/*
|
* Copyright (C) 2019 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#define LOG_TAG "ExecutionBurstServer"
|
|
#include "ExecutionBurstServer.h"
|
|
#include <android-base/logging.h>
|
|
#include <cstring>
|
#include <limits>
|
#include <map>
|
|
#include "Tracing.h"
|
|
namespace android::nn {
|
namespace {
|
|
constexpr Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
|
std::numeric_limits<uint64_t>::max()};
|
|
// DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
|
// used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
|
// hidl_memory object, and the execution forwards calls to the provided
|
// IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
|
// must be mapped and unmapped for each execution.
|
class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
|
public:
|
DefaultBurstExecutorWithCache(IPreparedModel* preparedModel) : mpPreparedModel(preparedModel) {}
|
|
bool isCacheEntryPresent(int32_t slot) const override {
|
const auto it = mMemoryCache.find(slot);
|
return (it != mMemoryCache.end()) && it->second.valid();
|
}
|
|
void addCacheEntry(const hidl_memory& memory, int32_t slot) override {
|
mMemoryCache[slot] = memory;
|
}
|
|
void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
|
|
std::tuple<ErrorStatus, hidl_vec<OutputShape>, Timing> execute(
|
const Request& request, const std::vector<int32_t>& slots,
|
MeasureTiming measure) override {
|
// convert slots to pools
|
hidl_vec<hidl_memory> pools(slots.size());
|
std::transform(slots.begin(), slots.end(), pools.begin(),
|
[this](int32_t slot) { return mMemoryCache[slot]; });
|
|
// create full request
|
Request fullRequest = request;
|
fullRequest.pools = std::move(pools);
|
|
// setup execution
|
ErrorStatus returnedStatus = ErrorStatus::GENERAL_FAILURE;
|
hidl_vec<OutputShape> returnedOutputShapes;
|
Timing returnedTiming;
|
auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
|
ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
|
const Timing& timing) {
|
returnedStatus = status;
|
returnedOutputShapes = outputShapes;
|
returnedTiming = timing;
|
};
|
|
// execute
|
const Return<void> ret = mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
|
if (!ret.isOk() || returnedStatus != ErrorStatus::NONE) {
|
LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
|
return {returnedStatus, {}, kNoTiming};
|
}
|
|
return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
|
}
|
|
private:
|
IPreparedModel* const mpPreparedModel;
|
std::map<int32_t, hidl_memory> mMemoryCache;
|
};
|
|
} // anonymous namespace
|
|
// serialize result
|
std::vector<FmqResultDatum> serialize(ErrorStatus errorStatus,
|
const std::vector<OutputShape>& outputShapes, Timing timing) {
|
// count how many elements need to be sent for a request
|
size_t count = 2 + outputShapes.size();
|
for (const auto& outputShape : outputShapes) {
|
count += outputShape.dimensions.size();
|
}
|
|
// create buffer to temporarily store elements
|
std::vector<FmqResultDatum> data;
|
data.reserve(count);
|
|
// package packetInfo
|
{
|
FmqResultDatum datum;
|
datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
|
/*.errorStatus=*/errorStatus,
|
/*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
|
data.push_back(datum);
|
}
|
|
// package output shape data
|
for (const auto& operand : outputShapes) {
|
// package operand information
|
FmqResultDatum::OperandInformation info{};
|
info.isSufficient = operand.isSufficient;
|
info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
|
|
FmqResultDatum datum;
|
datum.operandInformation(info);
|
data.push_back(datum);
|
|
// package operand dimensions
|
for (uint32_t dimension : operand.dimensions) {
|
FmqResultDatum datum;
|
datum.operandDimensionValue(dimension);
|
data.push_back(datum);
|
}
|
}
|
|
// package executionTiming
|
{
|
FmqResultDatum datum;
|
datum.executionTiming(timing);
|
data.push_back(datum);
|
}
|
|
// return result
|
return data;
|
}
|
|
// deserialize request
|
std::optional<std::tuple<Request, std::vector<int32_t>, MeasureTiming>> deserialize(
|
const std::vector<FmqRequestDatum>& data) {
|
using discriminator = FmqRequestDatum::hidl_discriminator;
|
|
size_t index = 0;
|
|
// validate packet information
|
if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
return std::nullopt;
|
}
|
|
// unpackage packet information
|
const FmqRequestDatum::PacketInformation& packetInfo = data[index].packetInformation();
|
index++;
|
const uint32_t packetSize = packetInfo.packetSize;
|
const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
|
const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
|
const uint32_t numberOfPools = packetInfo.numberOfPools;
|
|
// verify packet size
|
if (data.size() != packetSize) {
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
return std::nullopt;
|
}
|
|
// unpackage input operands
|
std::vector<RequestArgument> inputs;
|
inputs.reserve(numberOfInputOperands);
|
for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
|
// validate input operand information
|
if (data[index].getDiscriminator() != discriminator::inputOperandInformation) {
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
return std::nullopt;
|
}
|
|
// unpackage operand information
|
const FmqRequestDatum::OperandInformation& operandInfo =
|
data[index].inputOperandInformation();
|
index++;
|
const bool hasNoValue = operandInfo.hasNoValue;
|
const DataLocation location = operandInfo.location;
|
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
|
|
// unpackage operand dimensions
|
std::vector<uint32_t> dimensions;
|
dimensions.reserve(numberOfDimensions);
|
for (size_t i = 0; i < numberOfDimensions; ++i) {
|
// validate dimension
|
if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) {
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
return std::nullopt;
|
}
|
|
// unpackage dimension
|
const uint32_t dimension = data[index].inputOperandDimensionValue();
|
index++;
|
|
// store result
|
dimensions.push_back(dimension);
|
}
|
|
// store result
|
inputs.push_back(
|
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
|
}
|
|
// unpackage output operands
|
std::vector<RequestArgument> outputs;
|
outputs.reserve(numberOfOutputOperands);
|
for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
|
// validate output operand information
|
if (data[index].getDiscriminator() != discriminator::outputOperandInformation) {
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
return std::nullopt;
|
}
|
|
// unpackage operand information
|
const FmqRequestDatum::OperandInformation& operandInfo =
|
data[index].outputOperandInformation();
|
index++;
|
const bool hasNoValue = operandInfo.hasNoValue;
|
const DataLocation location = operandInfo.location;
|
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
|
|
// unpackage operand dimensions
|
std::vector<uint32_t> dimensions;
|
dimensions.reserve(numberOfDimensions);
|
for (size_t i = 0; i < numberOfDimensions; ++i) {
|
// validate dimension
|
if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) {
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
return std::nullopt;
|
}
|
|
// unpackage dimension
|
const uint32_t dimension = data[index].outputOperandDimensionValue();
|
index++;
|
|
// store result
|
dimensions.push_back(dimension);
|
}
|
|
// store result
|
outputs.push_back(
|
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
|
}
|
|
// unpackage pools
|
std::vector<int32_t> slots;
|
slots.reserve(numberOfPools);
|
for (size_t pool = 0; pool < numberOfPools; ++pool) {
|
// validate input operand information
|
if (data[index].getDiscriminator() != discriminator::poolIdentifier) {
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
return std::nullopt;
|
}
|
|
// unpackage operand information
|
const int32_t poolId = data[index].poolIdentifier();
|
index++;
|
|
// store result
|
slots.push_back(poolId);
|
}
|
|
// validate measureTiming
|
if (data[index].getDiscriminator() != discriminator::measureTiming) {
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
return std::nullopt;
|
}
|
|
// unpackage measureTiming
|
const MeasureTiming measure = data[index].measureTiming();
|
index++;
|
|
// validate packet information
|
if (index != packetSize) {
|
LOG(ERROR) << "FMQ Result packet ill-formed";
|
return std::nullopt;
|
}
|
|
// return request
|
Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
|
return std::make_tuple(std::move(request), std::move(slots), measure);
|
}
|
|
// RequestChannelReceiver methods
|
|
std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
|
const FmqRequestDescriptor& requestChannel) {
|
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
|
std::make_unique<FmqRequestChannel>(requestChannel);
|
if (!fmqRequestChannel->isValid()) {
|
LOG(ERROR) << "Unable to create RequestChannelReceiver";
|
return nullptr;
|
}
|
const bool blocking = fmqRequestChannel->getEventFlagWord() != nullptr;
|
return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel), blocking);
|
}
|
|
RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
|
bool blocking)
|
: mFmqRequestChannel(std::move(fmqRequestChannel)), mBlocking(blocking) {}
|
|
std::optional<std::tuple<Request, std::vector<int32_t>, MeasureTiming>>
|
RequestChannelReceiver::getBlocking() {
|
const auto packet = getPacketBlocking();
|
if (!packet) {
|
return std::nullopt;
|
}
|
|
return deserialize(*packet);
|
}
|
|
void RequestChannelReceiver::invalidate() {
|
mTeardown = true;
|
|
// force unblock
|
// ExecutionBurstServer is by default waiting on a request packet. If the
|
// client process destroys its burst object, the server will still be
|
// waiting on the futex (assuming mBlocking is true). This force unblock
|
// wakes up any thread waiting on the futex.
|
if (mBlocking) {
|
// TODO: look for a different/better way to signal/notify the futex to
|
// wake up any thread waiting on it
|
FmqRequestDatum datum;
|
datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
|
/*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
|
mFmqRequestChannel->writeBlocking(&datum, 1);
|
}
|
}
|
|
std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
|
using discriminator = FmqRequestDatum::hidl_discriminator;
|
|
if (mTeardown) {
|
return std::nullopt;
|
}
|
|
// wait for request packet and read first element of request packet
|
FmqRequestDatum datum;
|
bool success = false;
|
if (mBlocking) {
|
success = mFmqRequestChannel->readBlocking(&datum, 1);
|
} else {
|
while ((success = !mTeardown.load(std::memory_order_relaxed)) &&
|
!mFmqRequestChannel->read(&datum, 1)) {
|
}
|
}
|
|
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
|
|
// retrieve remaining elements
|
// NOTE: all of the data is already available at this point, so there's no
|
// need to do a blocking wait to wait for more data. This is known because
|
// in FMQ, all writes are published (made available) atomically. Currently,
|
// the producer always publishes the entire packet in one function call, so
|
// if the first element of the packet is available, the remaining elements
|
// are also available.
|
const size_t count = mFmqRequestChannel->availableToRead();
|
std::vector<FmqRequestDatum> packet(count + 1);
|
std::memcpy(&packet.front(), &datum, sizeof(datum));
|
success &= mFmqRequestChannel->read(packet.data() + 1, count);
|
|
// terminate loop
|
if (mTeardown) {
|
return std::nullopt;
|
}
|
|
// ensure packet was successfully received
|
if (!success) {
|
LOG(ERROR) << "Error receiving packet";
|
return std::nullopt;
|
}
|
|
return std::make_optional(std::move(packet));
|
}
|
|
// ResultChannelSender methods
|
|
std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
|
const FmqResultDescriptor& resultChannel) {
|
std::unique_ptr<FmqResultChannel> fmqResultChannel =
|
std::make_unique<FmqResultChannel>(resultChannel);
|
if (!fmqResultChannel->isValid()) {
|
LOG(ERROR) << "Unable to create RequestChannelSender";
|
return nullptr;
|
}
|
const bool blocking = fmqResultChannel->getEventFlagWord() != nullptr;
|
return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel), blocking);
|
}
|
|
ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel,
|
bool blocking)
|
: mFmqResultChannel(std::move(fmqResultChannel)), mBlocking(blocking) {}
|
|
bool ResultChannelSender::send(ErrorStatus errorStatus,
|
const std::vector<OutputShape>& outputShapes, Timing timing) {
|
const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
|
return sendPacket(serialized);
|
}
|
|
bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
|
if (packet.size() > mFmqResultChannel->availableToWrite()) {
|
LOG(ERROR)
|
<< "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
|
const std::vector<FmqResultDatum> errorPacket =
|
serialize(ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
|
if (mBlocking) {
|
return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
|
} else {
|
return mFmqResultChannel->write(errorPacket.data(), errorPacket.size());
|
}
|
}
|
|
if (mBlocking) {
|
return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
|
} else {
|
return mFmqResultChannel->write(packet.data(), packet.size());
|
}
|
}
|
|
// ExecutionBurstServer methods
|
|
sp<ExecutionBurstServer> ExecutionBurstServer::create(
|
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
|
const MQDescriptorSync<FmqResultDatum>& resultChannel,
|
std::shared_ptr<IBurstExecutorWithCache> executorWithCache) {
|
// check inputs
|
if (callback == nullptr || executorWithCache == nullptr) {
|
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
|
return nullptr;
|
}
|
|
// create FMQ objects
|
std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
|
RequestChannelReceiver::create(requestChannel);
|
std::unique_ptr<ResultChannelSender> resultChannelSender =
|
ResultChannelSender::create(resultChannel);
|
|
// check FMQ objects
|
if (!requestChannelReceiver || !resultChannelSender) {
|
LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
|
return nullptr;
|
}
|
|
// make and return context
|
return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
|
std::move(resultChannelSender), std::move(executorWithCache));
|
}
|
|
sp<ExecutionBurstServer> ExecutionBurstServer::create(
|
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
|
const MQDescriptorSync<FmqResultDatum>& resultChannel, IPreparedModel* preparedModel) {
|
// check relevant input
|
if (preparedModel == nullptr) {
|
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
|
return nullptr;
|
}
|
|
// adapt IPreparedModel to have caching
|
const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
|
std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
|
|
// make and return context
|
return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
|
preparedModelAdapter);
|
}
|
|
ExecutionBurstServer::ExecutionBurstServer(
|
const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
|
std::unique_ptr<ResultChannelSender> resultChannel,
|
std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
|
: mCallback(callback),
|
mRequestChannelReceiver(std::move(requestChannel)),
|
mResultChannelSender(std::move(resultChannel)),
|
mExecutorWithCache(std::move(executorWithCache)) {
|
// TODO: highly document the threading behavior of this class
|
mWorker = std::thread([this] { task(); });
|
}
|
|
ExecutionBurstServer::~ExecutionBurstServer() {
|
// set teardown flag
|
mTeardown = true;
|
mRequestChannelReceiver->invalidate();
|
|
// wait for task thread to end
|
mWorker.join();
|
}
|
|
Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
|
mExecutorWithCache->removeCacheEntry(slot);
|
return Void();
|
}
|
|
void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
|
const auto slotIsKnown = [this](int32_t slot) {
|
return mExecutorWithCache->isCacheEntryPresent(slot);
|
};
|
|
// find unique unknown slots
|
std::vector<int32_t> unknownSlots = slots;
|
auto unknownSlotsEnd = unknownSlots.end();
|
std::sort(unknownSlots.begin(), unknownSlotsEnd);
|
unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
|
unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
|
unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
|
|
// quick-exit if all slots are known
|
if (unknownSlots.empty()) {
|
return;
|
}
|
|
ErrorStatus errorStatus = ErrorStatus::GENERAL_FAILURE;
|
std::vector<hidl_memory> returnedMemories;
|
auto cb = [&errorStatus, &returnedMemories](ErrorStatus status,
|
const hidl_vec<hidl_memory>& memories) {
|
errorStatus = status;
|
returnedMemories = memories;
|
};
|
|
const Return<void> ret = mCallback->getMemories(unknownSlots, cb);
|
|
if (!ret.isOk() || errorStatus != ErrorStatus::NONE ||
|
returnedMemories.size() != unknownSlots.size()) {
|
LOG(ERROR) << "Error retrieving memories";
|
return;
|
}
|
|
// add memories to unknown slots
|
for (size_t i = 0; i < unknownSlots.size(); ++i) {
|
mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
|
}
|
}
|
|
void ExecutionBurstServer::task() {
|
// loop until the burst object is being destroyed
|
while (!mTeardown) {
|
// receive request
|
auto arguments = mRequestChannelReceiver->getBlocking();
|
|
// if the request packet was not properly received, return a generic
|
// error and skip the execution
|
//
|
// if the burst is being torn down, skip the execution exection so the
|
// "task" function can end
|
if (!arguments) {
|
if (!mTeardown) {
|
mResultChannelSender->send(ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
|
}
|
continue;
|
}
|
|
// otherwise begin tracing execution
|
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
|
"ExecutionBurstServer getting memory, executing, and returning results");
|
|
// unpack the arguments; types are Request, std::vector<int32_t>, and
|
// MeasureTiming, respectively
|
const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
|
|
// ensure executor with cache has required memory
|
std::lock_guard<std::mutex> hold(mMutex);
|
ensureCacheEntriesArePresentLocked(slotsOfPools);
|
|
// perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
|
// and Timing, respectively
|
const auto [errorStatus, outputShapes, returnedTiming] =
|
mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
|
|
// return result
|
mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
|
}
|
}
|
|
} // namespace android::nn
|