/* -----------------------------------------------------------------------------
|
Software License for The Fraunhofer FDK AAC Codec Library for Android
|
|
© Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
|
Forschung e.V. All rights reserved.
|
|
1. INTRODUCTION
|
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
|
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
|
scheme for digital audio. This FDK AAC Codec software is intended to be used on
|
a wide variety of Android devices.
|
|
AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
|
general perceptual audio codecs. AAC-ELD is considered the best-performing
|
full-bandwidth communications codec by independent studies and is widely
|
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
|
specifications.
|
|
Patent licenses for necessary patent claims for the FDK AAC Codec (including
|
those of Fraunhofer) may be obtained through Via Licensing
|
(www.vialicensing.com) or through the respective patent owners individually for
|
the purpose of encoding or decoding bit streams in products that are compliant
|
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
|
Android devices already license these patent claims through Via Licensing or
|
directly from the patent owners, and therefore FDK AAC Codec software may
|
already be covered under those patent licenses when it is used for those
|
licensed purposes only.
|
|
Commercially-licensed AAC software libraries, including floating-point versions
|
with enhanced sound quality, are also available from Fraunhofer. Users are
|
encouraged to check the Fraunhofer website for additional applications
|
information and documentation.
|
|
2. COPYRIGHT LICENSE
|
|
Redistribution and use in source and binary forms, with or without modification,
|
are permitted without payment of copyright license fees provided that you
|
satisfy the following conditions:
|
|
You must retain the complete text of this software license in redistributions of
|
the FDK AAC Codec or your modifications thereto in source code form.
|
|
You must retain the complete text of this software license in the documentation
|
and/or other materials provided with redistributions of the FDK AAC Codec or
|
your modifications thereto in binary form. You must make available free of
|
charge copies of the complete source code of the FDK AAC Codec and your
|
modifications thereto to recipients of copies in binary form.
|
|
The name of Fraunhofer may not be used to endorse or promote products derived
|
from this library without prior written permission.
|
|
You may not charge copyright license fees for anyone to use, copy or distribute
|
the FDK AAC Codec software or your modifications thereto.
|
|
Your modified versions of the FDK AAC Codec must carry prominent notices stating
|
that you changed the software and the date of any change. For modified versions
|
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
|
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
|
AAC Codec Library for Android."
|
|
3. NO PATENT LICENSE
|
|
NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
|
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
|
Fraunhofer provides no warranty of patent non-infringement with respect to this
|
software.
|
|
You may use this FDK AAC Codec software or modifications thereto only for
|
purposes that are authorized by appropriate patent licenses.
|
|
4. DISCLAIMER
|
|
This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
|
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
|
including but not limited to the implied warranties of merchantability and
|
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
|
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
|
or consequential damages, including but not limited to procurement of substitute
|
goods or services; loss of use, data, or profits, or business interruption,
|
however caused and on any theory of liability, whether in contract, strict
|
liability, or tort (including negligence), arising in any way out of the use of
|
this software, even if advised of the possibility of such damage.
|
|
5. CONTACT INFORMATION
|
|
Fraunhofer Institute for Integrated Circuits IIS
|
Attention: Audio and Multimedia Departments - FDK AAC LL
|
Am Wolfsmantel 33
|
91058 Erlangen, Germany
|
|
www.iis.fraunhofer.de/amm
|
amm-info@iis.fraunhofer.de
|
----------------------------------------------------------------------------- */
|
|
/**************************** AAC decoder library ******************************
|
|
Author(s): Josef Hoepfl
|
|
Description: perceptual noise substitution tool
|
|
*******************************************************************************/
|
|
#include "aacdec_pns.h"
|
|
#include "aac_ram.h"
|
#include "aac_rom.h"
|
#include "channelinfo.h"
|
#include "block.h"
|
#include "FDK_bitstream.h"
|
|
#include "genericStds.h"
|
|
#define NOISE_OFFSET 90 /* cf. ISO 14496-3 p. 175 */
|
|
/*!
|
\brief Reset InterChannel and PNS data
|
|
The function resets the InterChannel and PNS data
|
*/
|
void CPns_ResetData(CPnsData *pPnsData,
|
CPnsInterChannelData *pPnsInterChannelData) {
|
FDK_ASSERT(pPnsData != NULL);
|
FDK_ASSERT(pPnsInterChannelData != NULL);
|
/* Assign pointer always, since pPnsData is not persistent data */
|
pPnsData->pPnsInterChannelData = pPnsInterChannelData;
|
pPnsData->PnsActive = 0;
|
pPnsData->CurrentEnergy = 0;
|
|
FDKmemclear(pPnsData->pnsUsed, (8 * 16) * sizeof(UCHAR));
|
FDKmemclear(pPnsInterChannelData->correlated, (8 * 16) * sizeof(UCHAR));
|
}
|
|
/*!
|
\brief Update PNS noise generator state.
|
|
The function sets the seed for PNS noise generation.
|
It can be used to link two or more channels in terms of PNS.
|
*/
|
void CPns_UpdateNoiseState(CPnsData *pPnsData, INT *currentSeed,
|
INT *randomSeed) {
|
/* use pointer because seed has to be
|
same, left and right channel ! */
|
pPnsData->currentSeed = currentSeed;
|
pPnsData->randomSeed = randomSeed;
|
}
|
|
/*!
|
\brief Indicates if PNS is used
|
|
The function returns a value indicating whether PNS is used or not
|
acordding to the noise energy
|
|
\return PNS used
|
*/
|
int CPns_IsPnsUsed(const CPnsData *pPnsData, const int group, const int band) {
|
unsigned pns_band = group * 16 + band;
|
|
return pPnsData->pnsUsed[pns_band] & (UCHAR)1;
|
}
|
|
/*!
|
\brief Set correlation
|
|
The function activates the noise correlation between the channel pair
|
*/
|
void CPns_SetCorrelation(CPnsData *pPnsData, const int group, const int band,
|
const int outofphase) {
|
CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
|
unsigned pns_band = group * 16 + band;
|
|
pInterChannelData->correlated[pns_band] = (outofphase) ? 3 : 1;
|
}
|
|
/*!
|
\brief Indicates if correlation is used
|
|
The function indicates if the noise correlation between the channel pair
|
is activated
|
|
\return PNS is correlated
|
*/
|
static int CPns_IsCorrelated(const CPnsData *pPnsData, const int group,
|
const int band) {
|
CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
|
unsigned pns_band = group * 16 + band;
|
|
return (pInterChannelData->correlated[pns_band] & 0x01) ? 1 : 0;
|
}
|
|
/*!
|
\brief Indicates if correlated out of phase mode is used.
|
|
The function indicates if the noise correlation between the channel pair
|
is activated in out-of-phase mode.
|
|
\return PNS is out-of-phase
|
*/
|
static int CPns_IsOutOfPhase(const CPnsData *pPnsData, const int group,
|
const int band) {
|
CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
|
unsigned pns_band = group * 16 + band;
|
|
return (pInterChannelData->correlated[pns_band] & 0x02) ? 1 : 0;
|
}
|
|
/*!
|
\brief Read PNS information
|
|
The function reads the PNS information from the bitstream
|
*/
|
void CPns_Read(CPnsData *pPnsData, HANDLE_FDK_BITSTREAM bs,
|
const CodeBookDescription *hcb, SHORT *pScaleFactor,
|
UCHAR global_gain, int band, int group /* = 0 */) {
|
int delta;
|
UINT pns_band = group * 16 + band;
|
|
if (pPnsData->PnsActive) {
|
/* Next PNS band case */
|
delta = CBlock_DecodeHuffmanWord(bs, hcb) - 60;
|
} else {
|
/* First PNS band case */
|
int noiseStartValue = FDKreadBits(bs, 9);
|
|
delta = noiseStartValue - 256;
|
pPnsData->PnsActive = 1;
|
pPnsData->CurrentEnergy = global_gain - NOISE_OFFSET;
|
}
|
|
pPnsData->CurrentEnergy += delta;
|
pScaleFactor[pns_band] = pPnsData->CurrentEnergy;
|
|
pPnsData->pnsUsed[pns_band] = 1;
|
}
|
|
/**
|
* \brief Generate a vector of noise of given length. The noise values are
|
* scaled in order to yield a noise energy of 1.0
|
* \param spec pointer to were the noise values will be written to.
|
* \param size amount of noise values to be generated.
|
* \param pRandomState pointer to the state of the random generator being used.
|
* \return exponent of generated noise vector.
|
*/
|
static int GenerateRandomVector(FIXP_DBL *RESTRICT spec, int size,
|
int *pRandomState) {
|
int i, invNrg_e = 0, nrg_e = 0;
|
FIXP_DBL invNrg_m, nrg_m = FL2FXCONST_DBL(0.0f);
|
FIXP_DBL *RESTRICT ptr = spec;
|
int randomState = *pRandomState;
|
|
#define GEN_NOISE_NRG_SCALE 7
|
|
/* Generate noise and calculate energy. */
|
for (i = 0; i < size; i++) {
|
randomState =
|
(((INT64)1664525 * randomState) + (INT64)1013904223) & 0xFFFFFFFF;
|
nrg_m = fPow2AddDiv2(nrg_m, (FIXP_DBL)randomState >> GEN_NOISE_NRG_SCALE);
|
*ptr++ = (FIXP_DBL)randomState;
|
}
|
nrg_e = GEN_NOISE_NRG_SCALE * 2 + 1;
|
|
/* weight noise with = 1 / sqrt_nrg; */
|
invNrg_m = invSqrtNorm2(nrg_m << 1, &invNrg_e);
|
invNrg_e += -((nrg_e - 1) >> 1);
|
|
for (i = size; i--;) {
|
spec[i] = fMult(spec[i], invNrg_m);
|
}
|
|
/* Store random state */
|
*pRandomState = randomState;
|
|
return invNrg_e;
|
}
|
|
static void ScaleBand(FIXP_DBL *RESTRICT spec, int size, int scaleFactor,
|
int specScale, int noise_e, int out_of_phase) {
|
int i, shift, sfExponent;
|
FIXP_DBL sfMatissa;
|
|
/* Get gain from scale factor value = 2^(scaleFactor * 0.25) */
|
sfMatissa = MantissaTable[scaleFactor & 0x03][0];
|
/* sfExponent = (scaleFactor >> 2) + ExponentTable[scaleFactor & 0x03][0]; */
|
/* Note: ExponentTable[scaleFactor & 0x03][0] is always 1. */
|
sfExponent = (scaleFactor >> 2) + 1;
|
|
if (out_of_phase != 0) {
|
sfMatissa = -sfMatissa;
|
}
|
|
/* +1 because of fMultDiv2 below. */
|
shift = sfExponent - specScale + 1 + noise_e;
|
|
/* Apply gain to noise values */
|
if (shift >= 0) {
|
shift = fixMin(shift, DFRACT_BITS - 1);
|
for (i = size; i-- != 0;) {
|
spec[i] = fMultDiv2(spec[i], sfMatissa) << shift;
|
}
|
} else {
|
shift = fixMin(-shift, DFRACT_BITS - 1);
|
for (i = size; i-- != 0;) {
|
spec[i] = fMultDiv2(spec[i], sfMatissa) >> shift;
|
}
|
}
|
}
|
|
/*!
|
\brief Apply PNS
|
|
The function applies PNS (i.e. it generates noise) on the bands
|
flagged as noisy bands
|
|
*/
|
void CPns_Apply(const CPnsData *pPnsData, const CIcsInfo *pIcsInfo,
|
SPECTRAL_PTR pSpectrum, const SHORT *pSpecScale,
|
const SHORT *pScaleFactor,
|
const SamplingRateInfo *pSamplingRateInfo,
|
const INT granuleLength, const int channel) {
|
if (pPnsData->PnsActive) {
|
const short *BandOffsets =
|
GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo);
|
|
int ScaleFactorBandsTransmitted = GetScaleFactorBandsTransmitted(pIcsInfo);
|
|
for (int window = 0, group = 0; group < GetWindowGroups(pIcsInfo);
|
group++) {
|
for (int groupwin = 0; groupwin < GetWindowGroupLength(pIcsInfo, group);
|
groupwin++, window++) {
|
FIXP_DBL *spectrum = SPEC(pSpectrum, window, granuleLength);
|
|
for (int band = 0; band < ScaleFactorBandsTransmitted; band++) {
|
if (CPns_IsPnsUsed(pPnsData, group, band)) {
|
UINT pns_band = window * 16 + band;
|
|
int bandWidth = BandOffsets[band + 1] - BandOffsets[band];
|
int noise_e;
|
|
FDK_ASSERT(bandWidth >= 0);
|
|
if (channel > 0 && CPns_IsCorrelated(pPnsData, group, band)) {
|
noise_e =
|
GenerateRandomVector(spectrum + BandOffsets[band], bandWidth,
|
&pPnsData->randomSeed[pns_band]);
|
} else {
|
pPnsData->randomSeed[pns_band] = *pPnsData->currentSeed;
|
|
noise_e = GenerateRandomVector(spectrum + BandOffsets[band],
|
bandWidth, pPnsData->currentSeed);
|
}
|
|
int outOfPhase = CPns_IsOutOfPhase(pPnsData, group, band);
|
|
ScaleBand(spectrum + BandOffsets[band], bandWidth,
|
pScaleFactor[group * 16 + band], pSpecScale[window],
|
noise_e, outOfPhase);
|
}
|
}
|
}
|
}
|
}
|
}
|