTempFile sig_file("signature.XXXXXX");
|
ASSERT_TRUE(test_utils::WriteFileVector(sig_file.path(), signature));
|
string sig_files = sig_file.path();
|
|
test_utils::ScopedTempFile sig_file2("signature.XXXXXX");
|
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
|
signature_test == kSignatureGeneratedShellRotateCl2) {
|
ASSERT_TRUE(PayloadSigner::SignHash(
|
hash, GetBuildArtifactsPath(kUnittestPrivateKey2Path), &signature));
|
ASSERT_TRUE(test_utils::WriteFileVector(sig_file2.path(), signature));
|
// Append second sig file to first path
|
sig_files += ":" + sig_file2.path();
|
}
|
|
ASSERT_EQ(0,
|
System(base::StringPrintf(
|
"%s -in_file=%s -payload_signature_file=%s -out_file=%s",
|
delta_generator_path.c_str(),
|
payload_path.c_str(),
|
sig_files.c_str(),
|
payload_path.c_str())));
|
int verify_result = System(base::StringPrintf(
|
"%s -in_file=%s -public_key=%s -public_key_version=%d",
|
delta_generator_path.c_str(),
|
payload_path.c_str(),
|
(signature_test == kSignatureGeneratedShellRotateCl2
|
? GetBuildArtifactsPath(kUnittestPublicKey2Path)
|
: GetBuildArtifactsPath(kUnittestPublicKeyPath))
|
.c_str(),
|
signature_test == kSignatureGeneratedShellRotateCl2 ? 2 : 1));
|
if (signature_test == kSignatureGeneratedShellBadKey) {
|
ASSERT_NE(0, verify_result);
|
} else {
|
ASSERT_EQ(0, verify_result);
|
}
|
}
|
|
static void GenerateDeltaFile(bool full_kernel,
|
bool full_rootfs,
|
bool noop,
|
ssize_t chunk_size,
|
SignatureTest signature_test,
|
DeltaState* state,
|
uint32_t minor_version) {
|
EXPECT_TRUE(utils::MakeTempFile("a_img.XXXXXX", &state->a_img, nullptr));
|
EXPECT_TRUE(utils::MakeTempFile("b_img.XXXXXX", &state->b_img, nullptr));
|
|
// result_img is used in minor version 2. Instead of applying the update
|
// in-place on A, we apply it to a new image, result_img.
|
EXPECT_TRUE(
|
utils::MakeTempFile("result_img.XXXXXX", &state->result_img, nullptr));
|
|
EXPECT_TRUE(
|
base::CopyFile(GetBuildArtifactsPath().Append("gen/disk_ext2_4k.img"),
|
base::FilePath(state->a_img)));
|
|
state->image_size = utils::FileSize(state->a_img);
|
|
// Create ImageInfo A & B
|
ImageInfo old_image_info;
|
ImageInfo new_image_info;
|
|
if (!full_rootfs) {
|
old_image_info.set_channel("src-channel");
|
old_image_info.set_board("src-board");
|
old_image_info.set_version("src-version");
|
old_image_info.set_key("src-key");
|
old_image_info.set_build_channel("src-build-channel");
|
old_image_info.set_build_version("src-build-version");
|
}
|
|
new_image_info.set_channel("test-channel");
|
new_image_info.set_board("test-board");
|
new_image_info.set_version("test-version");
|
new_image_info.set_key("test-key");
|
new_image_info.set_build_channel("test-build-channel");
|
new_image_info.set_build_version("test-build-version");
|
|
// Make some changes to the A image.
|
{
|
string a_mnt;
|
ScopedLoopMounter b_mounter(state->a_img, &a_mnt, 0);
|
|
brillo::Blob hardtocompress;
|
while (hardtocompress.size() < 3 * kBlockSize) {
|
hardtocompress.insert(hardtocompress.end(),
|
std::begin(kRandomString),
|
std::end(kRandomString));
|
}
|
EXPECT_TRUE(utils::WriteFile(
|
base::StringPrintf("%s/hardtocompress", a_mnt.c_str()).c_str(),
|
hardtocompress.data(),
|
hardtocompress.size()));
|
|
brillo::Blob zeros(16 * 1024, 0);
|
EXPECT_EQ(static_cast<int>(zeros.size()),
|
base::WriteFile(base::FilePath(base::StringPrintf(
|
"%s/move-to-sparse", a_mnt.c_str())),
|
reinterpret_cast<const char*>(zeros.data()),
|
zeros.size()));
|
|
EXPECT_TRUE(WriteSparseFile(
|
base::StringPrintf("%s/move-from-sparse", a_mnt.c_str()), 16 * 1024));
|
|
EXPECT_TRUE(WriteByteAtOffset(
|
base::StringPrintf("%s/move-semi-sparse", a_mnt.c_str()), 4096));
|
|
// Write 1 MiB of 0xff to try to catch the case where writing a bsdiff
|
// patch fails to zero out the final block.
|
brillo::Blob ones(1024 * 1024, 0xff);
|
EXPECT_TRUE(
|
utils::WriteFile(base::StringPrintf("%s/ones", a_mnt.c_str()).c_str(),
|
ones.data(),
|
ones.size()));
|
}
|
|
if (noop) {
|
EXPECT_TRUE(base::CopyFile(base::FilePath(state->a_img),
|
base::FilePath(state->b_img)));
|
old_image_info = new_image_info;
|
} else {
|
if (minor_version == kSourceMinorPayloadVersion) {
|
// Create a result image with image_size bytes of garbage.
|
brillo::Blob ones(state->image_size, 0xff);
|
EXPECT_TRUE(utils::WriteFile(
|
state->result_img.c_str(), ones.data(), ones.size()));
|
EXPECT_EQ(utils::FileSize(state->a_img),
|
utils::FileSize(state->result_img));
|
}
|
|
EXPECT_TRUE(
|
base::CopyFile(GetBuildArtifactsPath().Append("gen/disk_ext2_4k.img"),
|
base::FilePath(state->b_img)));
|
|
// Make some changes to the B image.
|
string b_mnt;
|
ScopedLoopMounter b_mounter(state->b_img, &b_mnt, 0);
|
base::FilePath mnt_path(b_mnt);
|
|
EXPECT_TRUE(base::CopyFile(mnt_path.Append("regular-small"),
|
mnt_path.Append("regular-small2")));
|
EXPECT_TRUE(base::DeleteFile(mnt_path.Append("regular-small"), false));
|
EXPECT_TRUE(base::Move(mnt_path.Append("regular-small2"),
|
mnt_path.Append("regular-small")));
|
EXPECT_TRUE(
|
test_utils::WriteFileString(mnt_path.Append("foo").value(), "foo"));
|
EXPECT_EQ(0, base::WriteFile(mnt_path.Append("emptyfile"), "", 0));
|
|
EXPECT_TRUE(
|
WriteSparseFile(mnt_path.Append("fullsparse").value(), 1024 * 1024));
|
EXPECT_TRUE(
|
WriteSparseFile(mnt_path.Append("move-to-sparse").value(), 16 * 1024));
|
|
brillo::Blob zeros(16 * 1024, 0);
|
EXPECT_EQ(static_cast<int>(zeros.size()),
|
base::WriteFile(mnt_path.Append("move-from-sparse"),
|
reinterpret_cast<const char*>(zeros.data()),
|
zeros.size()));
|
|
EXPECT_TRUE(
|
WriteByteAtOffset(mnt_path.Append("move-semi-sparse").value(), 4096));
|
EXPECT_TRUE(WriteByteAtOffset(mnt_path.Append("partsparse").value(), 4096));
|
|
EXPECT_TRUE(
|
base::CopyFile(mnt_path.Append("regular-16k"), mnt_path.Append("tmp")));
|
EXPECT_TRUE(base::Move(mnt_path.Append("tmp"),
|
mnt_path.Append("link-hard-regular-16k")));
|
|
EXPECT_TRUE(base::DeleteFile(mnt_path.Append("link-short_symlink"), false));
|
EXPECT_TRUE(test_utils::WriteFileString(
|
mnt_path.Append("link-short_symlink").value(), "foobar"));
|
|
brillo::Blob hardtocompress;
|
while (hardtocompress.size() < 3 * kBlockSize) {
|
hardtocompress.insert(hardtocompress.end(),
|
std::begin(kRandomString),
|
std::end(kRandomString));
|
}
|
EXPECT_TRUE(utils::WriteFile(
|
base::StringPrintf("%s/hardtocompress", b_mnt.c_str()).c_str(),
|
hardtocompress.data(),
|
hardtocompress.size()));
|
}
|
|
string old_kernel;
|
EXPECT_TRUE(
|
utils::MakeTempFile("old_kernel.XXXXXX", &state->old_kernel, nullptr));
|
|
string new_kernel;
|
EXPECT_TRUE(
|
utils::MakeTempFile("new_kernel.XXXXXX", &state->new_kernel, nullptr));
|
|
string result_kernel;
|
EXPECT_TRUE(utils::MakeTempFile(
|
"result_kernel.XXXXXX", &state->result_kernel, nullptr));
|
|
state->kernel_size = kDefaultKernelSize;
|
state->old_kernel_data.resize(kDefaultKernelSize);
|
state->new_kernel_data.resize(state->old_kernel_data.size());
|
state->result_kernel_data.resize(state->old_kernel_data.size());
|
test_utils::FillWithData(&state->old_kernel_data);
|
test_utils::FillWithData(&state->new_kernel_data);
|
test_utils::FillWithData(&state->result_kernel_data);
|
|
// change the new kernel data
|
std::copy(
|
std::begin(kNewData), std::end(kNewData), state->new_kernel_data.begin());
|
|
if (noop) {
|
state->old_kernel_data = state->new_kernel_data;
|
}
|
|
// Write kernels to disk
|
EXPECT_TRUE(utils::WriteFile(state->old_kernel.c_str(),
|
state->old_kernel_data.data(),
|
state->old_kernel_data.size()));
|
EXPECT_TRUE(utils::WriteFile(state->new_kernel.c_str(),
|
state->new_kernel_data.data(),
|
state->new_kernel_data.size()));
|
EXPECT_TRUE(utils::WriteFile(state->result_kernel.c_str(),
|
state->result_kernel_data.data(),
|
state->result_kernel_data.size()));
|
|
EXPECT_TRUE(utils::MakeTempFile("delta.XXXXXX", &state->delta_path, nullptr));
|
LOG(INFO) << "delta path: " << state->delta_path;
|
{
|
const string private_key =
|
signature_test == kSignatureGenerator
|
? GetBuildArtifactsPath(kUnittestPrivateKeyPath)
|
: "";
|
|
PayloadGenerationConfig payload_config;
|
payload_config.is_delta = !full_rootfs;
|
payload_config.hard_chunk_size = chunk_size;
|
payload_config.rootfs_partition_size = kRootFSPartitionSize;
|
payload_config.version.major = kChromeOSMajorPayloadVersion;
|
payload_config.version.minor = minor_version;
|
if (!full_rootfs) {
|
payload_config.source.partitions.emplace_back(kPartitionNameRoot);
|
payload_config.source.partitions.emplace_back(kPartitionNameKernel);
|
payload_config.source.partitions.front().path = state->a_img;
|
if (!full_kernel)
|
payload_config.source.partitions.back().path = state->old_kernel;
|
payload_config.source.image_info = old_image_info;
|
EXPECT_TRUE(payload_config.source.LoadImageSize());
|
for (PartitionConfig& part : payload_config.source.partitions)
|
EXPECT_TRUE(part.OpenFilesystem());
|
} else {
|
if (payload_config.hard_chunk_size == -1)
|
// Use 1 MiB chunk size for the full unittests.
|
payload_config.hard_chunk_size = 1024 * 1024;
|
}
|
payload_config.target.partitions.emplace_back(kPartitionNameRoot);
|
payload_config.target.partitions.back().path = state->b_img;
|
payload_config.target.partitions.emplace_back(kPartitionNameKernel);
|
payload_config.target.partitions.back().path = state->new_kernel;
|
payload_config.target.image_info = new_image_info;
|
EXPECT_TRUE(payload_config.target.LoadImageSize());
|
for (PartitionConfig& part : payload_config.target.partitions)
|
EXPECT_TRUE(part.OpenFilesystem());
|
|
EXPECT_TRUE(payload_config.Validate());
|
EXPECT_TRUE(GenerateUpdatePayloadFile(
|
payload_config, state->delta_path, private_key, &state->metadata_size));
|
}
|
// Extend the "partitions" holding the file system a bit.
|
EXPECT_EQ(0,
|
HANDLE_EINTR(truncate(state->a_img.c_str(),
|
state->image_size + 1024 * 1024)));
|
EXPECT_EQ(static_cast<off_t>(state->image_size + 1024 * 1024),
|
utils::FileSize(state->a_img));
|
EXPECT_EQ(0,
|
HANDLE_EINTR(truncate(state->b_img.c_str(),
|
state->image_size + 1024 * 1024)));
|
EXPECT_EQ(static_cast<off_t>(state->image_size + 1024 * 1024),
|
utils::FileSize(state->b_img));
|
|
if (signature_test == kSignatureGeneratedPlaceholder ||
|
signature_test == kSignatureGeneratedPlaceholderMismatch) {
|
int signature_size =
|
GetSignatureSize(GetBuildArtifactsPath(kUnittestPrivateKeyPath));
|
LOG(INFO) << "Inserting placeholder signature.";
|
ASSERT_TRUE(InsertSignaturePlaceholder(
|
signature_size, state->delta_path, &state->metadata_size));
|
|
if (signature_test == kSignatureGeneratedPlaceholderMismatch) {
|
signature_size -= 1;
|
LOG(INFO) << "Inserting mismatched placeholder signature.";
|
ASSERT_FALSE(InsertSignaturePlaceholder(
|
signature_size, state->delta_path, &state->metadata_size));
|
return;
|
}
|
}
|
|
if (signature_test == kSignatureGenerated ||
|
signature_test == kSignatureGeneratedPlaceholder ||
|
signature_test == kSignatureGeneratedPlaceholderMismatch) {
|
// Generate the signed payload and update the metadata size in state to
|
// reflect the new size after adding the signature operation to the
|
// manifest.
|
LOG(INFO) << "Signing payload.";
|
SignGeneratedPayload(state->delta_path, &state->metadata_size);
|
} else if (signature_test == kSignatureGeneratedShell ||
|
signature_test == kSignatureGeneratedShellBadKey ||
|
signature_test == kSignatureGeneratedShellRotateCl1 ||
|
signature_test == kSignatureGeneratedShellRotateCl2) {
|
SignGeneratedShellPayload(signature_test, state->delta_path);
|
}
|
}
|
|
static void ApplyDeltaFile(bool full_kernel,
|
bool full_rootfs,
|
bool noop,
|
SignatureTest signature_test,
|
DeltaState* state,
|
bool hash_checks_mandatory,
|
OperationHashTest op_hash_test,
|
DeltaPerformer** performer,
|
uint32_t minor_version) {
|
// Check the metadata.
|
{
|
EXPECT_TRUE(utils::ReadFile(state->delta_path, &state->delta));
|
PayloadMetadata payload_metadata;
|
EXPECT_TRUE(payload_metadata.ParsePayloadHeader(state->delta));
|
state->metadata_size = payload_metadata.GetMetadataSize();
|
LOG(INFO) << "Metadata size: " << state->metadata_size;
|
|
DeltaArchiveManifest manifest;
|
EXPECT_TRUE(payload_metadata.GetManifest(state->delta, &manifest));
|
if (signature_test == kSignatureNone) {
|
EXPECT_FALSE(manifest.has_signatures_offset());
|
EXPECT_FALSE(manifest.has_signatures_size());
|
} else {
|
EXPECT_TRUE(manifest.has_signatures_offset());
|
EXPECT_TRUE(manifest.has_signatures_size());
|
Signatures sigs_message;
|
EXPECT_TRUE(sigs_message.ParseFromArray(
|
&state->delta[state->metadata_size + manifest.signatures_offset()],
|
manifest.signatures_size()));
|
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
|
signature_test == kSignatureGeneratedShellRotateCl2)
|
EXPECT_EQ(2, sigs_message.signatures_size());
|
else
|
EXPECT_EQ(1, sigs_message.signatures_size());
|
const Signatures::Signature& signature = sigs_message.signatures(0);
|
EXPECT_EQ(1U, signature.version());
|
|
uint64_t expected_sig_data_length = 0;
|
vector<string> key_paths{GetBuildArtifactsPath(kUnittestPrivateKeyPath)};
|
if (signature_test == kSignatureGeneratedShellRotateCl1 ||
|
signature_test == kSignatureGeneratedShellRotateCl2) {
|
key_paths.push_back(GetBuildArtifactsPath(kUnittestPrivateKey2Path));
|
}
|
EXPECT_TRUE(PayloadSigner::SignatureBlobLength(
|
key_paths, &expected_sig_data_length));
|
EXPECT_EQ(expected_sig_data_length, manifest.signatures_size());
|
EXPECT_FALSE(signature.data().empty());
|
}
|
|
if (noop) {
|
EXPECT_EQ(0, manifest.install_operations_size());
|
EXPECT_EQ(1, manifest.kernel_install_operations_size());
|
}
|
|
if (full_kernel) {
|
EXPECT_FALSE(manifest.has_old_kernel_info());
|
} else {
|
EXPECT_EQ(state->old_kernel_data.size(),
|
manifest.old_kernel_info().size());
|
EXPECT_FALSE(manifest.old_kernel_info().hash().empty());
|
}
|
|
EXPECT_EQ(manifest.new_image_info().channel(), "test-channel");
|
EXPECT_EQ(manifest.new_image_info().board(), "test-board");
|
EXPECT_EQ(manifest.new_image_info().version(), "test-version");
|
EXPECT_EQ(manifest.new_image_info().key(), "test-key");
|
EXPECT_EQ(manifest.new_image_info().build_channel(), "test-build-channel");
|
EXPECT_EQ(manifest.new_image_info().build_version(), "test-build-version");
|
|
if (!full_rootfs) {
|
if (noop) {
|
EXPECT_EQ(manifest.old_image_info().channel(), "test-channel");
|
EXPECT_EQ(manifest.old_image_info().board(), "test-board");
|
EXPECT_EQ(manifest.old_image_info().version(), "test-version");
|
EXPECT_EQ(manifest.old_image_info().key(), "test-key");
|
EXPECT_EQ(manifest.old_image_info().build_channel(),
|
"test-build-channel");
|
EXPECT_EQ(manifest.old_image_info().build_version(),
|
"test-build-version");
|
} else {
|
EXPECT_EQ(manifest.old_image_info().channel(), "src-channel");
|
EXPECT_EQ(manifest.old_image_info().board(), "src-board");
|
EXPECT_EQ(manifest.old_image_info().version(), "src-version");
|
EXPECT_EQ(manifest.old_image_info().key(), "src-key");
|
EXPECT_EQ(manifest.old_image_info().build_channel(),
|
"src-build-channel");
|
EXPECT_EQ(manifest.old_image_info().build_version(),
|
"src-build-version");
|
}
|
}
|
|
if (full_rootfs) {
|
EXPECT_FALSE(manifest.has_old_rootfs_info());
|
EXPECT_FALSE(manifest.has_old_image_info());
|
EXPECT_TRUE(manifest.has_new_image_info());
|
} else {
|
EXPECT_EQ(state->image_size, manifest.old_rootfs_info().size());
|
EXPECT_FALSE(manifest.old_rootfs_info().hash().empty());
|
}
|
|
EXPECT_EQ(state->new_kernel_data.size(), manifest.new_kernel_info().size());
|
EXPECT_EQ(state->image_size, manifest.new_rootfs_info().size());
|
|
EXPECT_FALSE(manifest.new_kernel_info().hash().empty());
|
EXPECT_FALSE(manifest.new_rootfs_info().hash().empty());
|
}
|
|
MockPrefs prefs;
|
EXPECT_CALL(prefs, SetInt64(kPrefsManifestMetadataSize, state->metadata_size))
|
.WillOnce(Return(true));
|
EXPECT_CALL(prefs, SetInt64(kPrefsManifestSignatureSize, 0))
|
.WillOnce(Return(true));
|
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextOperation, _))
|
.WillRepeatedly(Return(true));
|
EXPECT_CALL(prefs, GetInt64(kPrefsUpdateStateNextOperation, _))
|
.WillOnce(Return(false));
|
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataOffset, _))
|
.WillRepeatedly(Return(true));
|
EXPECT_CALL(prefs, SetInt64(kPrefsUpdateStateNextDataLength, _))
|
.WillRepeatedly(Return(true));
|
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSHA256Context, _))
|
.WillRepeatedly(Return(true));
|
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignedSHA256Context, _))
|
.WillRepeatedly(Return(true));
|
EXPECT_CALL(prefs, SetBoolean(kPrefsDynamicPartitionMetadataUpdated, _))
|
.WillRepeatedly(Return(true));
|
if (op_hash_test == kValidOperationData && signature_test != kSignatureNone) {
|
EXPECT_CALL(prefs, SetString(kPrefsUpdateStateSignatureBlob, _))
|
.WillOnce(Return(true));
|
}
|
|
EXPECT_CALL(state->mock_delegate_, ShouldCancel(_))
|
.WillRepeatedly(Return(false));
|
|
// Update the A image in place.
|
InstallPlan* install_plan = &state->install_plan;
|
install_plan->hash_checks_mandatory = hash_checks_mandatory;
|
install_plan->payloads = {{.metadata_size = state->metadata_size,
|
.type = (full_kernel && full_rootfs)
|
? InstallPayloadType::kFull
|
: InstallPayloadType::kDelta}};
|
install_plan->source_slot = 0;
|
install_plan->target_slot = 1;
|
|
InstallPlan::Partition root_part;
|
root_part.name = kPartitionNameRoot;
|
|
InstallPlan::Partition kernel_part;
|
kernel_part.name = kPartitionNameKernel;
|
|
LOG(INFO) << "Setting payload metadata size in Omaha = "
|
<< state->metadata_size;
|
ASSERT_TRUE(PayloadSigner::GetMetadataSignature(
|
state->delta.data(),
|
state->metadata_size,
|
GetBuildArtifactsPath(kUnittestPrivateKeyPath),
|
&install_plan->payloads[0].metadata_signature));
|
EXPECT_FALSE(install_plan->payloads[0].metadata_signature.empty());
|
|
*performer = new DeltaPerformer(&prefs,
|
&state->fake_boot_control_,
|
&state->fake_hardware_,
|
&state->mock_delegate_,
|
install_plan,
|
&install_plan->payloads[0],
|
false /* interactive */);
|
string public_key_path = GetBuildArtifactsPath(kUnittestPublicKeyPath);
|
EXPECT_TRUE(utils::FileExists(public_key_path.c_str()));
|
(*performer)->set_public_key_path(public_key_path);
|
|
EXPECT_EQ(static_cast<off_t>(state->image_size),
|
HashCalculator::RawHashOfFile(
|
state->a_img, state->image_size, &root_part.source_hash));
|
EXPECT_TRUE(HashCalculator::RawHashOfData(state->old_kernel_data,
|
&kernel_part.source_hash));
|
|
// The partitions should be empty before DeltaPerformer.
|
install_plan->partitions.clear();
|
|
// With minor version 2, we want the target to be the new image, result_img,
|
// but with version 1, we want to update A in place.
|
string target_root, target_kernel;
|
if (minor_version == kSourceMinorPayloadVersion) {
|
target_root = state->result_img;
|
target_kernel = state->result_kernel;
|
} else {
|
target_root = state->a_img;
|
target_kernel = state->old_kernel;
|
}
|
|
state->fake_boot_control_.SetPartitionDevice(
|
kPartitionNameRoot, install_plan->source_slot, state->a_img);
|
state->fake_boot_control_.SetPartitionDevice(
|
kPartitionNameKernel, install_plan->source_slot, state->old_kernel);
|
state->fake_boot_control_.SetPartitionDevice(
|
kPartitionNameRoot, install_plan->target_slot, target_root);
|
state->fake_boot_control_.SetPartitionDevice(
|
kPartitionNameKernel, install_plan->target_slot, target_kernel);
|
|
ErrorCode expected_error, actual_error;
|
bool continue_writing;
|
switch (op_hash_test) {
|
case kInvalidOperationData: {
|
// Muck with some random offset post the metadata size so that
|
// some operation hash will result in a mismatch.
|
int some_offset = state->metadata_size + 300;
|
LOG(INFO) << "Tampered value at offset: " << some_offset;
|
state->delta[some_offset]++;
|
expected_error = ErrorCode::kDownloadOperationHashMismatch;
|
continue_writing = false;
|
break;
|
}
|
|
case kValidOperationData:
|
default:
|
// no change.
|
expected_error = ErrorCode::kSuccess;
|
continue_writing = true;
|
break;
|
}
|
|
// Write at some number of bytes per operation. Arbitrarily chose 5.
|
const size_t kBytesPerWrite = 5;
|
for (size_t i = 0; i < state->delta.size(); i += kBytesPerWrite) {
|
size_t count = std::min(state->delta.size() - i, kBytesPerWrite);
|
bool write_succeeded =
|
((*performer)->Write(&state->delta[i], count, &actual_error));
|
// Normally write_succeeded should be true every time and
|
// actual_error should be ErrorCode::kSuccess. If so, continue the loop.
|
// But if we seeded an operation hash error above, then write_succeeded
|
// will be false. The failure may happen at any operation n. So, all
|
// Writes until n-1 should succeed and the nth operation will fail with
|
// actual_error. In this case, we should bail out of the loop because
|
// we cannot proceed applying the delta.
|
if (!write_succeeded) {
|
LOG(INFO) << "Write failed. Checking if it failed with expected error";
|
EXPECT_EQ(expected_error, actual_error);
|
if (!continue_writing) {
|
LOG(INFO) << "Cannot continue writing. Bailing out.";
|
break;
|
}
|
}
|
|
EXPECT_EQ(ErrorCode::kSuccess, actual_error);
|
}
|
|
// If we had continued all the way through, Close should succeed.
|
// Otherwise, it should fail. Check appropriately.
|
bool close_result = (*performer)->Close();
|
if (continue_writing)
|
EXPECT_EQ(0, close_result);
|
else
|
EXPECT_LE(0, close_result);
|
}
|
|
void VerifyPayloadResult(DeltaPerformer* performer,
|
DeltaState* state,
|
ErrorCode expected_result,
|
uint32_t minor_version) {
|
if (!performer) {
|
EXPECT_TRUE(!"Skipping payload verification since performer is null.");
|
return;
|
}
|
|
LOG(INFO) << "Verifying payload for expected result " << expected_result;
|
brillo::Blob expected_hash;
|
HashCalculator::RawHashOfData(state->delta, &expected_hash);
|
EXPECT_EQ(expected_result,
|
performer->VerifyPayload(expected_hash, state->delta.size()));
|
LOG(INFO) << "Verified payload.";
|
|
if (expected_result != ErrorCode::kSuccess) {
|
// no need to verify new partition if VerifyPayload failed.
|
return;
|
}
|
|
brillo::Blob updated_kernel_partition;
|
if (minor_version == kSourceMinorPayloadVersion) {
|
CompareFilesByBlock(
|
state->result_kernel, state->new_kernel, state->kernel_size);
|
CompareFilesByBlock(state->result_img, state->b_img, state->image_size);
|
EXPECT_TRUE(
|
utils::ReadFile(state->result_kernel, &updated_kernel_partition));
|
} else {
|
CompareFilesByBlock(
|
state->old_kernel, state->new_kernel, state->kernel_size);
|
CompareFilesByBlock(state->a_img, state->b_img, state->image_size);
|
EXPECT_TRUE(utils::ReadFile(state->old_kernel, &updated_kernel_partition));
|
}
|
|
ASSERT_GE(updated_kernel_partition.size(), arraysize(kNewData));
|
EXPECT_TRUE(std::equal(std::begin(kNewData),
|
std::end(kNewData),
|
updated_kernel_partition.begin()));
|
|
const auto& partitions = state->install_plan.partitions;
|
EXPECT_EQ(2U, partitions.size());
|
EXPECT_EQ(kPartitionNameRoot, partitions[0].name);
|
EXPECT_EQ(kPartitionNameKernel, partitions[1].name);
|
|
EXPECT_EQ(kDefaultKernelSize, partitions[1].target_size);
|
brillo::Blob expected_new_kernel_hash;
|
EXPECT_TRUE(HashCalculator::RawHashOfData(state->new_kernel_data,
|
&expected_new_kernel_hash));
|
EXPECT_EQ(expected_new_kernel_hash, partitions[1].target_hash);
|
|
EXPECT_EQ(state->image_size, partitions[0].target_size);
|
brillo::Blob expected_new_rootfs_hash;
|
EXPECT_EQ(static_cast<off_t>(state->image_size),
|
HashCalculator::RawHashOfFile(
|
state->b_img, state->image_size, &expected_new_rootfs_hash));
|
EXPECT_EQ(expected_new_rootfs_hash, partitions[0].target_hash);
|
}
|
|
void VerifyPayload(DeltaPerformer* performer,
|
DeltaState* state,
|
SignatureTest signature_test,
|
uint32_t minor_version) {
|
ErrorCode expected_result = ErrorCode::kSuccess;
|
switch (signature_test) {
|
case kSignatureNone:
|
expected_result = ErrorCode::kSignedDeltaPayloadExpectedError;
|
break;
|
case kSignatureGeneratedShellBadKey:
|
expected_result = ErrorCode::kDownloadPayloadPubKeyVerificationError;
|
break;
|
default:
|
break; // appease gcc
|
}
|
|
VerifyPayloadResult(performer, state, expected_result, minor_version);
|
}
|
|
void DoSmallImageTest(bool full_kernel,
|
bool full_rootfs,
|
bool noop,
|
ssize_t chunk_size,
|
SignatureTest signature_test,
|
bool hash_checks_mandatory,
|
uint32_t minor_version) {
|
DeltaState state;
|
DeltaPerformer* performer = nullptr;
|
GenerateDeltaFile(full_kernel,
|
full_rootfs,
|
noop,
|
chunk_size,
|
signature_test,
|
&state,
|
minor_version);
|
|
ScopedPathUnlinker a_img_unlinker(state.a_img);
|
ScopedPathUnlinker b_img_unlinker(state.b_img);
|
ScopedPathUnlinker new_img_unlinker(state.result_img);
|
ScopedPathUnlinker delta_unlinker(state.delta_path);
|
ScopedPathUnlinker old_kernel_unlinker(state.old_kernel);
|
ScopedPathUnlinker new_kernel_unlinker(state.new_kernel);
|
ScopedPathUnlinker result_kernel_unlinker(state.result_kernel);
|
ApplyDeltaFile(full_kernel,
|
full_rootfs,
|
noop,
|
signature_test,
|
&state,
|
hash_checks_mandatory,
|
kValidOperationData,
|
&performer,
|
minor_version);
|
VerifyPayload(performer, &state, signature_test, minor_version);
|
delete performer;
|
}
|
|
void DoOperationHashMismatchTest(OperationHashTest op_hash_test,
|
bool hash_checks_mandatory) {
|
DeltaState state;
|
uint64_t minor_version = kFullPayloadMinorVersion;
|
GenerateDeltaFile(
|
true, true, false, -1, kSignatureGenerated, &state, minor_version);
|
ScopedPathUnlinker a_img_unlinker(state.a_img);
|
ScopedPathUnlinker b_img_unlinker(state.b_img);
|
ScopedPathUnlinker delta_unlinker(state.delta_path);
|
ScopedPathUnlinker old_kernel_unlinker(state.old_kernel);
|
ScopedPathUnlinker new_kernel_unlinker(state.new_kernel);
|
DeltaPerformer* performer = nullptr;
|
ApplyDeltaFile(true,
|
true,
|
false,
|
kSignatureGenerated,
|
&state,
|
hash_checks_mandatory,
|
op_hash_test,
|
&performer,
|
minor_version);
|
delete performer;
|
}
|
|
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageTest) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
-1,
|
kSignatureGenerator,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest,
|
RunAsRootSmallImageSignaturePlaceholderTest) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
-1,
|
kSignatureGeneratedPlaceholder,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest,
|
RunAsRootSmallImageSignaturePlaceholderMismatchTest) {
|
DeltaState state;
|
GenerateDeltaFile(false,
|
false,
|
false,
|
-1,
|
kSignatureGeneratedPlaceholderMismatch,
|
&state,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageChunksTest) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
kBlockSize,
|
kSignatureGenerator,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest, RunAsRootFullKernelSmallImageTest) {
|
DoSmallImageTest(true,
|
false,
|
false,
|
-1,
|
kSignatureGenerator,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest, RunAsRootFullSmallImageTest) {
|
DoSmallImageTest(true,
|
true,
|
false,
|
-1,
|
kSignatureGenerator,
|
true,
|
kFullPayloadMinorVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest, RunAsRootNoopSmallImageTest) {
|
DoSmallImageTest(false,
|
false,
|
true,
|
-1,
|
kSignatureGenerator,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignNoneTest) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
-1,
|
kSignatureNone,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedTest) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
-1,
|
kSignatureGenerated,
|
true,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSignGeneratedShellTest) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
-1,
|
kSignatureGeneratedShell,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest,
|
RunAsRootSmallImageSignGeneratedShellBadKeyTest) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
-1,
|
kSignatureGeneratedShellBadKey,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest,
|
RunAsRootSmallImageSignGeneratedShellRotateCl1Test) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
-1,
|
kSignatureGeneratedShellRotateCl1,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest,
|
RunAsRootSmallImageSignGeneratedShellRotateCl2Test) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
-1,
|
kSignatureGeneratedShellRotateCl2,
|
false,
|
kInPlaceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest, RunAsRootSmallImageSourceOpsTest) {
|
DoSmallImageTest(false,
|
false,
|
false,
|
-1,
|
kSignatureGenerator,
|
false,
|
kSourceMinorPayloadVersion);
|
}
|
|
TEST(DeltaPerformerIntegrationTest,
|
RunAsRootMandatoryOperationHashMismatchTest) {
|
DoOperationHashMismatchTest(kInvalidOperationData, true);
|
}
|
|
} // namespace chromeos_update_engine
|