liyujie
2025-08-28 786ff4f4ca2374bdd9177f2e24b503d43e7a3b93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
#ifndef ANDROID_ML_NN_COMMON_OPERATIONS_H
#define ANDROID_ML_NN_COMMON_OPERATIONS_H
 
#include "operations/BidirectionalSequenceLSTM.h"
#include "operations/Cast.h"
#include "operations/EmbeddingLookup.h"
#include "operations/ExpandDims.h"
#include "operations/HashtableLookup.h"
#include "operations/LSHProjection.h"
#include "operations/LSTM.h"
#include "operations/MaximumMinimum.h"
#include "operations/Multinomial.h"
#include "operations/Pow.h"
#include "operations/QuantizedLSTM.h"
#include "operations/RNN.h"
#include "operations/SVDF.h"
#include "operations/Tile.h"
#include "operations/TopK_V2.h"
 
#include <stddef.h>
 
#include <cstdint>
#include <vector>
 
namespace android {
namespace nn {
 
struct Shape;
 
bool floorFloat16(const _Float16* inputData, _Float16* outputData, const Shape& shape);
bool floorFloat32(const float* inputData, float* outputData, const Shape& shape);
 
bool depthwiseConvFloat16(const _Float16* inputData, const Shape& inputShape,
                          const _Float16* filterData, const Shape& filterShape,
                          const _Float16* biasData, const Shape& biasShape, int32_t paddingLeft,
                          int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom,
                          int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor,
                          int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation,
                          _Float16* outputData, const Shape& outputShape);
bool depthwiseConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData,
                          const Shape& filterShape, const float* biasData, const Shape& biasShape,
                          int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop,
                          int32_t paddingBottom, int32_t strideWidth, int32_t strideHeight,
                          int32_t dilationWidthFactor, int32_t dilationHeightFactor,
                          int32_t depthMultiplier, int32_t activation, float* outputData,
                          const Shape& outputShape);
bool depthwiseConvQuant8(const uint8_t* inputData, const Shape& inputShape,
                         const uint8_t* filterData, const Shape& filterShape,
                         const int32_t* biasData, const Shape& biasShape, int32_t paddingLeft,
                         int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom,
                         int32_t strideWidth, int32_t strideHeight, int32_t dilationWidthFactor,
                         int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation,
                         uint8_t* outputData, const Shape& outputShape);
bool depthwiseConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
                                   const int8_t* filterData, const Shape& filterShape,
                                   const float* filterScales, const int32_t* biasData,
                                   const Shape& biasShape, int32_t paddingLeft,
                                   int32_t paddingRight, int32_t paddingTop, int32_t paddingBottom,
                                   int32_t strideWidth, int32_t strideHeight,
                                   int32_t dilationWidthFactor, int32_t dilationHeightFactor,
                                   int32_t depthMultiplier, int32_t activation, uint8_t* outputData,
                                   const Shape& outputShape);
 
bool localResponseNormFloat16(const _Float16* inputData, const Shape& inputShape, int32_t radius,
                              float bias, float alpha, float beta, int32_t axis,
                              _Float16* outputData, const Shape& outputShape);
bool localResponseNormFloat32(const float* inputData, const Shape& inputShape, int32_t radius,
                              float bias, float alpha, float beta, int32_t axis, float* outputData,
                              const Shape& outputShape);
 
bool copyData(const void* inputData, const Shape& inputShape, void* outputData,
              const Shape& outputShape);
 
template <typename T>
bool depthToSpaceGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize,
                         T* outputData, const Shape& outputShape);
template <typename T>
bool spaceToDepthGeneric(const T* inputData, const Shape& inputShape, int32_t blockSize,
                         T* outputData, const Shape& outputShape);
 
template <typename T>
bool padGeneric(const T* inputData, const Shape& inputShape, const int32_t* paddings, T pad_value,
                T* outputData, const Shape& outputShape);
 
template <typename T>
bool batchToSpaceGeneric(const T* inputData, const Shape& inputShape, const int32_t* blockSize,
                         T* outputData, const Shape& outputShape);
 
template <typename T>
bool spaceToBatchGeneric(const T* inputData, const Shape& inputShape, const int32_t* blockSize,
                         const int32_t* padding, const Shape& paddingShape, T* outputData,
                         const Shape& outputShape);
 
bool meanFloat16(_Float16* inputData, const Shape& inputShape, const int32_t* axis,
                 const Shape& axisShape, bool keepDims, _Float16* outputData,
                 const Shape& outputShape);
template <typename T, typename U>
bool meanGeneric(T* inputData, const Shape& inputShape, const int32_t* axis, const Shape& axisShape,
                 bool keepDims, T* outputData, const Shape& outputShape);
 
bool stridedSliceGeneric(const uint8_t* inputData, const Shape& inputShape,
                         const int32_t* beginData, const int32_t* endData,
                         const int32_t* stridesData, int32_t beginMask, int32_t endMask,
                         int32_t shrinkAxisMask, uint8_t* outputData, const Shape& outputShape);
 
bool argMinMaxGeneric(const uint8_t* inputData, const Shape& inputShape, int32_t axis,
                      bool isArgMin, uint8_t* outputData, const Shape& outputShape);
 
bool splitFloat16(const _Float16* inputData, const Shape& inputShape, int32_t axis,
                  const std::vector<_Float16*>* outputDataPtrs,
                  const std::vector<Shape>& outputShapes);
 
bool splitFloat32(const float* inputData, const Shape& inputShape, const int32_t axis,
                  const std::vector<float*>* outputDataPtrs,
                  const std::vector<Shape>& outputShapes);
 
bool splitInt32(const int32_t* inputData, const Shape& inputShape, const int32_t axis,
                const std::vector<int32_t*>* outputDataPtrs,
                const std::vector<Shape>& outputShapes);
 
bool splitQuant8(const uint8_t* inputData, const Shape& inputShape, const int32_t axis,
                 const std::vector<uint8_t*>* outputDataPtrs,
                 const std::vector<Shape>& outputShapes);
 
bool groupedConvFloat16(const _Float16* inputData, const Shape& inputShape,
                        const _Float16* filterData, const Shape& filterShape,
                        const _Float16* biasData, const Shape& biasShape, int32_t numGroups,
                        int32_t padding_left, int32_t padding_right, int32_t padding_top,
                        int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
                        int32_t activation, _Float16* outputData, const Shape& outputShape);
 
bool groupedConvFloat32(const float* inputData, const Shape& inputShape, const float* filterData,
                        const Shape& filterShape, const float* biasData, const Shape& biasShape,
                        int32_t numGroups, int32_t padding_left, int32_t padding_right,
                        int32_t padding_top, int32_t padding_bottom, int32_t stride_width,
                        int32_t stride_height, int32_t activation, float* outputData,
                        const Shape& outputShape);
 
bool groupedConvQuant8(const uint8_t* inputData, const Shape& inputShape, const uint8_t* filterData,
                       const Shape& filterShape, const int32_t* biasData, const Shape& biasShape,
                       int32_t numGroups, int32_t padding_left, int32_t padding_right,
                       int32_t padding_top, int32_t padding_bottom, int32_t stride_width,
                       int32_t stride_height, int32_t activation, uint8_t* outputData,
                       const Shape& outputShape);
 
bool groupedConvQuant8PerChannel(const uint8_t* inputData, const Shape& inputShape,
                                 const int8_t* filterData, const Shape& filterShape,
                                 const float* filterScales, const int32_t* biasData,
                                 const Shape& biasShape, int32_t padding_left,
                                 int32_t padding_right, int32_t padding_top, int32_t padding_bottom,
                                 int32_t stride_width, int32_t stride_height, int32_t numGroups,
                                 int32_t activation, uint8_t* outputData, const Shape& outputShape);
 
bool channelShuffleGeneric(const uint8_t* inputData, const Shape& inputShape, int32_t numGroups,
                           int32_t axis, uint8_t* outputData, const Shape& outputShape);
}  // namespace nn
}  // namespace android
#endif  // ANDROID_ML_NN_COMMON_OPERATIONS_H