/*
|
* Copyright (C) 2017 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#define LOG_TAG "Utils"
|
|
#include "Utils.h"
|
|
#include "NeuralNetworks.h"
|
#include "NeuralNetworksOEM.h"
|
#include "OperationResolver.h"
|
#include "ValidateHal.h"
|
|
#include <android-base/logging.h>
|
#include <android-base/properties.h>
|
#include <android-base/strings.h>
|
#include <sys/system_properties.h>
|
#include <algorithm>
|
#include <unordered_map>
|
|
using ::android::hidl::allocator::V1_0::IAllocator;
|
|
namespace android {
|
namespace nn {
|
|
const char kVLogPropKey[] = "debug.nn.vlog";
|
int vLogMask = ~0;
|
|
// Split the space separated list of tags from verbose log setting and build the
|
// logging mask from it. note that '1' and 'all' are special cases to enable all
|
// verbose logging.
|
//
|
// NN API verbose logging setting comes from system property debug.nn.vlog.
|
// Example:
|
// setprop debug.nn.vlog 1 : enable all logging tags.
|
// setprop debug.nn.vlog "model compilation" : only enable logging for MODEL and
|
// COMPILATION tags.
|
void initVLogMask() {
|
vLogMask = 0;
|
const std::string vLogSetting = android::base::GetProperty(kVLogPropKey, "");
|
if (vLogSetting.empty()) {
|
return;
|
}
|
|
std::unordered_map<std::string, int> vLogFlags = {
|
{"1", -1},
|
{"all", -1},
|
{"model", MODEL},
|
{"compilation", COMPILATION},
|
{"execution", EXECUTION},
|
{"cpuexe", CPUEXE},
|
{"manager", MANAGER},
|
{"driver", DRIVER}};
|
|
std::vector<std::string> elements = android::base::Split(vLogSetting, " ,:");
|
for (const auto& elem : elements) {
|
const auto& flag = vLogFlags.find(elem);
|
if (flag == vLogFlags.end()) {
|
LOG(ERROR) << "Unknown trace flag: " << elem;
|
continue;
|
}
|
|
if (flag->second == -1) {
|
// -1 is used for the special values "1" and "all" that enable all
|
// tracing.
|
vLogMask = ~0;
|
return;
|
} else {
|
vLogMask |= 1 << flag->second;
|
}
|
}
|
}
|
|
static bool isExtensionOperandType(int32_t type) {
|
return static_cast<uint32_t>(type) > static_cast<uint32_t>(OperandTypeRange::BASE_MAX);
|
}
|
|
static bool isExtensionOperationType(ANeuralNetworksOperationType type) {
|
return static_cast<uint32_t>(type) > static_cast<uint32_t>(OperationTypeRange::BASE_MAX);
|
}
|
|
bool isExtensionOperandType(OperandType type) {
|
return isExtensionOperandType(static_cast<int32_t>(type));
|
}
|
|
bool isExtensionOperationType(OperationType type) {
|
return isExtensionOperationType(static_cast<int32_t>(type));
|
}
|
|
namespace {
|
|
template <typename EntryType, uint32_t entryCount, uint32_t entryCountOEM>
|
EntryType tableLookup(const EntryType (&table)[entryCount],
|
const EntryType (&tableOEM)[entryCountOEM],
|
uint32_t code) {
|
if (code < entryCount) {
|
return table[code];
|
} else if (code >= kOEMCodeBase && (code - kOEMCodeBase) < entryCountOEM) {
|
return tableOEM[code - kOEMCodeBase];
|
} else {
|
nnAssert(!"tableLookup: bad code");
|
return EntryType();
|
}
|
}
|
|
class OperationValidationContext : public IOperationValidationContext {
|
DISALLOW_IMPLICIT_CONSTRUCTORS(OperationValidationContext);
|
|
public:
|
OperationValidationContext(uint32_t inputCount, const uint32_t* inputIndexes,
|
uint32_t outputCount, const uint32_t* outputIndexes,
|
const Operand* operands, HalVersion halVersion)
|
: inputCount(inputCount),
|
inputIndexes(inputIndexes),
|
outputCount(outputCount),
|
outputIndexes(outputIndexes),
|
operands(operands),
|
halVersion(halVersion) {}
|
|
HalVersion getHalVersion() const override;
|
|
uint32_t getNumInputs() const override;
|
OperandType getInputType(uint32_t index) const override;
|
Shape getInputShape(uint32_t index) const override;
|
const Operand::ExtraParams getInputExtraParams(uint32_t index) const override;
|
|
uint32_t getNumOutputs() const override;
|
OperandType getOutputType(uint32_t index) const override;
|
Shape getOutputShape(uint32_t index) const override;
|
|
private:
|
const Operand* getInputOperand(uint32_t index) const;
|
const Operand* getOutputOperand(uint32_t index) const;
|
|
uint32_t inputCount;
|
const uint32_t* inputIndexes;
|
uint32_t outputCount;
|
const uint32_t* outputIndexes;
|
const Operand* operands;
|
HalVersion halVersion;
|
};
|
|
HalVersion OperationValidationContext::getHalVersion() const {
|
return halVersion;
|
}
|
|
const Operand* OperationValidationContext::getInputOperand(uint32_t index) const {
|
CHECK(index < static_cast<uint32_t>(inputCount));
|
return &operands[inputIndexes[index]];
|
}
|
|
const Operand* OperationValidationContext::getOutputOperand(uint32_t index) const {
|
CHECK(index < static_cast<uint32_t>(outputCount));
|
return &operands[outputIndexes[index]];
|
}
|
|
uint32_t OperationValidationContext::getNumInputs() const {
|
return inputCount;
|
}
|
|
uint32_t OperationValidationContext::getNumOutputs() const {
|
return outputCount;
|
}
|
|
OperandType OperationValidationContext::getInputType(uint32_t index) const {
|
return getInputOperand(index)->type;
|
}
|
|
Shape OperationValidationContext::getInputShape(uint32_t index) const {
|
const Operand* operand = getInputOperand(index);
|
return {operand->type, operand->dimensions, operand->scale, operand->zeroPoint,
|
operand->extraParams};
|
}
|
|
const Operand::ExtraParams OperationValidationContext::getInputExtraParams(uint32_t index) const {
|
return getInputOperand(index)->extraParams;
|
}
|
|
OperandType OperationValidationContext::getOutputType(uint32_t index) const {
|
return getOutputOperand(index)->type;
|
}
|
|
Shape OperationValidationContext::getOutputShape(uint32_t index) const {
|
const Operand* operand = getOutputOperand(index);
|
return {operand->type, operand->dimensions, operand->scale, operand->zeroPoint,
|
operand->extraParams};
|
}
|
|
}; // anonymous namespace
|
|
#define COUNT(X) (sizeof(X) / sizeof(X[0]))
|
|
std::string getOperandTypeName(OperandType type) {
|
return toString(type);
|
}
|
|
static std::string getOperationName(uint32_t code) {
|
return getOperationName(static_cast<OperationType>(code));
|
}
|
|
std::string getOperationName(OperationType type) {
|
return toString(type);
|
}
|
|
const uint32_t kSizeOfDataType[]{
|
4, // ANEURALNETWORKS_FLOAT32
|
4, // ANEURALNETWORKS_INT32
|
4, // ANEURALNETWORKS_UINT32
|
4, // ANEURALNETWORKS_TENSOR_FLOAT32
|
4, // ANEURALNETWORKS_TENSOR_INT32
|
1, // ANEURALNETWORKS_TENSOR_SYMMETRICAL_QUANT8
|
1, // ANEURALNETWORKS_BOOL
|
2, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM
|
2, // ANEURALNETWORKS_TENSOR_FLOAT16
|
1, // ANEURALNETWORKS_TENSOR_BOOL8
|
2, // ANEURALNETWORKS_FLOAT16
|
1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL
|
2, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM
|
1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM
|
};
|
|
static_assert(COUNT(kSizeOfDataType) == kNumberOfDataTypes, "kSizeOfDataType is incorrect");
|
|
const bool kScalarDataType[]{
|
true, // ANEURALNETWORKS_FLOAT32
|
true, // ANEURALNETWORKS_INT32
|
true, // ANEURALNETWORKS_UINT32
|
false, // ANEURALNETWORKS_TENSOR_FLOAT32
|
false, // ANEURALNETWORKS_TENSOR_INT32
|
false, // ANEURALNETWORKS_TENSOR_SYMMETRICAL_QUANT8
|
true, // ANEURALNETWORKS_BOOL
|
false, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM
|
false, // ANEURALNETWORKS_TENSOR_FLOAT16
|
false, // ANEURALNETWORKS_TENSOR_BOOL8
|
true, // ANEURALNETWORKS_FLOAT16
|
false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL
|
false, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM
|
false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM
|
};
|
|
static_assert(COUNT(kScalarDataType) == kNumberOfDataTypes, "kScalarDataType is incorrect");
|
|
const uint32_t kSizeOfDataTypeOEM[]{
|
0, // ANEURALNETWORKS_OEM
|
1, // ANEURALNETWORKS_TENSOR_OEM_BYTE
|
};
|
|
static_assert(COUNT(kSizeOfDataTypeOEM) == kNumberOfDataTypesOEM,
|
"kSizeOfDataTypeOEM is incorrect");
|
|
const bool kScalarDataTypeOEM[]{
|
true, // ANEURALNETWORKS_OEM
|
false, // ANEURALNETWORKS_TENSOR_OEM_BYTE
|
};
|
|
static_assert(COUNT(kScalarDataTypeOEM) == kNumberOfDataTypesOEM,
|
"kScalarDataTypeOEM is incorrect");
|
|
bool nonExtensionOperandTypeIsScalar(int type) {
|
CHECK(!isExtensionOperandType(type)) << "Extension operand types are not supported";
|
return tableLookup(kScalarDataType, kScalarDataTypeOEM, type);
|
}
|
|
uint32_t nonExtensionOperandSizeOfData(OperandType type, const std::vector<uint32_t>& dimensions) {
|
CHECK(!isExtensionOperandType(type)) << "Size of extension operand data is unknown";
|
int n = static_cast<int>(type);
|
|
uint32_t size = tableLookup(kSizeOfDataType, kSizeOfDataTypeOEM, n);
|
|
if (tableLookup(kScalarDataType, kScalarDataTypeOEM, n) == true) {
|
return size;
|
}
|
|
if (dimensions.empty()) {
|
return 0;
|
}
|
|
for (auto d : dimensions) {
|
size *= d;
|
}
|
return size;
|
}
|
|
bool tensorHasUnspecifiedDimensions(int type, const uint32_t* dim, uint32_t dimCount) {
|
if (!isExtensionOperandType(type)) {
|
CHECK(!nonExtensionOperandTypeIsScalar(type))
|
<< "A scalar type can never have unspecified dimensions";
|
}
|
return dimCount == 0 || std::find(dim, dim + dimCount, 0) != (dim + dimCount);
|
}
|
|
bool tensorHasUnspecifiedDimensions(const ANeuralNetworksOperandType* type) {
|
return tensorHasUnspecifiedDimensions(type->type, type->dimensions, type->dimensionCount);
|
}
|
|
bool tensorHasUnspecifiedDimensions(const Operand& operand) {
|
return tensorHasUnspecifiedDimensions(static_cast<int>(operand.type), operand.dimensions.data(),
|
operand.dimensions.size());
|
}
|
|
hidl_memory allocateSharedMemory(int64_t size) {
|
static const std::string type = "ashmem";
|
static sp<IAllocator> allocator = IAllocator::getService(type);
|
|
hidl_memory memory;
|
|
// TODO: should we align memory size to nearest page? doesn't seem necessary...
|
allocator->allocate(size, [&](bool success, const hidl_memory& mem) {
|
if (!success) {
|
LOG(ERROR) << "unable to allocate " << size << " bytes of " << type;
|
} else {
|
memory = mem;
|
}
|
});
|
|
return memory;
|
}
|
|
uint32_t alignBytesNeeded(uint32_t index, size_t length) {
|
uint32_t pattern;
|
if (length < 2) {
|
pattern = 0; // No alignment necessary
|
} else if (length < 4) {
|
pattern = 1; // Align on 2-byte boundary
|
} else {
|
pattern = 3; // Align on 4-byte boundary
|
}
|
uint32_t extra = (~(index - 1)) & pattern;
|
return extra;
|
}
|
|
void logModelToInfo(const V1_0::Model& model) {
|
LOG(INFO) << "V1_0::Model start";
|
LOG(INFO) << "operands" << toString(model.operands);
|
LOG(INFO) << "operations" << toString(model.operations);
|
LOG(INFO) << "inputIndexes" << toString(model.inputIndexes);
|
LOG(INFO) << "outputIndexes" << toString(model.outputIndexes);
|
LOG(INFO) << "operandValues size" << model.operandValues.size();
|
LOG(INFO) << "pools" << SHOW_IF_DEBUG(toString(model.pools));
|
}
|
|
void logModelToInfo(const V1_1::Model& model) {
|
LOG(INFO) << "V1_1::Model start";
|
LOG(INFO) << "operands" << toString(model.operands);
|
LOG(INFO) << "operations" << toString(model.operations);
|
LOG(INFO) << "inputIndexes" << toString(model.inputIndexes);
|
LOG(INFO) << "outputIndexes" << toString(model.outputIndexes);
|
LOG(INFO) << "operandValues size" << model.operandValues.size();
|
LOG(INFO) << "pools" << SHOW_IF_DEBUG(toString(model.pools));
|
}
|
|
bool validateOperandSymmPerChannelQuantParams(
|
const Operand& halOperand, const ANeuralNetworksSymmPerChannelQuantParams& channelQuant,
|
const char* tag) {
|
if (halOperand.type != OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
|
return false;
|
}
|
|
NN_RET_CHECK_LT(channelQuant.channelDim, halOperand.dimensions.size()) << tag;
|
NN_RET_CHECK(channelQuant.scales != nullptr) << tag;
|
NN_RET_CHECK_EQ(channelQuant.scaleCount, halOperand.dimensions[channelQuant.channelDim]) << tag;
|
NN_RET_CHECK_NE(halOperand.dimensions[channelQuant.channelDim], 0u)
|
<< tag << " channel dimension " << channelQuant.channelDim << " is underspecified";
|
for (uint32_t i = 0; i < halOperand.dimensions[channelQuant.channelDim]; i++) {
|
NN_RET_CHECK_GT(channelQuant.scales[i], 0.0f) << tag << " invalid scaleArray[" << i << "]";
|
}
|
return true;
|
}
|
|
static bool validateScalarDimensions(const ANeuralNetworksOperandType& type, const char* tag) {
|
NN_RET_CHECK_EQ(type.dimensionCount, 0u) << tag << " invalid dimensions for scalar type";
|
NN_RET_CHECK(type.dimensions == nullptr) << tag << " invalid dimensions for scalar type";
|
return true;
|
}
|
|
static bool validateQuant8AsymmParams(const ANeuralNetworksOperandType& type, const char* tag) {
|
NN_RET_CHECK(0 <= type.zeroPoint && type.zeroPoint <= 255)
|
<< tag << " invalid zeroPoint: " << type.zeroPoint;
|
NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale";
|
return true;
|
}
|
|
static bool validateQuant8SymmParams(const ANeuralNetworksOperandType& type, const char* tag) {
|
NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " invalid zeroPoint: " << type.zeroPoint;
|
NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale";
|
return true;
|
}
|
|
static bool validateQuant16AsymmParams(const ANeuralNetworksOperandType& type, const char* tag) {
|
NN_RET_CHECK(0 <= type.zeroPoint && type.zeroPoint <= 65535)
|
<< tag << " invalid zeroPoint: " << type.zeroPoint;
|
NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale";
|
return true;
|
}
|
|
static bool validateQuantSymmParams(const ANeuralNetworksOperandType& type, const char* tag) {
|
NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " zeroPoint is not zero";
|
NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale";
|
return true;
|
}
|
|
static bool validateNoQuantParams(const ANeuralNetworksOperandType& type, const char* tag) {
|
NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " zeroPoint is not zero";
|
NN_RET_CHECK_EQ(type.scale, 0.f) << tag << " scale is not zero";
|
return true;
|
}
|
|
static bool validateTensorDimensions(const ANeuralNetworksOperandType& type, const char* tag,
|
bool allowPartial) {
|
if (allowPartial) {
|
return true;
|
}
|
NN_RET_CHECK_GT(type.dimensionCount, 0u) << tag << " invalid operand dimensions";
|
for (uint32_t i = 0; i < type.dimensionCount; i++) {
|
NN_RET_CHECK_NE(type.dimensions[i], 0u) << tag << " invalid operand dimensions";
|
}
|
return true;
|
}
|
|
static bool validateOperandTypeHelper(
|
const ANeuralNetworksOperandType& type,
|
const Extension::OperandTypeInformation* const extensionOperandTypeInfo, const char* tag,
|
bool allowPartial) {
|
NN_RET_CHECK_EQ(type.dimensionCount == 0, type.dimensions == nullptr);
|
if (isExtensionOperandType(type.type)) {
|
NN_RET_CHECK(extensionOperandTypeInfo != nullptr);
|
if (extensionOperandTypeInfo->isTensor) {
|
NN_RET_CHECK(validateTensorDimensions(type, tag, allowPartial));
|
} else {
|
NN_RET_CHECK(validateScalarDimensions(type, tag));
|
}
|
return validateNoQuantParams(type, tag);
|
}
|
|
NN_RET_CHECK(extensionOperandTypeInfo == nullptr);
|
NN_RET_CHECK(validCode(kNumberOfDataTypes, kNumberOfDataTypesOEM, type.type))
|
<< tag << " invalid OperandType: " << type.type;
|
|
bool isScalar = tableLookup(kScalarDataType, kScalarDataTypeOEM, type.type);
|
if (isScalar) {
|
NN_RET_CHECK(validateScalarDimensions(type, tag));
|
if (type.type != ANEURALNETWORKS_OEM_SCALAR) { // Historically, we have allowed OEM types
|
// to use quantization parameters.
|
NN_RET_CHECK(validateNoQuantParams(type, tag));
|
}
|
} else {
|
NN_RET_CHECK(validateTensorDimensions(type, tag, allowPartial));
|
if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
|
NN_RET_CHECK(validateQuant8AsymmParams(type, tag));
|
} else if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_SYMM) {
|
NN_RET_CHECK(validateQuant8SymmParams(type, tag));
|
} else if (type.type == ANEURALNETWORKS_TENSOR_QUANT16_ASYMM) {
|
NN_RET_CHECK(validateQuant16AsymmParams(type, tag));
|
} else if (type.type == ANEURALNETWORKS_TENSOR_QUANT16_SYMM) {
|
NN_RET_CHECK(validateQuantSymmParams(type, tag));
|
} else if (type.type == ANEURALNETWORKS_TENSOR_INT32) {
|
// TODO(b/119869082): TENSOR_INT32 should not use quantization parameters.
|
} else if (type.type == ANEURALNETWORKS_TENSOR_OEM_BYTE) {
|
// Historically, we have allowed OEM types to use quantization parameters.
|
} else {
|
NN_RET_CHECK(validateNoQuantParams(type, tag));
|
}
|
}
|
|
return true;
|
}
|
|
int validateOperandType(const ANeuralNetworksOperandType& type,
|
const Extension::OperandTypeInformation* const extensionOperandTypeInfo,
|
const char* tag, bool allowPartial) {
|
return validateOperandTypeHelper(type, extensionOperandTypeInfo, tag, allowPartial)
|
? ANEURALNETWORKS_NO_ERROR
|
: ANEURALNETWORKS_BAD_DATA;
|
}
|
|
int validateOperandList(uint32_t count, const uint32_t* list, uint32_t operandCount,
|
const char* tag) {
|
for (uint32_t i = 0; i < count; i++) {
|
if (list[i] >= operandCount) {
|
LOG(ERROR) << tag << " invalid operand index at " << i << " = " << list[i]
|
<< ", operandCount " << operandCount;
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
}
|
return ANEURALNETWORKS_NO_ERROR;
|
}
|
|
int validateOperationOperandTypes(const std::vector<Operand>& operands,
|
uint32_t inOperandCount, const uint32_t* inOperandIndexes,
|
const std::vector<OperandType>& inExpectedTypes,
|
uint32_t outOperandCount, const uint32_t* outOperandIndexes,
|
const std::vector<OperandType>& outExpectedInTypes) {
|
if (inOperandCount != static_cast<uint32_t>(inExpectedTypes.size()) ||
|
outOperandCount != static_cast<uint32_t>(outExpectedInTypes.size())) {
|
LOG(ERROR) << "Wrong operand count: expected " << inExpectedTypes.size() << " inputs and "
|
<< outExpectedInTypes.size() << " outputs,"
|
<< "got " << inOperandCount << " inputs and " << outOperandCount << " outputs";
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
for (uint32_t i = 0; i < inOperandCount; i++) {
|
if (operands[inOperandIndexes[i]].type != inExpectedTypes[i]) {
|
LOG(ERROR) << "Invalid input tensor type "
|
<< toString(operands[inOperandIndexes[i]].type)
|
<< " for input " << i << ", expected " << toString(inExpectedTypes[i]);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
}
|
for (uint32_t i = 0; i < outOperandCount; i++) {
|
if (operands[outOperandIndexes[i]].type != outExpectedInTypes[i]) {
|
LOG(ERROR) << "Invalid output tensor type "
|
<< toString(operands[outOperandIndexes[i]].type)
|
<< " for input " << i << ", expected " << toString(outExpectedInTypes[i]);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
}
|
|
return ANEURALNETWORKS_NO_ERROR;
|
}
|
|
static int validateHalVersion(ANeuralNetworksOperationType opType, HalVersion halVersion,
|
HalVersion minSupportedHalVersion) {
|
if (halVersion < minSupportedHalVersion) {
|
LOG(ERROR) << "The given inputs and outputs for operation " << getOperationName(opType)
|
<< " are only supported in " << toString(minSupportedHalVersion)
|
<< " and later (validating using " << toString(halVersion) << ")";
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return ANEURALNETWORKS_NO_ERROR;
|
}
|
|
int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount,
|
const uint32_t* inputIndexes, uint32_t outputCount,
|
const uint32_t* outputIndexes, const std::vector<Operand>& operands,
|
HalVersion halVersion) {
|
NN_RETURN_IF_ERROR(validateOperandList(inputCount, inputIndexes,
|
static_cast<uint32_t>(operands.size()),
|
"ANeuralNetworksModel_addOperation inputs"));
|
NN_RETURN_IF_ERROR(validateOperandList(outputCount, outputIndexes,
|
static_cast<uint32_t>(operands.size()),
|
"ANeuralNetworksModel_addOperation outputs"));
|
|
if (isExtensionOperationType(opType)) {
|
if (halVersion < HalVersion::V1_2) {
|
LOG(ERROR)
|
<< "Extension operations are supported since HAL version 1.2, validating using "
|
<< toString(halVersion);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
// There is no other validation we can do for an extension operation.
|
return ANEURALNETWORKS_NO_ERROR;
|
}
|
|
auto logInvalidInOutNumber = [opType, inputCount, outputCount](int expIn, int expOut) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected " << expIn
|
<< ") or output operands (" << outputCount << ", expected " << expOut
|
<< ") for operation " << getOperationName(opType);
|
};
|
|
switch (opType) {
|
case ANEURALNETWORKS_OEM_OPERATION: {
|
return ANEURALNETWORKS_NO_ERROR;
|
}
|
case ANEURALNETWORKS_FLOOR: {
|
if (inputCount != 1 || outputCount != 1) {
|
logInvalidInOutNumber(1, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_DEPTHWISE_CONV_2D: {
|
if ((inputCount != 14 && inputCount != 12 && inputCount != 11 && inputCount != 9 &&
|
inputCount != 8) ||
|
outputCount != 1) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount
|
<< ", expected 14, 12, 11, 9 or 8) or output operands (" << outputCount
|
<< ", expected 1) for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
auto filterType = operands[inputIndexes[1]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_FLOAT32, OperandType::INT32,
|
OperandType::INT32, OperandType::INT32,
|
OperandType::INT32, OperandType::INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
|
OperandType::TENSOR_FLOAT16, OperandType::INT32,
|
OperandType::INT32, OperandType::INT32,
|
OperandType::INT32, OperandType::INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
if (filterType != OperandType::TENSOR_QUANT8_ASYMM &&
|
filterType != OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
|
LOG(ERROR) << "Unsupported filter tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
|
inExpectedTypes = {
|
OperandType::TENSOR_QUANT8_ASYMM,
|
filterType,
|
OperandType::TENSOR_INT32,
|
OperandType::INT32,
|
OperandType::INT32,
|
OperandType::INT32,
|
OperandType::INT32,
|
OperandType::INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
|
// NeuralNetworks.h specifies that ANEURALNETWORKS_DEPTHWISE_CONV_2D's output must
|
// meet "outputScale > inputScale * filterScale" for the operand type
|
// ANEURALNETWORKS_TENSOR_QUANT8_ASYMM before API level 29. For other
|
// operand types (e.g., ANEURALNETWORKS_TENSOR_FLOAT32), this constraint
|
// does not apply, so by default the constraint is met.
|
bool meetsQuantizedScaleConstraintBeforeV1_2 = true;
|
if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
const float inputScale = operands[inputIndexes[0]].scale;
|
const float filterScale = operands[inputIndexes[1]].scale;
|
const float outputScale = operands[outputIndexes[0]].scale;
|
meetsQuantizedScaleConstraintBeforeV1_2 = (outputScale > inputScale * filterScale);
|
}
|
|
bool withExplicitPadding = false;
|
bool withLayout = false;
|
bool withDilation = false;
|
if (inputCount >= 9) {
|
if (operands[inputIndexes[8]].type == OperandType::INT32 && inputCount >= 11) {
|
std::vector<OperandType> explicitScalarTypes(3, OperandType::INT32);
|
inExpectedTypes.insert(inExpectedTypes.end(), explicitScalarTypes.begin(),
|
explicitScalarTypes.end());
|
withExplicitPadding = true;
|
}
|
int inputOffset = withExplicitPadding ? 3 : 0;
|
if (inputCount >= 9 + inputOffset) {
|
inExpectedTypes.push_back(OperandType::BOOL);
|
withLayout = true;
|
}
|
if (inputCount == 10 + inputOffset) {
|
LOG(ERROR) << "Provided only one dilation factor value, two values are requred "
|
"for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
if (inputCount == 11 + inputOffset) {
|
inExpectedTypes.push_back(OperandType::INT32);
|
inExpectedTypes.push_back(OperandType::INT32);
|
withDilation = true;
|
}
|
}
|
|
if (inputType == OperandType::TENSOR_FLOAT16 ||
|
filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL || withLayout ||
|
withDilation || !meetsQuantizedScaleConstraintBeforeV1_2) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
} else {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION: {
|
if ((inputCount != 6 && inputCount != 5) || outputCount != 1) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount
|
<< ", expected 6 or 5) or output operands (" << outputCount
|
<< ", expected 1) for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT32, OperandType::INT32, OperandType::FLOAT32,
|
OperandType::FLOAT32, OperandType::FLOAT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT16, OperandType::INT32, OperandType::FLOAT16,
|
OperandType::FLOAT16, OperandType::FLOAT16,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
if (inputCount == 6) {
|
inExpectedTypes.push_back(OperandType::INT32);
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
} else if (operands[inputIndexes[0]].dimensions.size() != 4) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_RESHAPE: {
|
if (inputCount != 2 || outputCount != 1) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_INT32};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_DEPTH_TO_SPACE: {
|
if ((inputCount != 3 && inputCount != 2) || outputCount != 1) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount
|
<< ", expected 3 or 2) or output operands (" << outputCount
|
<< ", expected 1) for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT32,
|
OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
if (inputCount == 3) {
|
inExpectedTypes.push_back(OperandType::BOOL);
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
} else {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_SPACE_TO_DEPTH: {
|
if ((inputCount != 3 && inputCount != 2) || outputCount != 1) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount
|
<< ", expected 3 or 2) or output operands (" << outputCount
|
<< ", expected 1) for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT32,
|
OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
if (inputCount == 3) {
|
inExpectedTypes.push_back(OperandType::BOOL);
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
} else {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_EMBEDDING_LOOKUP: {
|
if (inputCount != 2 || outputCount != 1) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[1]].type;
|
if (inputType != OperandType::TENSOR_FLOAT32 &&
|
inputType != OperandType::TENSOR_INT32 &&
|
inputType != OperandType::TENSOR_QUANT8_ASYMM) {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
std::vector<OperandType> inExpectedTypes = {OperandType::TENSOR_INT32,
|
inputType};
|
std::vector<OperandType> outExpectedTypes = {inputType};
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_HASHTABLE_LOOKUP: {
|
if (inputCount != 3 || outputCount != 2) {
|
logInvalidInOutNumber(3, 2);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[2]].type;
|
if (inputType != OperandType::TENSOR_FLOAT32 &&
|
inputType != OperandType::TENSOR_INT32 &&
|
inputType != OperandType::TENSOR_QUANT8_ASYMM) {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
std::vector<OperandType> inExpectedTypes = {OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32,
|
inputType};
|
std::vector<OperandType> outExpectedTypes = {inputType,
|
OperandType::TENSOR_QUANT8_ASYMM};
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_LSH_PROJECTION: {
|
if (inputCount != 4 || outputCount != 1) {
|
logInvalidInOutNumber(4, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[1]].type;
|
if (inputType != OperandType::TENSOR_FLOAT16 &&
|
inputType != OperandType::TENSOR_FLOAT32 &&
|
inputType != OperandType::TENSOR_INT32 &&
|
inputType != OperandType::TENSOR_QUANT8_ASYMM) {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto hashType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
if (hashType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT16,
|
inputType,
|
OperandType::TENSOR_FLOAT16,
|
OperandType::INT32,
|
};
|
} else if (hashType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT32,
|
inputType,
|
OperandType::TENSOR_FLOAT32,
|
OperandType::INT32,
|
};
|
} else {
|
LOG(ERROR) << "Unsupported hash tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
std::vector<OperandType> outExpectedTypes = {OperandType::TENSOR_INT32};
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM: {
|
std::vector<OperandType> inExpectedTypes;
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> outExpectedTypes{inputType, inputType};
|
std::vector<OperandType> outExpectedTypesMerged{inputType};
|
if (inputType != OperandType::TENSOR_FLOAT32 &&
|
inputType != OperandType::TENSOR_FLOAT16) {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
|
inExpectedTypes = {};
|
for (int i = 0; i < 48; ++i) {
|
inExpectedTypes.push_back(inputType);
|
}
|
inExpectedTypes.push_back(OperandType::INT32);
|
inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32
|
? OperandType::FLOAT32
|
: OperandType::FLOAT16);
|
inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32
|
? OperandType::FLOAT32
|
: OperandType::FLOAT16);
|
inExpectedTypes.push_back(OperandType::BOOL);
|
inExpectedTypes.push_back(OperandType::BOOL);
|
for (int i = 0; i < 8; ++i) {
|
inExpectedTypes.push_back(inputType);
|
}
|
|
if (inputCount != 61 || (outputCount != 1 && outputCount != 2)) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount
|
<< ", expected 61) or output operands (" << outputCount
|
<< ", expected 1 or 2) for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto status = validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
if (status != ANEURALNETWORKS_NO_ERROR) {
|
status = validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypesMerged);
|
}
|
return status;
|
}
|
case ANEURALNETWORKS_LSTM: {
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
auto inputType = operands[inputIndexes[0]].type;
|
if (inputType != OperandType::TENSOR_FLOAT32 &&
|
inputType != OperandType::TENSOR_FLOAT16) {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
|
inExpectedTypes = {inputType, inputType, inputType, inputType, inputType,
|
inputType, inputType, inputType, inputType, inputType,
|
inputType, inputType, inputType, inputType, inputType,
|
inputType, inputType, inputType, inputType, inputType,
|
OperandType::INT32};
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
inExpectedTypes.push_back(OperandType::FLOAT32);
|
inExpectedTypes.push_back(OperandType::FLOAT32);
|
} else {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes.push_back(OperandType::FLOAT16);
|
inExpectedTypes.push_back(OperandType::FLOAT16);
|
}
|
|
outExpectedTypes = {inputType, inputType, inputType, inputType};
|
if (inputCount == 23 && outputCount == 4) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
} else if (inputCount == 27 && outputCount == 4) {
|
for (int i = 0; i < 4; ++i) {
|
inExpectedTypes.push_back(inputType);
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
} else {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount
|
<< ", expected 23 or 27) or output operands (" << outputCount
|
<< ", expected 4) for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_QUANTIZED_16BIT_LSTM: {
|
if (inputCount != 15 || outputCount != 2) {
|
logInvalidInOutNumber(15, 2);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
std::vector<OperandType> inExpectedTypes = {
|
OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32, OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32, OperandType::TENSOR_QUANT16_SYMM,
|
OperandType::TENSOR_QUANT8_ASYMM};
|
std::vector<OperandType> outExpectedTypes = {OperandType::TENSOR_QUANT16_SYMM,
|
OperandType::TENSOR_QUANT8_ASYMM};
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_RANDOM_MULTINOMIAL: {
|
if (inputCount != 3 || outputCount != 1) {
|
logInvalidInOutNumber(3, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
OperandType inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32 ||
|
inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
inputType,
|
OperandType::INT32,
|
OperandType::TENSOR_INT32,
|
};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
std::vector<OperandType> outExpectedTypes = {OperandType::TENSOR_INT32};
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_RNN: {
|
if (inputCount != 6 || outputCount != 2) {
|
logInvalidInOutNumber(6, 2);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
OperandType inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_FLOAT32, OperandType::INT32,
|
};
|
outExpectedTypes = {
|
OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_FLOAT32,
|
};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
|
OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
|
OperandType::TENSOR_FLOAT16, OperandType::INT32,
|
};
|
outExpectedTypes = {
|
OperandType::TENSOR_FLOAT16,
|
OperandType::TENSOR_FLOAT16,
|
};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_SVDF: {
|
if (inputCount != 7 || outputCount != 2) {
|
logInvalidInOutNumber(7, 2);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
OperandType inputType = operands[inputIndexes[0]].type;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
|
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
std::vector<OperandType> inExpectedTypes = {
|
inputType, inputType, inputType, inputType,
|
inputType, OperandType::INT32, OperandType::INT32,
|
};
|
std::vector<OperandType> outExpectedTypes = {inputType, inputType};
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_BATCH_TO_SPACE_ND: {
|
if ((inputCount != 3 && inputCount != 2) || outputCount != 1) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount
|
<< ", expected 3 or 2) or output operands (" << outputCount
|
<< ", expected 1) for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT16,
|
OperandType::TENSOR_INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
inExpectedTypes = {
|
OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
if (inputCount == 3) {
|
inExpectedTypes.push_back(OperandType::BOOL);
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
} else {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_SPACE_TO_BATCH_ND: {
|
if ((inputCount != 4 && inputCount != 3) || outputCount != 1) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount
|
<< ", expected 4 or 3) or output operands (" << outputCount
|
<< ", expected 1) for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT16,
|
OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
if (operands[inputIndexes[0]].zeroPoint != 0) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
}
|
inExpectedTypes = {
|
OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
if (inputCount == 4) {
|
inExpectedTypes.push_back(OperandType::BOOL);
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
} else {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_PAD: {
|
if (inputCount != 2 || outputCount != 1) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT16,
|
OperandType::TENSOR_INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
if (operands[inputIndexes[0]].zeroPoint == 0) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
} else {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
}
|
inExpectedTypes = {
|
OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_PAD_V2: {
|
if (inputCount != 3 || outputCount != 1) {
|
logInvalidInOutNumber(3, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_INT32,
|
OperandType::FLOAT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT16,
|
OperandType::TENSOR_INT32,
|
OperandType::FLOAT16,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_INT32,
|
OperandType::INT32,
|
}; // TODO(b/116699425): Make it UINT8.
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_CAST: {
|
if (inputCount != 1 || outputCount != 1) {
|
logInvalidInOutNumber(1, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
auto outputType = operands[outputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT16 ||
|
inputType == OperandType::TENSOR_FLOAT32 ||
|
inputType == OperandType::TENSOR_INT32 ||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
inExpectedTypes = {inputType};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
std::vector<OperandType> outExpectedTypes;
|
if (outputType == OperandType::TENSOR_FLOAT16 ||
|
outputType == OperandType::TENSOR_FLOAT32 ||
|
outputType == OperandType::TENSOR_INT32 ||
|
outputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
outExpectedTypes = {outputType};
|
} else {
|
LOG(ERROR) << "Unsupported output tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_SQUEEZE: {
|
if (inputCount != 2 || outputCount != 1) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_INT32};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_STRIDED_SLICE: {
|
if (inputCount != 7 || outputCount != 1) {
|
logInvalidInOutNumber(7, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT32, OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32, OperandType::TENSOR_INT32,
|
OperandType::INT32, OperandType::INT32,
|
OperandType::INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {
|
OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32, OperandType::TENSOR_INT32,
|
OperandType::INT32, OperandType::INT32,
|
OperandType::INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
inExpectedTypes = {
|
OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32,
|
OperandType::TENSOR_INT32,
|
OperandType::INT32,
|
OperandType::INT32,
|
OperandType::INT32,
|
};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_MEAN: {
|
if (inputCount != 3 || outputCount != 1) {
|
logInvalidInOutNumber(3, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_INT32,
|
OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32,
|
OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
|
inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
|
OperandType::TENSOR_INT32,
|
OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return validateOperationOperandTypes(operands,
|
inputCount, inputIndexes,
|
inExpectedTypes,
|
outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_ARGMAX:
|
case ANEURALNETWORKS_ARGMIN: {
|
if (inputCount != 2 || outputCount != 1) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT16 ||
|
inputType == OperandType::TENSOR_FLOAT32 ||
|
inputType == OperandType::TENSOR_INT32 ||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
inExpectedTypes = {inputType, OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_INT32};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_EXPAND_DIMS: {
|
if (inputCount != 2 || outputCount != 1) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT16 ||
|
inputType == OperandType::TENSOR_FLOAT32 ||
|
inputType == OperandType::TENSOR_INT32 ||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
inExpectedTypes = {inputType, OperandType::INT32};
|
outExpectedTypes = {inputType};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_SPLIT: {
|
if (inputCount != 3) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 3)"
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
if (inputType != OperandType::TENSOR_FLOAT16 &&
|
inputType != OperandType::TENSOR_FLOAT32 &&
|
inputType != OperandType::TENSOR_INT32 &&
|
inputType != OperandType::TENSOR_QUANT8_ASYMM) {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
std::vector<OperandType> inExpectedTypes = {inputType, OperandType::INT32,
|
OperandType::INT32};
|
std::vector<OperandType> outExpectedTypes(outputCount, inputType);
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_MAXIMUM:
|
case ANEURALNETWORKS_MINIMUM: {
|
if (inputCount != 2 || outputCount != 1) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
OperandType inputType = operands[inputIndexes[0]].type;
|
if (inputType == OperandType::TENSOR_FLOAT16 ||
|
inputType == OperandType::TENSOR_FLOAT32 ||
|
inputType == OperandType::TENSOR_INT32 ||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
inExpectedTypes = {inputType, inputType};
|
outExpectedTypes = {inputType};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_GROUPED_CONV_2D: {
|
if ((inputCount != 12 && inputCount != 9) || outputCount != 1) {
|
LOG(ERROR) << "Invalid number of input operands (" << inputCount
|
<< ", expected 12 or 9) or output operands (" << outputCount
|
<< ", expected 1) for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
auto filterType = operands[inputIndexes[1]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
|
OperandType::TENSOR_FLOAT32, OperandType::INT32,
|
OperandType::INT32, OperandType::INT32,
|
OperandType::INT32, OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
|
OperandType::TENSOR_FLOAT16, OperandType::INT32,
|
OperandType::INT32, OperandType::INT32,
|
OperandType::INT32, OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
if (filterType != OperandType::TENSOR_QUANT8_ASYMM &&
|
filterType != OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
|
LOG(ERROR) << "Unsupported filter tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
|
if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL &&
|
operands[inputIndexes[1]].extraParams.channelQuant().channelDim != 0) {
|
LOG(ERROR) << "Unsupported filter tensor channel dimension for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
|
inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM,
|
filterType,
|
OperandType::TENSOR_INT32,
|
OperandType::INT32,
|
OperandType::INT32,
|
OperandType::INT32,
|
OperandType::INT32,
|
OperandType::INT32};
|
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
|
if (inputCount == 12) {
|
std::vector<OperandType> explicitScalarTypes(3, OperandType::INT32);
|
inExpectedTypes.insert(inExpectedTypes.end(), explicitScalarTypes.begin(),
|
explicitScalarTypes.end());
|
}
|
inExpectedTypes.push_back(OperandType::BOOL);
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_TILE: {
|
if (inputCount != 2 || outputCount != 1) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT16 ||
|
inputType == OperandType::TENSOR_FLOAT32 ||
|
inputType == OperandType::TENSOR_INT32 ||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
inExpectedTypes = {inputType, OperandType::TENSOR_INT32};
|
outExpectedTypes = {inputType};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_POW: {
|
if (inputCount != 2 || outputCount != 1) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
auto inputType = operands[inputIndexes[0]].type;
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
if (inputType == OperandType::TENSOR_FLOAT16 ||
|
inputType == OperandType::TENSOR_FLOAT32) {
|
inExpectedTypes = {inputType, inputType};
|
outExpectedTypes = {inputType};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
case ANEURALNETWORKS_TOPK_V2: {
|
if (inputCount != 2 || outputCount != 2) {
|
logInvalidInOutNumber(2, 1);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
std::vector<OperandType> inExpectedTypes;
|
std::vector<OperandType> outExpectedTypes;
|
OperandType inputType = operands[inputIndexes[0]].type;
|
if (inputType == OperandType::TENSOR_FLOAT16 ||
|
inputType == OperandType::TENSOR_FLOAT32 ||
|
inputType == OperandType::TENSOR_INT32 ||
|
inputType == OperandType::TENSOR_QUANT8_ASYMM) {
|
inExpectedTypes = {inputType, OperandType::INT32};
|
outExpectedTypes = {inputType, OperandType::TENSOR_INT32};
|
} else {
|
LOG(ERROR) << "Unsupported input tensor type for operation "
|
<< getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
|
return validateOperationOperandTypes(operands, inputCount, inputIndexes,
|
inExpectedTypes, outputCount, outputIndexes,
|
outExpectedTypes);
|
}
|
default: {
|
const OperationRegistration* operationRegistration =
|
BuiltinOperationResolver::get()->findOperation(
|
static_cast<OperationType>(opType));
|
if (operationRegistration == nullptr) {
|
if (0 <= opType && opType < kNumberOfOperationTypes) {
|
LOG(ERROR) << getOperationName(opType) << " not registered";
|
} else {
|
LOG(ERROR) << "Operation type " << opType << " out of the range [0, "
|
<< kNumberOfOperationTypes << ")";
|
}
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
}
|
if (operationRegistration->validate == nullptr) {
|
LOG(ERROR) << "Incomplete operation registration: " << getOperationName(opType);
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
}
|
OperationValidationContext context(inputCount, inputIndexes, outputCount, outputIndexes,
|
operands.data(), halVersion);
|
if (!operationRegistration->validate(&context)) {
|
LOG(ERROR) << "Validation failed for operation " << getOperationName(opType);
|
return ANEURALNETWORKS_BAD_DATA;
|
}
|
return ANEURALNETWORKS_NO_ERROR;
|
}
|
}
|
}
|
|
ErrorStatus convertResultCodeToErrorStatus(int resultCode) {
|
switch (resultCode) {
|
case ANEURALNETWORKS_NO_ERROR:
|
return ErrorStatus::NONE;
|
|
case ANEURALNETWORKS_BAD_DATA:
|
case ANEURALNETWORKS_UNEXPECTED_NULL:
|
return ErrorStatus::INVALID_ARGUMENT;
|
|
case ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE:
|
return ErrorStatus::OUTPUT_INSUFFICIENT_SIZE;
|
|
case ANEURALNETWORKS_UNAVAILABLE_DEVICE:
|
return ErrorStatus::DEVICE_UNAVAILABLE;
|
|
default:
|
LOG(ERROR) << "Unknown result code " << resultCode
|
<< " mapped to ErrorStatus::GENERAL_FAILURE";
|
return ErrorStatus::GENERAL_FAILURE;
|
case ANEURALNETWORKS_BAD_STATE:
|
case ANEURALNETWORKS_INCOMPLETE:
|
case ANEURALNETWORKS_OP_FAILED:
|
case ANEURALNETWORKS_OUT_OF_MEMORY:
|
case ANEURALNETWORKS_UNMAPPABLE:
|
return ErrorStatus::GENERAL_FAILURE;
|
}
|
}
|
|
int convertErrorStatusToResultCode(ErrorStatus status) {
|
switch (status) {
|
case ErrorStatus::NONE:
|
return ANEURALNETWORKS_NO_ERROR;
|
|
case ErrorStatus::INVALID_ARGUMENT:
|
return ANEURALNETWORKS_BAD_DATA;
|
|
case ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
|
return ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE;
|
|
case ErrorStatus::DEVICE_UNAVAILABLE:
|
return ANEURALNETWORKS_UNAVAILABLE_DEVICE;
|
|
default:
|
LOG(ERROR) << "Unknown ErrorStatus " << toString(status)
|
<< " mapped to ANEURALNETWORKS_OP_FAILED";
|
return ANEURALNETWORKS_OP_FAILED;
|
case ErrorStatus::GENERAL_FAILURE:
|
return ANEURALNETWORKS_OP_FAILED;
|
}
|
}
|
|
// V1_2::Capabilities::operandPerformance utilities.
|
// The field V1_2::Capabilities::operandPerformance is a vector sorted by the
|
// field V1_2::Capabilities::OperandPerformance::type.
|
|
hidl_vec<Capabilities::OperandPerformance> nonExtensionOperandPerformance(PerformanceInfo perf) {
|
using OpPerf = Capabilities::OperandPerformance;
|
|
// Note: range presents enumerators in declaration order, not in numerical order.
|
static constexpr ::android::hardware::hidl_enum_range<OperandType> kOperandTypeRange;
|
|
hidl_vec<OpPerf> ret(kOperandTypeRange.end() - kOperandTypeRange.begin());
|
|
std::transform(kOperandTypeRange.begin(), kOperandTypeRange.end(), ret.begin(),
|
[perf](OperandType type) {
|
return Capabilities::OperandPerformance{type, perf};
|
});
|
std::sort(ret.begin(), ret.end(),
|
[](const OpPerf& a, const OpPerf& b) { return a.type < b.type; });
|
|
return ret;
|
}
|
|
void update(hidl_vec<Capabilities::OperandPerformance>* operandPerformance, OperandType type,
|
PerformanceInfo perf) {
|
CHECK(operandPerformance != nullptr);
|
const auto it = std::lower_bound(operandPerformance->begin(), operandPerformance->end(), type,
|
[](const Capabilities::OperandPerformance& perf,
|
OperandType type) { return perf.type < type; });
|
CHECK(it != operandPerformance->end())
|
<< toString(type) << " not in " << toString(*operandPerformance);
|
it->info = perf;
|
}
|
|
PerformanceInfo lookup(const hidl_vec<Capabilities::OperandPerformance>& operandPerformance,
|
OperandType type) {
|
const auto it = std::lower_bound(operandPerformance.begin(), operandPerformance.end(), type,
|
[](const Capabilities::OperandPerformance& perf,
|
OperandType type) { return perf.type < type; });
|
if (it == operandPerformance.end()) {
|
LOG(WARNING) << "No PerformanceInfo for " << toString(type);
|
return {.execTime = FLT_MAX, .powerUsage = FLT_MAX};
|
} else {
|
return it->info;
|
}
|
}
|
|
// Versioning
|
|
// In Android P, most data types are treated as having the same performance as TENSOR_QUANT8_ASYMM.
|
// This array must be in sorted order.
|
static const OperandType kQuantized8PerformanceConsistentWithP[] = {
|
OperandType::INT32, OperandType::UINT32, OperandType::TENSOR_INT32, OperandType::OEM,
|
OperandType::TENSOR_OEM_BYTE};
|
|
static bool isQuantized8PerformanceConsistentWithP(const V1_2::Capabilities& capabilities) {
|
const PerformanceInfo quantized8Performance =
|
lookup(capabilities.operandPerformance, OperandType::TENSOR_QUANT8_ASYMM);
|
return std::all_of(std::begin(kQuantized8PerformanceConsistentWithP),
|
std::end(kQuantized8PerformanceConsistentWithP),
|
[quantized8Performance, &capabilities](OperandType type) {
|
return quantized8Performance ==
|
lookup(capabilities.operandPerformance, type);
|
});
|
}
|
|
static hidl_vec<V1_2::Capabilities::OperandPerformance> makeQuantized8PerformanceConsistentWithP(
|
PerformanceInfo quantized8Performance) {
|
hidl_vec<V1_2::Capabilities::OperandPerformance> ret(
|
sizeof(kQuantized8PerformanceConsistentWithP) /
|
sizeof(kQuantized8PerformanceConsistentWithP[0]));
|
std::transform(
|
std::begin(kQuantized8PerformanceConsistentWithP),
|
std::end(kQuantized8PerformanceConsistentWithP), ret.begin(),
|
[quantized8Performance](OperandType type) -> V1_2::Capabilities::OperandPerformance {
|
return {type, quantized8Performance};
|
});
|
return ret;
|
}
|
|
bool compliantWithV1_0(const V1_0::Capabilities&) {
|
return true;
|
}
|
|
bool compliantWithV1_0(const V1_1::Capabilities& capabilities) {
|
return capabilities.relaxedFloat32toFloat16Performance == capabilities.float32Performance;
|
}
|
|
bool compliantWithV1_0(const V1_2::Capabilities& capabilities) {
|
const PerformanceInfo perfTensorFloat32 =
|
lookup(capabilities.operandPerformance, OperandType::TENSOR_FLOAT32);
|
const PerformanceInfo perfFloat32 =
|
lookup(capabilities.operandPerformance, OperandType::FLOAT32);
|
if (perfTensorFloat32 != perfFloat32 ||
|
perfTensorFloat32 != capabilities.relaxedFloat32toFloat16PerformanceTensor ||
|
perfFloat32 != capabilities.relaxedFloat32toFloat16PerformanceScalar) {
|
return false;
|
}
|
|
return isQuantized8PerformanceConsistentWithP(capabilities);
|
}
|
|
bool compliantWithV1_1(const V1_0::Capabilities&) {
|
return true;
|
}
|
|
bool compliantWithV1_1(const V1_1::Capabilities&) {
|
return true;
|
}
|
|
bool compliantWithV1_1(const V1_2::Capabilities& capabilities) {
|
if ((capabilities.relaxedFloat32toFloat16PerformanceTensor !=
|
capabilities.relaxedFloat32toFloat16PerformanceScalar) ||
|
(lookup(capabilities.operandPerformance, OperandType::TENSOR_FLOAT32) !=
|
lookup(capabilities.operandPerformance, OperandType::FLOAT32))) {
|
return false;
|
}
|
|
return isQuantized8PerformanceConsistentWithP(capabilities);
|
}
|
|
bool compliantWithV1_2(const V1_0::Capabilities&) {
|
return true;
|
}
|
|
bool compliantWithV1_2(const V1_1::Capabilities&) {
|
return true;
|
}
|
|
bool compliantWithV1_2(const V1_0::Model&) {
|
return true;
|
}
|
|
bool compliantWithV1_0(const V1_1::Model& model) {
|
// In addition to new enumeration values being introduced in V1_1::Model, a
|
// new flag was introduced to indicate whether or not float32 data can be
|
// calculated using float16 units. This 'relaxComputationFloat32toFloat16'
|
// flag is not relevant in whether a V1_1::Model is compliant with a
|
// V1_0::Model because all 1.0 drivers require strict calculation by default
|
// in the P NN runtime. Even if fp16 calculations are allowed, they can
|
// still be computed by a strict fp32 driver.
|
return std::all_of(
|
model.operations.begin(), model.operations.end(), [&model](const V1_1::Operation& op) {
|
int error = validateOperation(static_cast<int32_t>(op.type), op.inputs.size(),
|
op.inputs.size() > 0 ? op.inputs.data() : nullptr,
|
op.outputs.size(),
|
op.outputs.size() > 0 ? op.outputs.data() : nullptr,
|
convertToV1_2(model.operands), HalVersion::V1_0);
|
return error == ANEURALNETWORKS_NO_ERROR;
|
});
|
}
|
|
bool compliantWithV1_1(const V1_0::Model&) {
|
return true;
|
}
|
|
bool compliantWithV1_1(const V1_1::Model&) {
|
return true;
|
}
|
|
static V1_0::OperationType uncheckedConvertToV1_0(V1_1::OperationType type) {
|
return static_cast<V1_0::OperationType>(type);
|
}
|
|
static V1_1::OperationType convertToV1_1(V1_0::OperationType type) {
|
return static_cast<V1_1::OperationType>(type);
|
}
|
|
V1_0::Capabilities convertToV1_0(const V1_0::Capabilities& capabilities) {
|
return capabilities;
|
}
|
|
V1_0::Capabilities convertToV1_0(const V1_1::Capabilities& capabilities) {
|
if (!compliantWithV1_0(capabilities)) {
|
LOG(ERROR) << "Upcasting non-compliant capabilities " << toString(capabilities)
|
<< " from V1_1::Capabilities to V1_0::Capabilities";
|
}
|
return { .float32Performance = capabilities.float32Performance,
|
.quantized8Performance = capabilities.quantized8Performance };
|
}
|
|
V1_0::Capabilities convertToV1_0(const V1_2::Capabilities& capabilities) {
|
if (!compliantWithV1_0(capabilities)) {
|
LOG(ERROR) << "Upcasting non-compliant capabilities " << toString(capabilities)
|
<< " from V1_2::Capabilities to V1_0::Capabilities";
|
}
|
return {.float32Performance =
|
lookup(capabilities.operandPerformance, OperandType::TENSOR_FLOAT32),
|
.quantized8Performance =
|
lookup(capabilities.operandPerformance, OperandType::TENSOR_QUANT8_ASYMM)};
|
}
|
|
V1_1::Capabilities convertToV1_1(const V1_0::Capabilities& capabilities) {
|
return { .float32Performance = capabilities.float32Performance,
|
.quantized8Performance = capabilities.quantized8Performance,
|
.relaxedFloat32toFloat16Performance = capabilities.float32Performance };
|
}
|
|
V1_1::Capabilities convertToV1_1(const V1_1::Capabilities& capabilities) {
|
return capabilities;
|
}
|
|
V1_1::Capabilities convertToV1_1(const V1_2::Capabilities& capabilities) {
|
if (!compliantWithV1_1(capabilities)) {
|
LOG(ERROR) << "Upcasting non-compliant capabilities " << toString(capabilities)
|
<< " from V1_2::Capabilities to V1_1::Capabilities";
|
}
|
return {.float32Performance =
|
lookup(capabilities.operandPerformance, OperandType::TENSOR_FLOAT32),
|
.quantized8Performance =
|
lookup(capabilities.operandPerformance, OperandType::TENSOR_QUANT8_ASYMM),
|
.relaxedFloat32toFloat16Performance =
|
capabilities.relaxedFloat32toFloat16PerformanceTensor};
|
}
|
|
V1_2::Capabilities convertToV1_2(const V1_0::Capabilities& capabilities) {
|
V1_2::Capabilities ret = {
|
.relaxedFloat32toFloat16PerformanceScalar = capabilities.float32Performance,
|
.relaxedFloat32toFloat16PerformanceTensor = capabilities.float32Performance,
|
.operandPerformance =
|
makeQuantized8PerformanceConsistentWithP(capabilities.quantized8Performance)};
|
auto& opPerf = ret.operandPerformance;
|
opPerf.resize(opPerf.size() + 2);
|
opPerf[opPerf.size() - 2] = {OperandType::TENSOR_FLOAT32, capabilities.float32Performance};
|
opPerf[opPerf.size() - 1] = {OperandType::FLOAT32, capabilities.float32Performance};
|
using OperandPerformance = V1_2::Capabilities::OperandPerformance;
|
std::sort(opPerf.begin(), opPerf.end(),
|
[](const OperandPerformance& a, const OperandPerformance& b) {
|
return a.type < b.type;
|
});
|
return ret;
|
}
|
|
V1_2::Capabilities convertToV1_2(const V1_1::Capabilities& capabilities) {
|
V1_2::Capabilities ret = {.relaxedFloat32toFloat16PerformanceScalar =
|
capabilities.relaxedFloat32toFloat16Performance,
|
.relaxedFloat32toFloat16PerformanceTensor =
|
capabilities.relaxedFloat32toFloat16Performance,
|
.operandPerformance = makeQuantized8PerformanceConsistentWithP(
|
capabilities.quantized8Performance)};
|
auto& opPerf = ret.operandPerformance;
|
opPerf.resize(opPerf.size() + 2);
|
opPerf[opPerf.size() - 2] = {OperandType::TENSOR_FLOAT32, capabilities.float32Performance};
|
opPerf[opPerf.size() - 1] = {OperandType::FLOAT32, capabilities.float32Performance};
|
using OperandPerformance = V1_2::Capabilities::OperandPerformance;
|
std::sort(opPerf.begin(), opPerf.end(),
|
[](const OperandPerformance& a, const OperandPerformance& b) {
|
return a.type < b.type;
|
});
|
return ret;
|
}
|
|
V1_2::Capabilities convertToV1_2(const V1_2::Capabilities& capabilities) {
|
return capabilities;
|
}
|
|
static V1_0::Operation uncheckedConvertToV1_0(const V1_1::Operation& operation) {
|
return {.type = uncheckedConvertToV1_0(operation.type),
|
.inputs = operation.inputs,
|
.outputs = operation.outputs};
|
}
|
|
static V1_1::Operation convertToV1_1(const V1_0::Operation& operation) {
|
return {.type = convertToV1_1(operation.type),
|
.inputs = operation.inputs,
|
.outputs = operation.outputs};
|
}
|
|
static hidl_vec<V1_0::Operation> uncheckedConvertToV1_0(
|
const hidl_vec<V1_1::Operation>& operations) {
|
hidl_vec<V1_0::Operation> result(operations.size());
|
std::transform(
|
operations.begin(), operations.end(), result.begin(),
|
[](const V1_1::Operation& operation) { return uncheckedConvertToV1_0(operation); });
|
return result;
|
}
|
|
static hidl_vec<V1_1::Operation> convertToV1_1(const hidl_vec<V1_0::Operation>& operations) {
|
hidl_vec<V1_1::Operation> result(operations.size());
|
std::transform(operations.begin(), operations.end(), result.begin(),
|
[](const V1_0::Operation& operation) { return convertToV1_1(operation); });
|
return result;
|
}
|
|
bool compliantWithV1_0(const V1_2::Operand& operand) {
|
return validOperandType(static_cast<V1_0::OperandType>(operand.type)) &&
|
(nonExtensionOperandTypeIsScalar(static_cast<int>(operand.type)) ||
|
operand.dimensions.size() != 0);
|
}
|
|
V1_0::Model convertToV1_0(const V1_0::Model& model) {
|
return model;
|
}
|
|
V1_0::Model convertToV1_0(const V1_1::Model& model) {
|
if (!compliantWithV1_0(model)) {
|
LOG(ERROR) << "Upcasting non-compliant model " << SHOW_IF_DEBUG(toString(model))
|
<< " from V1_1::Model to V1_0::Model";
|
}
|
return {.operands = model.operands,
|
.operations = uncheckedConvertToV1_0(model.operations),
|
.inputIndexes = model.inputIndexes,
|
.outputIndexes = model.outputIndexes,
|
.operandValues = model.operandValues,
|
.pools = model.pools};
|
}
|
|
V1_1::Model convertToV1_1(const V1_0::Model& model) {
|
return {.operands = model.operands,
|
.operations = convertToV1_1(model.operations),
|
.inputIndexes = model.inputIndexes,
|
.outputIndexes = model.outputIndexes,
|
.operandValues = model.operandValues,
|
.pools = model.pools,
|
.relaxComputationFloat32toFloat16 = false};
|
}
|
|
V1_1::Model convertToV1_1(const V1_1::Model& model) {
|
return model;
|
}
|
|
void logModelToInfo(const V1_2::Model& model) {
|
LOG(INFO) << "V1_2::Model start";
|
LOG(INFO) << "operands" << toString(model.operands);
|
LOG(INFO) << "operations" << toString(model.operations);
|
LOG(INFO) << "inputIndexes" << toString(model.inputIndexes);
|
LOG(INFO) << "outputIndexes" << toString(model.outputIndexes);
|
LOG(INFO) << "operandValues size" << model.operandValues.size();
|
LOG(INFO) << "pools" << SHOW_IF_DEBUG(toString(model.pools));
|
}
|
|
static bool compliantWith(HalVersion version, const V1_2::Model& model,
|
std::set<uint32_t>* noncompliantOperations) {
|
if (version >= HalVersion::V1_2) return true;
|
|
// A boolean vector indicating whether each pool is compliant with the target HAL version.
|
std::vector<bool> isPoolCompliant(model.pools.size(), false);
|
std::transform(model.pools.begin(), model.pools.end(), isPoolCompliant.begin(),
|
[version](const hidl_memory& pool) { return validatePool(pool, version); });
|
|
// A boolean vector indicating whether each operand is compliant with the target HAL version.
|
std::vector<bool> isOperandCompliant(model.operands.size(), false);
|
std::transform(model.operands.begin(), model.operands.end(), isOperandCompliant.begin(),
|
[&isPoolCompliant](const V1_2::Operand& op) {
|
// There is no V1_1::Operand -- both V1_0::Model and V1_1::Model use
|
// V1_0::Operand.
|
return compliantWithV1_0(op) &&
|
!(op.lifetime == OperandLifeTime::CONSTANT_REFERENCE &&
|
!isPoolCompliant[op.location.poolIndex]);
|
});
|
|
auto allOperandsCompliant = [&isOperandCompliant](const hidl_vec<uint32_t>& indices) {
|
return std::all_of(
|
indices.begin(), indices.end(),
|
[&isOperandCompliant](const uint32_t ind) { return isOperandCompliant[ind]; });
|
};
|
|
auto localValidateOperation = [&model, version,
|
&allOperandsCompliant](const V1_2::Operation& op) {
|
if (!allOperandsCompliant(op.inputs) || !allOperandsCompliant(op.outputs)) return false;
|
int error = validateOperation(
|
static_cast<int32_t>(op.type), op.inputs.size(),
|
op.inputs.size() > 0 ? op.inputs.data() : nullptr, op.outputs.size(),
|
op.outputs.size() > 0 ? op.outputs.data() : nullptr, model.operands, version);
|
return error == ANEURALNETWORKS_NO_ERROR;
|
};
|
|
if (noncompliantOperations) {
|
CHECK(noncompliantOperations->empty());
|
for (uint32_t idx = 0; idx < model.operations.size(); ++idx) {
|
if (!localValidateOperation(model.operations[idx])) {
|
noncompliantOperations->insert(idx);
|
}
|
}
|
return noncompliantOperations->empty();
|
} else {
|
return std::all_of(model.operations.begin(), model.operations.end(),
|
localValidateOperation);
|
}
|
}
|
|
bool compliantWithV1_0(const V1_2::Model& model, std::set<uint32_t>* noncompliantOperations) {
|
return compliantWith(HalVersion::V1_0, model, noncompliantOperations);
|
}
|
|
bool compliantWithV1_1(const V1_2::Model& model, std::set<uint32_t>* noncompliantOperations) {
|
return compliantWith(HalVersion::V1_1, model, noncompliantOperations);
|
}
|
|
V1_0::OperationType uncheckedConvertToV1_0(V1_2::OperationType type) {
|
return static_cast<V1_0::OperationType>(type);
|
}
|
|
V1_1::OperationType uncheckedConvertToV1_1(V1_2::OperationType type) {
|
return static_cast<V1_1::OperationType>(type);
|
}
|
|
static V1_2::OperationType convertToV1_2(V1_0::OperationType type) {
|
return static_cast<V1_2::OperationType>(type);
|
}
|
|
static V1_2::OperationType convertToV1_2(V1_1::OperationType type) {
|
return static_cast<V1_2::OperationType>(type);
|
}
|
|
static V1_0::Operation uncheckedConvertToV1_0(const V1_2::Operation& operation) {
|
return {.type = uncheckedConvertToV1_0(operation.type),
|
.inputs = operation.inputs,
|
.outputs = operation.outputs};
|
}
|
|
static V1_1::Operation uncheckedConvertToV1_1(const V1_2::Operation& operation) {
|
return {.type = uncheckedConvertToV1_1(operation.type),
|
.inputs = operation.inputs,
|
.outputs = operation.outputs};
|
}
|
|
static V1_2::Operation convertToV1_2(const V1_0::Operation& operation) {
|
return {.type = convertToV1_2(operation.type),
|
.inputs = operation.inputs,
|
.outputs = operation.outputs};
|
}
|
|
static V1_2::Operation convertToV1_2(const V1_1::Operation& operation) {
|
return {.type = convertToV1_2(operation.type),
|
.inputs = operation.inputs,
|
.outputs = operation.outputs};
|
}
|
|
static hidl_vec<V1_0::Operation> uncheckedConvertToV1_0(
|
const hidl_vec<V1_2::Operation>& operations) {
|
hidl_vec<V1_0::Operation> result(operations.size());
|
std::transform(
|
operations.begin(), operations.end(), result.begin(),
|
[](const V1_2::Operation& operation) { return uncheckedConvertToV1_0(operation); });
|
return result;
|
}
|
|
static hidl_vec<V1_1::Operation> uncheckedConvertToV1_1(
|
const hidl_vec<V1_2::Operation>& operations) {
|
hidl_vec<V1_1::Operation> result(operations.size());
|
std::transform(
|
operations.begin(), operations.end(), result.begin(),
|
[](const V1_2::Operation& operation) { return uncheckedConvertToV1_1(operation); });
|
return result;
|
}
|
|
static hidl_vec<V1_2::Operation> convertToV1_2(const hidl_vec<V1_0::Operation>& operations) {
|
hidl_vec<V1_2::Operation> result(operations.size());
|
std::transform(operations.begin(), operations.end(), result.begin(),
|
[](const V1_0::Operation& operation) { return convertToV1_2(operation); });
|
return result;
|
}
|
|
static hidl_vec<V1_2::Operation> convertToV1_2(const hidl_vec<V1_1::Operation>& operations) {
|
hidl_vec<V1_2::Operation> result(operations.size());
|
std::transform(operations.begin(), operations.end(), result.begin(),
|
[](const V1_1::Operation& operation) { return convertToV1_2(operation); });
|
return result;
|
}
|
|
// We only need to convert from 1.0 and back since there wasn't any changes to
|
// Operand in 1.1
|
V1_2::OperandType convertToV1_2(const V1_0::OperandType& operandType) {
|
return static_cast<V1_2::OperandType>(operandType);
|
}
|
|
static bool compliantWithV1_0(const V1_2::OperandType& operandType) {
|
return validOperandType(static_cast<V1_0::OperandType>(operandType));
|
}
|
|
V1_0::OperandType convertToV1_0(const V1_2::OperandType& operandType) {
|
if (!compliantWithV1_0(operandType)) {
|
LOG(ERROR) << "Upcasting non-compliant operand type " << toString(operandType)
|
<< " from V1_2::Operand to V1_0::Operand";
|
}
|
return static_cast<V1_0::OperandType>(operandType);
|
}
|
|
// We only need to convert from 1.0 and back since there wasn't any changes to
|
// Operand in 1.1
|
V1_2::Operand convertToV1_2(const V1_0::Operand& operand) {
|
return {.type = convertToV1_2(operand.type),
|
.dimensions = operand.dimensions,
|
.numberOfConsumers = operand.numberOfConsumers,
|
.scale = operand.scale,
|
.zeroPoint = operand.zeroPoint,
|
.lifetime = operand.lifetime,
|
.location = operand.location};
|
}
|
|
V1_2::Operand convertToV1_2(const V1_2::Operand& operand) {
|
return operand;
|
}
|
|
V1_0::Operand convertToV1_0(const V1_2::Operand& operand) {
|
return {.type = convertToV1_0(operand.type),
|
.dimensions = operand.dimensions,
|
.numberOfConsumers = operand.numberOfConsumers,
|
.scale = operand.scale,
|
.zeroPoint = operand.zeroPoint,
|
.lifetime = operand.lifetime,
|
.location = operand.location};
|
}
|
|
// We only need to convert from 1.0 and back since there wasn't any changes to
|
// Operand in 1.1
|
hidl_vec<V1_2::Operand> convertToV1_2(const hidl_vec<V1_0::Operand>& operands) {
|
hidl_vec<V1_2::Operand> result(operands.size());
|
std::transform(operands.begin(), operands.end(), result.begin(),
|
[](const V1_0::Operand& operand) { return convertToV1_2(operand); });
|
return result;
|
}
|
|
hidl_vec<V1_2::Operand> convertToV1_2(const hidl_vec<V1_2::Operand>& operands) {
|
return operands;
|
}
|
|
hidl_vec<V1_0::Operand> convertToV1_0(const hidl_vec<V1_2::Operand>& operands) {
|
hidl_vec<V1_0::Operand> result(operands.size());
|
std::transform(operands.begin(), operands.end(), result.begin(),
|
[](const V1_2::Operand& operand) { return convertToV1_0(operand); });
|
return result;
|
}
|
|
V1_0::Model convertToV1_0(const V1_2::Model& model) {
|
if (!compliantWithV1_0(model)) {
|
LOG(ERROR) << "Upcasting non-compliant model " << SHOW_IF_DEBUG(toString(model))
|
<< " from V1_2::Model to V1_0::Model";
|
}
|
return {.operands = convertToV1_0(model.operands),
|
.operations = uncheckedConvertToV1_0(model.operations),
|
.inputIndexes = model.inputIndexes,
|
.outputIndexes = model.outputIndexes,
|
.operandValues = model.operandValues,
|
.pools = model.pools};
|
}
|
|
V1_1::Model convertToV1_1(const V1_2::Model& model) {
|
if (!compliantWithV1_1(model)) {
|
LOG(ERROR) << "Upcasting non-compliant model " << SHOW_IF_DEBUG(toString(model))
|
<< " from V1_2::Model to V1_1::Model";
|
}
|
return {.operands = convertToV1_0(model.operands), // Operands in 1.1 and 1.0 are identical.
|
.operations = uncheckedConvertToV1_1(model.operations),
|
.inputIndexes = model.inputIndexes,
|
.outputIndexes = model.outputIndexes,
|
.operandValues = model.operandValues,
|
.pools = model.pools,
|
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16};
|
}
|
|
V1_2::Model convertToV1_2(const V1_0::Model& model) {
|
return {.operands = convertToV1_2(model.operands),
|
.operations = convertToV1_2(model.operations),
|
.inputIndexes = model.inputIndexes,
|
.outputIndexes = model.outputIndexes,
|
.operandValues = model.operandValues,
|
.pools = model.pools,
|
.relaxComputationFloat32toFloat16 = false};
|
}
|
|
V1_2::Model convertToV1_2(const V1_1::Model& model) {
|
return {.operands = convertToV1_2(model.operands),
|
.operations = convertToV1_2(model.operations),
|
.inputIndexes = model.inputIndexes,
|
.outputIndexes = model.outputIndexes,
|
.operandValues = model.operandValues,
|
.pools = model.pools,
|
.relaxComputationFloat32toFloat16 = model.relaxComputationFloat32toFloat16};
|
}
|
|
V1_2::Model convertToV1_2(const V1_2::Model& model) {
|
return model;
|
}
|
|
#ifdef NN_DEBUGGABLE
|
uint32_t getProp(const char* str, uint32_t defaultValue) {
|
const std::string propStr = android::base::GetProperty(str, "");
|
if (propStr.size() > 0) {
|
return std::stoi(propStr);
|
} else {
|
return defaultValue;
|
}
|
}
|
#endif // NN_DEBUGGABLE
|
|
} // namespace nn
|
} // namespace android
|