huangcm
2025-02-24 69ed55dec4b2116a19e4cca4393cbc014fce5fb2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
//
// Copyright (C) 2012 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
 
#include "update_engine/payload_consumer/delta_performer.h"
 
#include <endian.h>
#include <inttypes.h>
#include <time.h>
 
#include <memory>
#include <string>
#include <vector>
 
#include <base/files/file_path.h>
#include <base/files/file_util.h>
#include <base/files/scoped_temp_dir.h>
#include <base/strings/string_number_conversions.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>
#include <gmock/gmock.h>
#include <google/protobuf/repeated_field.h>
#include <gtest/gtest.h>
 
#include "update_engine/common/constants.h"
#include "update_engine/common/fake_boot_control.h"
#include "update_engine/common/fake_hardware.h"
#include "update_engine/common/fake_prefs.h"
#include "update_engine/common/test_utils.h"
#include "update_engine/common/utils.h"
#include "update_engine/payload_consumer/fake_file_descriptor.h"
#include "update_engine/payload_consumer/mock_download_action.h"
#include "update_engine/payload_consumer/payload_constants.h"
#include "update_engine/payload_generator/bzip.h"
#include "update_engine/payload_generator/extent_ranges.h"
#include "update_engine/payload_generator/payload_file.h"
#include "update_engine/payload_generator/payload_signer.h"
#include "update_engine/update_metadata.pb.h"
 
namespace chromeos_update_engine {
 
using std::string;
using std::vector;
using test_utils::GetBuildArtifactsPath;
using test_utils::kRandomString;
using test_utils::System;
using testing::_;
 
extern const char* kUnittestPrivateKeyPath;
extern const char* kUnittestPublicKeyPath;
 
namespace {
 
const char kBogusMetadataSignature1[] =
    "awSFIUdUZz2VWFiR+ku0Pj00V7bPQPQFYQSXjEXr3vaw3TE4xHV5CraY3/YrZpBv"
    "J5z4dSBskoeuaO1TNC/S6E05t+yt36tE4Fh79tMnJ/z9fogBDXWgXLEUyG78IEQr"
    "YH6/eBsQGT2RJtBgXIXbZ9W+5G9KmGDoPOoiaeNsDuqHiBc/58OFsrxskH8E6vMS"
    "BmMGGk82mvgzic7ApcoURbCGey1b3Mwne/hPZ/bb9CIyky8Og9IfFMdL2uAweOIR"
    "fjoTeLYZpt+WN65Vu7jJ0cQN8e1y+2yka5112wpRf/LLtPgiAjEZnsoYpLUd7CoV"
    "pLRtClp97kN2+tXGNBQqkA==";
 
// Different options that determine what we should fill into the
// install_plan.metadata_signature to simulate the contents received in the
// Omaha response.
enum MetadataSignatureTest {
  kEmptyMetadataSignature,
  kInvalidMetadataSignature,
  kValidMetadataSignature,
};
 
// Compressed data without checksum, generated with:
// echo -n "a$(head -c 4095 /dev/zero)" | xz -9 --check=none |
//     hexdump -v -e '"    " 12/1 "0x%02x, " "\n"'
const uint8_t kXzCompressedData[] = {
    0xfd, 0x37, 0x7a, 0x58, 0x5a, 0x00, 0x00, 0x00, 0xff, 0x12, 0xd9, 0x41,
    0x02, 0x00, 0x21, 0x01, 0x1c, 0x00, 0x00, 0x00, 0x10, 0xcf, 0x58, 0xcc,
    0xe0, 0x0f, 0xff, 0x00, 0x1b, 0x5d, 0x00, 0x30, 0x80, 0x33, 0xff, 0xdf,
    0xff, 0x51, 0xd6, 0xaf, 0x90, 0x1c, 0x1b, 0x4c, 0xaa, 0x3d, 0x7b, 0x28,
    0xe4, 0x7a, 0x74, 0xbc, 0xe5, 0xa7, 0x33, 0x4e, 0xcf, 0x00, 0x00, 0x00,
    0x00, 0x01, 0x2f, 0x80, 0x20, 0x00, 0x00, 0x00, 0x92, 0x7c, 0x7b, 0x24,
    0xa8, 0x00, 0x0a, 0xfc, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x59, 0x5a,
};
 
// clang-format off
const uint8_t src_deflates[] = {
  /* raw      0  */ 0x11, 0x22,
  /* deflate  2  */ 0x63, 0x64, 0x62, 0x66, 0x61, 0x05, 0x00,
  /* raw      9  */ 0x33,
  /* deflate  10 */ 0x03, 0x00,
  /* raw      12 */
  /* deflate  12 */ 0x63, 0x04, 0x00,
  /* raw      15 */ 0x44, 0x55
};
 
const uint8_t dst_deflates[] = {
  /* deflate  0  */ 0x63, 0x64, 0x62, 0x66, 0x61, 0x05, 0x00,
  /* raw      7  */ 0x33, 0x66,
  /* deflate  9  */ 0x01, 0x05, 0x00, 0xFA, 0xFF, 0x01, 0x02, 0x03, 0x04, 0x05,
  /* deflate  19 */ 0x63, 0x04, 0x00
};
// clang-format on
 
// To generate this patch either:
// - Use puffin/src/patching_unittest.cc:TestPatching
// Or
// - Use the following approach:
// * Make src_deflate a string of hex with only spaces. (e.g. "0XTE 0xST")
// * echo "0XTE 0xST" | xxd -r -p > src.bin
// * Find the location of deflates in src_deflates (in bytes) in the format of
//   "offset:length,...". (e.g. "2:7,10:2,12:3")
// * Do previous three steps for dst_deflates.
// * puffin --operation=puffdiff --src_file=src.bin --dst_file=dst.bin \
//   --src_deflates_byte="2:7,10:2,12:3" --dst_deflates_byte="0:7,9:10,19:3" \
//   --patch_file=patch.bin
// * hexdump -ve '"  " 12/1 "0x%02x, " "\n"' patch.bin
const uint8_t puffdiff_patch[] = {
    0x50, 0x55, 0x46, 0x31, 0x00, 0x00, 0x00, 0x51, 0x08, 0x01, 0x12, 0x27,
    0x0A, 0x04, 0x08, 0x10, 0x10, 0x32, 0x0A, 0x04, 0x08, 0x50, 0x10, 0x0A,
    0x0A, 0x04, 0x08, 0x60, 0x10, 0x12, 0x12, 0x04, 0x08, 0x10, 0x10, 0x58,
    0x12, 0x04, 0x08, 0x78, 0x10, 0x28, 0x12, 0x05, 0x08, 0xA8, 0x01, 0x10,
    0x38, 0x18, 0x1F, 0x1A, 0x24, 0x0A, 0x02, 0x10, 0x32, 0x0A, 0x04, 0x08,
    0x48, 0x10, 0x50, 0x0A, 0x05, 0x08, 0x98, 0x01, 0x10, 0x12, 0x12, 0x02,
    0x10, 0x58, 0x12, 0x04, 0x08, 0x70, 0x10, 0x58, 0x12, 0x05, 0x08, 0xC8,
    0x01, 0x10, 0x38, 0x18, 0x21, 0x42, 0x53, 0x44, 0x49, 0x46, 0x46, 0x34,
    0x30, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x34, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x42, 0x5A, 0x68, 0x39, 0x31, 0x41, 0x59, 0x26, 0x53, 0x59, 0x65,
    0x29, 0x8C, 0x9B, 0x00, 0x00, 0x03, 0x60, 0x40, 0x7A, 0x0E, 0x08, 0x00,
    0x40, 0x00, 0x20, 0x00, 0x21, 0x22, 0x9A, 0x3D, 0x4F, 0x50, 0x40, 0x0C,
    0x3B, 0xC7, 0x9B, 0xB2, 0x21, 0x0E, 0xE9, 0x15, 0x98, 0x7A, 0x7C, 0x5D,
    0xC9, 0x14, 0xE1, 0x42, 0x41, 0x94, 0xA6, 0x32, 0x6C, 0x42, 0x5A, 0x68,
    0x39, 0x31, 0x41, 0x59, 0x26, 0x53, 0x59, 0xF1, 0x20, 0x5F, 0x0D, 0x00,
    0x00, 0x02, 0x41, 0x15, 0x42, 0x08, 0x20, 0x00, 0x40, 0x00, 0x00, 0x02,
    0x40, 0x00, 0x20, 0x00, 0x22, 0x3D, 0x23, 0x10, 0x86, 0x03, 0x96, 0x54,
    0x11, 0x16, 0x5F, 0x17, 0x72, 0x45, 0x38, 0x50, 0x90, 0xF1, 0x20, 0x5F,
    0x0D, 0x42, 0x5A, 0x68, 0x39, 0x31, 0x41, 0x59, 0x26, 0x53, 0x59, 0x07,
    0xD4, 0xCB, 0x6E, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x20, 0x00,
    0x21, 0x18, 0x46, 0x82, 0xEE, 0x48, 0xA7, 0x0A, 0x12, 0x00, 0xFA, 0x99,
    0x6D, 0xC0};
 
}  // namespace
 
class DeltaPerformerTest : public ::testing::Test {
 protected:
  void SetUp() override {
    install_plan_.source_slot = 0;
    install_plan_.target_slot = 1;
    EXPECT_CALL(mock_delegate_, ShouldCancel(_))
        .WillRepeatedly(testing::Return(false));
  }
 
  // Test helper placed where it can easily be friended from DeltaPerformer.
  void RunManifestValidation(const DeltaArchiveManifest& manifest,
                             uint64_t major_version,
                             InstallPayloadType payload_type,
                             ErrorCode expected) {
    payload_.type = payload_type;
 
    // The Manifest we are validating.
    performer_.manifest_.CopyFrom(manifest);
    performer_.major_payload_version_ = major_version;
 
    EXPECT_EQ(expected, performer_.ValidateManifest());
  }
 
  brillo::Blob GeneratePayload(const brillo::Blob& blob_data,
                               const vector<AnnotatedOperation>& aops,
                               bool sign_payload,
                               PartitionConfig* old_part = nullptr) {
    return GeneratePayload(blob_data,
                           aops,
                           sign_payload,
                           kMaxSupportedMajorPayloadVersion,
                           kMaxSupportedMinorPayloadVersion,
                           old_part);
  }
 
  brillo::Blob GeneratePayload(const brillo::Blob& blob_data,
                               const vector<AnnotatedOperation>& aops,
                               bool sign_payload,
                               uint64_t major_version,
                               uint32_t minor_version,
                               PartitionConfig* old_part = nullptr) {
    test_utils::ScopedTempFile blob_file("Blob-XXXXXX");
    EXPECT_TRUE(test_utils::WriteFileVector(blob_file.path(), blob_data));
 
    PayloadGenerationConfig config;
    config.version.major = major_version;
    config.version.minor = minor_version;
 
    PayloadFile payload;
    EXPECT_TRUE(payload.Init(config));
 
    std::unique_ptr<PartitionConfig> old_part_uptr;
    if (!old_part) {
      old_part_uptr = std::make_unique<PartitionConfig>(kPartitionNameRoot);
      old_part = old_part_uptr.get();
    }
    if (minor_version != kFullPayloadMinorVersion) {
      // When generating a delta payload we need to include the old partition
      // information to mark it as a delta payload.
      if (old_part->path.empty()) {
        old_part->path = "/dev/null";
      }
    }
    PartitionConfig new_part(kPartitionNameRoot);
    new_part.path = "/dev/zero";
    new_part.size = 1234;
 
    payload.AddPartition(*old_part, new_part, aops);
 
    // We include a kernel partition without operations.
    old_part->name = kPartitionNameKernel;
    new_part.name = kPartitionNameKernel;
    new_part.size = 0;
    payload.AddPartition(*old_part, new_part, {});
 
    test_utils::ScopedTempFile payload_file("Payload-XXXXXX");
    string private_key =
        sign_payload ? GetBuildArtifactsPath(kUnittestPrivateKeyPath) : "";
    EXPECT_TRUE(payload.WritePayload(payload_file.path(),
                                     blob_file.path(),
                                     private_key,
                                     &payload_.metadata_size));
 
    brillo::Blob payload_data;
    EXPECT_TRUE(utils::ReadFile(payload_file.path(), &payload_data));
    return payload_data;
  }
 
  brillo::Blob GenerateSourceCopyPayload(const brillo::Blob& copied_data,
                                         bool add_hash,
                                         PartitionConfig* old_part = nullptr) {
    PayloadGenerationConfig config;
    const uint64_t kDefaultBlockSize = config.block_size;
    EXPECT_EQ(0U, copied_data.size() % kDefaultBlockSize);
    uint64_t num_blocks = copied_data.size() / kDefaultBlockSize;
    AnnotatedOperation aop;
    *(aop.op.add_src_extents()) = ExtentForRange(0, num_blocks);
    *(aop.op.add_dst_extents()) = ExtentForRange(0, num_blocks);
    aop.op.set_type(InstallOperation::SOURCE_COPY);
    brillo::Blob src_hash;
    EXPECT_TRUE(HashCalculator::RawHashOfData(copied_data, &src_hash));
    if (add_hash)
      aop.op.set_src_sha256_hash(src_hash.data(), src_hash.size());
 
    return GeneratePayload(brillo::Blob(), {aop}, false, old_part);
  }
 
  // Apply |payload_data| on partition specified in |source_path|.
  // Expect result of performer_.Write() to be |expect_success|.
  // Returns the result of the payload application.
  brillo::Blob ApplyPayload(const brillo::Blob& payload_data,
                            const string& source_path,
                            bool expect_success) {
    return ApplyPayloadToData(
        payload_data, source_path, brillo::Blob(), expect_success);
  }
 
  // Apply the payload provided in |payload_data| reading from the |source_path|
  // file and writing the contents to a new partition. The existing data in the
  // new target file are set to |target_data| before applying the payload.
  // Expect result of performer_.Write() to be |expect_success|.
  // Returns the result of the payload application.
  brillo::Blob ApplyPayloadToData(const brillo::Blob& payload_data,
                                  const string& source_path,
                                  const brillo::Blob& target_data,
                                  bool expect_success) {
    test_utils::ScopedTempFile new_part("Partition-XXXXXX");
    EXPECT_TRUE(test_utils::WriteFileVector(new_part.path(), target_data));
 
    // We installed the operations only in the rootfs partition, but the
    // delta performer needs to access all the partitions.
    fake_boot_control_.SetPartitionDevice(
        kPartitionNameRoot, install_plan_.target_slot, new_part.path());
    fake_boot_control_.SetPartitionDevice(
        kPartitionNameRoot, install_plan_.source_slot, source_path);
    fake_boot_control_.SetPartitionDevice(
        kPartitionNameKernel, install_plan_.target_slot, "/dev/null");
    fake_boot_control_.SetPartitionDevice(
        kPartitionNameKernel, install_plan_.source_slot, "/dev/null");
 
    EXPECT_EQ(expect_success,
              performer_.Write(payload_data.data(), payload_data.size()));
    EXPECT_EQ(0, performer_.Close());
 
    brillo::Blob partition_data;
    EXPECT_TRUE(utils::ReadFile(new_part.path(), &partition_data));
    return partition_data;
  }
 
  // Calls delta performer's Write method by pretending to pass in bytes from a
  // delta file whose metadata size is actual_metadata_size and tests if all
  // checks are correctly performed if the install plan contains
  // expected_metadata_size and that the result of the parsing are as per
  // hash_checks_mandatory flag.
  void DoMetadataSizeTest(uint64_t expected_metadata_size,
                          uint64_t actual_metadata_size,
                          bool hash_checks_mandatory) {
    install_plan_.hash_checks_mandatory = hash_checks_mandatory;
 
    // Set a valid magic string and version number 1.
    EXPECT_TRUE(performer_.Write("CrAU", 4));
    uint64_t version = htobe64(kChromeOSMajorPayloadVersion);
    EXPECT_TRUE(performer_.Write(&version, 8));
 
    payload_.metadata_size = expected_metadata_size;
    ErrorCode error_code;
    // When filling in size in manifest, exclude the size of the 20-byte header.
    uint64_t size_in_manifest = htobe64(actual_metadata_size - 20);
    bool result = performer_.Write(&size_in_manifest, 8, &error_code);
    if (expected_metadata_size == actual_metadata_size ||
        !hash_checks_mandatory) {
      EXPECT_TRUE(result);
    } else {
      EXPECT_FALSE(result);
      EXPECT_EQ(ErrorCode::kDownloadInvalidMetadataSize, error_code);
    }
 
    EXPECT_LT(performer_.Close(), 0);
  }
 
  // Generates a valid delta file but tests the delta performer by suppling
  // different metadata signatures as per metadata_signature_test flag and
  // sees if the result of the parsing are as per hash_checks_mandatory flag.
  void DoMetadataSignatureTest(MetadataSignatureTest metadata_signature_test,
                               bool sign_payload,
                               bool hash_checks_mandatory) {
    // Loads the payload and parses the manifest.
    brillo::Blob payload = GeneratePayload(brillo::Blob(),
                                           vector<AnnotatedOperation>(),
                                           sign_payload,
                                           kChromeOSMajorPayloadVersion,
                                           kFullPayloadMinorVersion);
 
    LOG(INFO) << "Payload size: " << payload.size();
 
    install_plan_.hash_checks_mandatory = hash_checks_mandatory;
 
    MetadataParseResult expected_result, actual_result;
    ErrorCode expected_error, actual_error;
 
    // Fill up the metadata signature in install plan according to the test.
    switch (metadata_signature_test) {
      case kEmptyMetadataSignature:
        payload_.metadata_signature.clear();
        expected_result = MetadataParseResult::kError;
        expected_error = ErrorCode::kDownloadMetadataSignatureMissingError;
        break;
 
      case kInvalidMetadataSignature:
        payload_.metadata_signature = kBogusMetadataSignature1;
        expected_result = MetadataParseResult::kError;
        expected_error = ErrorCode::kDownloadMetadataSignatureMismatch;
        break;
 
      case kValidMetadataSignature:
      default:
        // Set the install plan's metadata size to be the same as the one
        // in the manifest so that we pass the metadata size checks. Only
        // then we can get to manifest signature checks.
        ASSERT_TRUE(PayloadSigner::GetMetadataSignature(
            payload.data(),
            payload_.metadata_size,
            GetBuildArtifactsPath(kUnittestPrivateKeyPath),
            &payload_.metadata_signature));
        EXPECT_FALSE(payload_.metadata_signature.empty());
        expected_result = MetadataParseResult::kSuccess;
        expected_error = ErrorCode::kSuccess;
        break;
    }
 
    // Ignore the expected result/error if hash checks are not mandatory.
    if (!hash_checks_mandatory) {
      expected_result = MetadataParseResult::kSuccess;
      expected_error = ErrorCode::kSuccess;
    }
 
    // Use the public key corresponding to the private key used above to
    // sign the metadata.
    string public_key_path = GetBuildArtifactsPath(kUnittestPublicKeyPath);
    EXPECT_TRUE(utils::FileExists(public_key_path.c_str()));
    performer_.set_public_key_path(public_key_path);
 
    // Init actual_error with an invalid value so that we make sure
    // ParsePayloadMetadata properly populates it in all cases.
    actual_error = ErrorCode::kUmaReportedMax;
    actual_result = performer_.ParsePayloadMetadata(payload, &actual_error);
 
    EXPECT_EQ(expected_result, actual_result);
    EXPECT_EQ(expected_error, actual_error);
 
    // Check that the parsed metadata size is what's expected. This test
    // implicitly confirms that the metadata signature is valid, if required.
    EXPECT_EQ(payload_.metadata_size, performer_.metadata_size_);
  }
 
  // Helper function to pretend that the ECC file descriptor was already opened.
  // Returns a pointer to the created file descriptor.
  FakeFileDescriptor* SetFakeECCFile(size_t size) {
    EXPECT_FALSE(performer_.source_ecc_fd_) << "source_ecc_fd_ already open.";
    FakeFileDescriptor* ret = new FakeFileDescriptor();
    fake_ecc_fd_.reset(ret);
    // Call open to simulate it was already opened.
    ret->Open("", 0);
    ret->SetFileSize(size);
    performer_.source_ecc_fd_ = fake_ecc_fd_;
    return ret;
  }
 
  uint64_t GetSourceEccRecoveredFailures() const {
    return performer_.source_ecc_recovered_failures_;
  }
 
  FakePrefs prefs_;
  InstallPlan install_plan_;
  InstallPlan::Payload payload_;
  FakeBootControl fake_boot_control_;
  FakeHardware fake_hardware_;
  MockDownloadActionDelegate mock_delegate_;
  FileDescriptorPtr fake_ecc_fd_;
  DeltaPerformer performer_{&prefs_,
                            &fake_boot_control_,
                            &fake_hardware_,
                            &mock_delegate_,
                            &install_plan_,
                            &payload_,
                            false /* interactive*/};
};
 
TEST_F(DeltaPerformerTest, FullPayloadWriteTest) {
  payload_.type = InstallPayloadType::kFull;
  brillo::Blob expected_data =
      brillo::Blob(std::begin(kRandomString), std::end(kRandomString));
  expected_data.resize(4096);  // block size
  vector<AnnotatedOperation> aops;
  AnnotatedOperation aop;
  *(aop.op.add_dst_extents()) = ExtentForRange(0, 1);
  aop.op.set_data_offset(0);
  aop.op.set_data_length(expected_data.size());
  aop.op.set_type(InstallOperation::REPLACE);
  aops.push_back(aop);
 
  brillo::Blob payload_data = GeneratePayload(expected_data,
                                              aops,
                                              false,
                                              kChromeOSMajorPayloadVersion,
                                              kFullPayloadMinorVersion);
 
  EXPECT_EQ(expected_data, ApplyPayload(payload_data, "/dev/null", true));
}
 
TEST_F(DeltaPerformerTest, ShouldCancelTest) {
  payload_.type = InstallPayloadType::kFull;
  brillo::Blob expected_data =
      brillo::Blob(std::begin(kRandomString), std::end(kRandomString));
  expected_data.resize(4096);  // block size
  vector<AnnotatedOperation> aops;
  AnnotatedOperation aop;
  *(aop.op.add_dst_extents()) = ExtentForRange(0, 1);
  aop.op.set_data_offset(0);
  aop.op.set_data_length(expected_data.size());
  aop.op.set_type(InstallOperation::REPLACE);
  aops.push_back(aop);
 
  brillo::Blob payload_data = GeneratePayload(expected_data,
                                              aops,
                                              false,
                                              kChromeOSMajorPayloadVersion,
                                              kFullPayloadMinorVersion);
 
  testing::Mock::VerifyAndClearExpectations(&mock_delegate_);
  EXPECT_CALL(mock_delegate_, ShouldCancel(_))
      .WillOnce(testing::DoAll(testing::SetArgPointee<0>(ErrorCode::kError),
                               testing::Return(true)));
 
  ApplyPayload(payload_data, "/dev/null", false);
}
 
TEST_F(DeltaPerformerTest, ReplaceOperationTest) {
  brillo::Blob expected_data =
      brillo::Blob(std::begin(kRandomString), std::end(kRandomString));
  expected_data.resize(4096);  // block size
  vector<AnnotatedOperation> aops;
  AnnotatedOperation aop;
  *(aop.op.add_dst_extents()) = ExtentForRange(0, 1);
  aop.op.set_data_offset(0);
  aop.op.set_data_length(expected_data.size());
  aop.op.set_type(InstallOperation::REPLACE);
  aops.push_back(aop);
 
  brillo::Blob payload_data = GeneratePayload(expected_data, aops, false);
 
  EXPECT_EQ(expected_data, ApplyPayload(payload_data, "/dev/null", true));
}
 
TEST_F(DeltaPerformerTest, ReplaceBzOperationTest) {
  brillo::Blob expected_data =
      brillo::Blob(std::begin(kRandomString), std::end(kRandomString));
  expected_data.resize(4096);  // block size
  brillo::Blob bz_data;
  EXPECT_TRUE(BzipCompress(expected_data, &bz_data));
 
  vector<AnnotatedOperation> aops;
  AnnotatedOperation aop;
  *(aop.op.add_dst_extents()) = ExtentForRange(0, 1);
  aop.op.set_data_offset(0);
  aop.op.set_data_length(bz_data.size());
  aop.op.set_type(InstallOperation::REPLACE_BZ);
  aops.push_back(aop);
 
  brillo::Blob payload_data = GeneratePayload(bz_data, aops, false);
 
  EXPECT_EQ(expected_data, ApplyPayload(payload_data, "/dev/null", true));
}
 
TEST_F(DeltaPerformerTest, ReplaceXzOperationTest) {
  brillo::Blob xz_data(std::begin(kXzCompressedData),
                       std::end(kXzCompressedData));
  // The compressed xz data contains a single "a" and padded with zero for the
  // rest of the block.
  brillo::Blob expected_data = brillo::Blob(4096, 0);
  expected_data[0] = 'a';
 
  AnnotatedOperation aop;
  *(aop.op.add_dst_extents()) = ExtentForRange(0, 1);
  aop.op.set_data_offset(0);
  aop.op.set_data_length(xz_data.size());
  aop.op.set_type(InstallOperation::REPLACE_XZ);
  vector<AnnotatedOperation> aops = {aop};
 
  brillo::Blob payload_data = GeneratePayload(xz_data, aops, false);
 
  EXPECT_EQ(expected_data, ApplyPayload(payload_data, "/dev/null", true));
}
 
TEST_F(DeltaPerformerTest, ZeroOperationTest) {
  brillo::Blob existing_data = brillo::Blob(4096 * 10, 'a');
  brillo::Blob expected_data = existing_data;
  // Blocks 4, 5 and 7 should have zeros instead of 'a' after the operation is
  // applied.
  std::fill(
      expected_data.data() + 4096 * 4, expected_data.data() + 4096 * 6, 0);
  std::fill(
      expected_data.data() + 4096 * 7, expected_data.data() + 4096 * 8, 0);
 
  AnnotatedOperation aop;
  *(aop.op.add_dst_extents()) = ExtentForRange(4, 2);
  *(aop.op.add_dst_extents()) = ExtentForRange(7, 1);
  aop.op.set_type(InstallOperation::ZERO);
  vector<AnnotatedOperation> aops = {aop};
 
  brillo::Blob payload_data = GeneratePayload(brillo::Blob(), aops, false);
 
  EXPECT_EQ(expected_data,
            ApplyPayloadToData(payload_data, "/dev/null", existing_data, true));
}
 
TEST_F(DeltaPerformerTest, SourceCopyOperationTest) {
  brillo::Blob expected_data(std::begin(kRandomString),
                             std::end(kRandomString));
  expected_data.resize(4096);  // block size
  AnnotatedOperation aop;
  *(aop.op.add_src_extents()) = ExtentForRange(0, 1);
  *(aop.op.add_dst_extents()) = ExtentForRange(0, 1);
  aop.op.set_type(InstallOperation::SOURCE_COPY);
  brillo::Blob src_hash;
  EXPECT_TRUE(HashCalculator::RawHashOfData(expected_data, &src_hash));
  aop.op.set_src_sha256_hash(src_hash.data(), src_hash.size());
 
  test_utils::ScopedTempFile source("Source-XXXXXX");
  EXPECT_TRUE(test_utils::WriteFileVector(source.path(), expected_data));
 
  PartitionConfig old_part(kPartitionNameRoot);
  old_part.path = source.path();
  old_part.size = expected_data.size();
 
  brillo::Blob payload_data =
      GeneratePayload(brillo::Blob(), {aop}, false, &old_part);
 
  EXPECT_EQ(expected_data, ApplyPayload(payload_data, source.path(), true));
}
 
TEST_F(DeltaPerformerTest, PuffdiffOperationTest) {
  AnnotatedOperation aop;
  *(aop.op.add_src_extents()) = ExtentForRange(0, 1);
  *(aop.op.add_dst_extents()) = ExtentForRange(0, 1);
  brillo::Blob puffdiff_payload(std::begin(puffdiff_patch),
                                std::end(puffdiff_patch));
  aop.op.set_data_offset(0);
  aop.op.set_data_length(puffdiff_payload.size());
  aop.op.set_type(InstallOperation::PUFFDIFF);
  brillo::Blob src(std::begin(src_deflates), std::end(src_deflates));
  src.resize(4096);  // block size
  brillo::Blob src_hash;
  EXPECT_TRUE(HashCalculator::RawHashOfData(src, &src_hash));
  aop.op.set_src_sha256_hash(src_hash.data(), src_hash.size());
 
  test_utils::ScopedTempFile source("Source-XXXXXX");
  EXPECT_TRUE(test_utils::WriteFileVector(source.path(), src));
 
  PartitionConfig old_part(kPartitionNameRoot);
  old_part.path = source.path();
  old_part.size = src.size();
 
  brillo::Blob payload_data =
      GeneratePayload(puffdiff_payload, {aop}, false, &old_part);
 
  brillo::Blob dst(std::begin(dst_deflates), std::end(dst_deflates));
  EXPECT_EQ(dst, ApplyPayload(payload_data, source.path(), true));
}
 
TEST_F(DeltaPerformerTest, SourceHashMismatchTest) {
  brillo::Blob expected_data = {'f', 'o', 'o'};
  brillo::Blob actual_data = {'b', 'a', 'r'};
  expected_data.resize(4096);  // block size
  actual_data.resize(4096);    // block size
 
  AnnotatedOperation aop;
  *(aop.op.add_src_extents()) = ExtentForRange(0, 1);
  *(aop.op.add_dst_extents()) = ExtentForRange(0, 1);
  aop.op.set_type(InstallOperation::SOURCE_COPY);
  brillo::Blob src_hash;
  EXPECT_TRUE(HashCalculator::RawHashOfData(expected_data, &src_hash));
  aop.op.set_src_sha256_hash(src_hash.data(), src_hash.size());
 
  test_utils::ScopedTempFile source("Source-XXXXXX");
  EXPECT_TRUE(test_utils::WriteFileVector(source.path(), actual_data));
 
  PartitionConfig old_part(kPartitionNameRoot);
  old_part.path = source.path();
  old_part.size = actual_data.size();
 
  brillo::Blob payload_data =
      GeneratePayload(brillo::Blob(), {aop}, false, &old_part);
 
  EXPECT_EQ(actual_data, ApplyPayload(payload_data, source.path(), false));
}
 
// Test that the error-corrected file descriptor is used to read the partition
// since the source partition doesn't match the operation hash.
TEST_F(DeltaPerformerTest, ErrorCorrectionSourceCopyFallbackTest) {
  constexpr size_t kCopyOperationSize = 4 * 4096;
  test_utils::ScopedTempFile source("Source-XXXXXX");
  // Write invalid data to the source image, which doesn't match the expected
  // hash.
  brillo::Blob invalid_data(kCopyOperationSize, 0x55);
  EXPECT_TRUE(test_utils::WriteFileVector(source.path(), invalid_data));
 
  // Setup the fec file descriptor as the fake stream, which matches
  // |expected_data|.
  FakeFileDescriptor* fake_fec = SetFakeECCFile(kCopyOperationSize);
  brillo::Blob expected_data = FakeFileDescriptorData(kCopyOperationSize);
 
  PartitionConfig old_part(kPartitionNameRoot);
  old_part.path = source.path();
  old_part.size = invalid_data.size();
 
  brillo::Blob payload_data =
      GenerateSourceCopyPayload(expected_data, true, &old_part);
  EXPECT_EQ(expected_data, ApplyPayload(payload_data, source.path(), true));
  // Verify that the fake_fec was actually used.
  EXPECT_EQ(1U, fake_fec->GetReadOps().size());
  EXPECT_EQ(1U, GetSourceEccRecoveredFailures());
}
 
// Test that the error-corrected file descriptor is used to read a partition
// when no hash is available for SOURCE_COPY but it falls back to the normal
// file descriptor when the size of the error corrected one is too small.
TEST_F(DeltaPerformerTest, ErrorCorrectionSourceCopyWhenNoHashFallbackTest) {
  constexpr size_t kCopyOperationSize = 4 * 4096;
  test_utils::ScopedTempFile source("Source-XXXXXX");
  // Setup the source path with the right expected data.
  brillo::Blob expected_data = FakeFileDescriptorData(kCopyOperationSize);
  EXPECT_TRUE(test_utils::WriteFileVector(source.path(), expected_data));
 
  // Setup the fec file descriptor as the fake stream, with smaller data than
  // the expected.
  FakeFileDescriptor* fake_fec = SetFakeECCFile(kCopyOperationSize / 2);
 
  PartitionConfig old_part(kPartitionNameRoot);
  old_part.path = source.path();
  old_part.size = expected_data.size();
 
  // The payload operation doesn't include an operation hash.
  brillo::Blob payload_data =
      GenerateSourceCopyPayload(expected_data, false, &old_part);
  EXPECT_EQ(expected_data, ApplyPayload(payload_data, source.path(), true));
  // Verify that the fake_fec was attempted to be used. Since the file
  // descriptor is shorter it can actually do more than one read to realize it
  // reached the EOF.
  EXPECT_LE(1U, fake_fec->GetReadOps().size());
  // This fallback doesn't count as an error-corrected operation since the
  // operation hash was not available.
  EXPECT_EQ(0U, GetSourceEccRecoveredFailures());
}
 
TEST_F(DeltaPerformerTest, ChooseSourceFDTest) {
  constexpr size_t kSourceSize = 4 * 4096;
  test_utils::ScopedTempFile source("Source-XXXXXX");
  // Write invalid data to the source image, which doesn't match the expected
  // hash.
  brillo::Blob invalid_data(kSourceSize, 0x55);
  EXPECT_TRUE(test_utils::WriteFileVector(source.path(), invalid_data));
 
  performer_.source_fd_ = std::make_shared<EintrSafeFileDescriptor>();
  performer_.source_fd_->Open(source.path().c_str(), O_RDONLY);
  performer_.block_size_ = 4096;
 
  // Setup the fec file descriptor as the fake stream, which matches
  // |expected_data|.
  FakeFileDescriptor* fake_fec = SetFakeECCFile(kSourceSize);
  brillo::Blob expected_data = FakeFileDescriptorData(kSourceSize);
 
  InstallOperation op;
  *(op.add_src_extents()) = ExtentForRange(0, kSourceSize / 4096);
  brillo::Blob src_hash;
  EXPECT_TRUE(HashCalculator::RawHashOfData(expected_data, &src_hash));
  op.set_src_sha256_hash(src_hash.data(), src_hash.size());
 
  ErrorCode error = ErrorCode::kSuccess;
  EXPECT_EQ(performer_.source_ecc_fd_, performer_.ChooseSourceFD(op, &error));
  EXPECT_EQ(ErrorCode::kSuccess, error);
  // Verify that the fake_fec was actually used.
  EXPECT_EQ(1U, fake_fec->GetReadOps().size());
  EXPECT_EQ(1U, GetSourceEccRecoveredFailures());
}
 
TEST_F(DeltaPerformerTest, ExtentsToByteStringTest) {
  uint64_t test[] = {1, 1, 4, 2, 0, 1};
  static_assert(arraysize(test) % 2 == 0, "Array size uneven");
  const uint64_t block_size = 4096;
  const uint64_t file_length = 4 * block_size - 13;
 
  google::protobuf::RepeatedPtrField<Extent> extents;
  for (size_t i = 0; i < arraysize(test); i += 2) {
    *(extents.Add()) = ExtentForRange(test[i], test[i + 1]);
  }
 
  string expected_output = "4096:4096,16384:8192,0:4083";
  string actual_output;
  EXPECT_TRUE(DeltaPerformer::ExtentsToBsdiffPositionsString(
      extents, block_size, file_length, &actual_output));
  EXPECT_EQ(expected_output, actual_output);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestFullGoodTest) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
  manifest.mutable_new_kernel_info();
  manifest.mutable_new_rootfs_info();
  manifest.set_minor_version(kFullPayloadMinorVersion);
 
  RunManifestValidation(manifest,
                        kChromeOSMajorPayloadVersion,
                        InstallPayloadType::kFull,
                        ErrorCode::kSuccess);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestDeltaGoodTest) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
  manifest.mutable_old_kernel_info();
  manifest.mutable_old_rootfs_info();
  manifest.mutable_new_kernel_info();
  manifest.mutable_new_rootfs_info();
  manifest.set_minor_version(kMaxSupportedMinorPayloadVersion);
 
  RunManifestValidation(manifest,
                        kChromeOSMajorPayloadVersion,
                        InstallPayloadType::kDelta,
                        ErrorCode::kSuccess);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestDeltaMinGoodTest) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
  manifest.mutable_old_kernel_info();
  manifest.mutable_old_rootfs_info();
  manifest.mutable_new_kernel_info();
  manifest.mutable_new_rootfs_info();
  manifest.set_minor_version(kMinSupportedMinorPayloadVersion);
 
  RunManifestValidation(manifest,
                        kChromeOSMajorPayloadVersion,
                        InstallPayloadType::kDelta,
                        ErrorCode::kSuccess);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestFullUnsetMinorVersion) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
 
  RunManifestValidation(manifest,
                        kMaxSupportedMajorPayloadVersion,
                        InstallPayloadType::kFull,
                        ErrorCode::kSuccess);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestDeltaUnsetMinorVersion) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
  // Add an empty old_rootfs_info() to trick the DeltaPerformer into think that
  // this is a delta payload manifest with a missing minor version.
  manifest.mutable_old_rootfs_info();
 
  RunManifestValidation(manifest,
                        kMaxSupportedMajorPayloadVersion,
                        InstallPayloadType::kDelta,
                        ErrorCode::kUnsupportedMinorPayloadVersion);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestFullOldKernelTest) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
  manifest.mutable_old_kernel_info();
  manifest.mutable_new_kernel_info();
  manifest.mutable_new_rootfs_info();
  manifest.set_minor_version(kMaxSupportedMinorPayloadVersion);
 
  RunManifestValidation(manifest,
                        kChromeOSMajorPayloadVersion,
                        InstallPayloadType::kFull,
                        ErrorCode::kPayloadMismatchedType);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestFullOldRootfsTest) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
  manifest.mutable_old_rootfs_info();
  manifest.mutable_new_kernel_info();
  manifest.mutable_new_rootfs_info();
  manifest.set_minor_version(kMaxSupportedMinorPayloadVersion);
 
  RunManifestValidation(manifest,
                        kChromeOSMajorPayloadVersion,
                        InstallPayloadType::kFull,
                        ErrorCode::kPayloadMismatchedType);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestFullPartitionUpdateTest) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
  PartitionUpdate* partition = manifest.add_partitions();
  partition->mutable_old_partition_info();
  partition->mutable_new_partition_info();
  manifest.set_minor_version(kMaxSupportedMinorPayloadVersion);
 
  RunManifestValidation(manifest,
                        kBrilloMajorPayloadVersion,
                        InstallPayloadType::kFull,
                        ErrorCode::kPayloadMismatchedType);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestBadMinorVersion) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
 
  // Generate a bad version number.
  manifest.set_minor_version(kMaxSupportedMinorPayloadVersion + 10000);
  // Mark the manifest as a delta payload by setting old_rootfs_info.
  manifest.mutable_old_rootfs_info();
 
  RunManifestValidation(manifest,
                        kMaxSupportedMajorPayloadVersion,
                        InstallPayloadType::kDelta,
                        ErrorCode::kUnsupportedMinorPayloadVersion);
}
 
TEST_F(DeltaPerformerTest, ValidateManifestDowngrade) {
  // The Manifest we are validating.
  DeltaArchiveManifest manifest;
 
  manifest.set_minor_version(kFullPayloadMinorVersion);
  manifest.set_max_timestamp(1);
  fake_hardware_.SetBuildTimestamp(2);
 
  RunManifestValidation(manifest,
                        kMaxSupportedMajorPayloadVersion,
                        InstallPayloadType::kFull,
                        ErrorCode::kPayloadTimestampError);
}
 
TEST_F(DeltaPerformerTest, BrilloMetadataSignatureSizeTest) {
  unsigned int seed = time(nullptr);
  EXPECT_TRUE(performer_.Write(kDeltaMagic, sizeof(kDeltaMagic)));
 
  uint64_t major_version = htobe64(kBrilloMajorPayloadVersion);
  EXPECT_TRUE(performer_.Write(&major_version, 8));
 
  uint64_t manifest_size = rand_r(&seed) % 256;
  uint64_t manifest_size_be = htobe64(manifest_size);
  EXPECT_TRUE(performer_.Write(&manifest_size_be, 8));
 
  uint32_t metadata_signature_size = rand_r(&seed) % 256;
  uint32_t metadata_signature_size_be = htobe32(metadata_signature_size);
  EXPECT_TRUE(performer_.Write(&metadata_signature_size_be, 4));
 
  EXPECT_LT(performer_.Close(), 0);
 
  EXPECT_TRUE(performer_.IsHeaderParsed());
  EXPECT_EQ(kBrilloMajorPayloadVersion, performer_.major_payload_version_);
  EXPECT_EQ(24 + manifest_size, performer_.metadata_size_);  // 4 + 8 + 8 + 4
  EXPECT_EQ(metadata_signature_size, performer_.metadata_signature_size_);
}
 
TEST_F(DeltaPerformerTest, BrilloParsePayloadMetadataTest) {
  brillo::Blob payload_data = GeneratePayload(
      {}, {}, true, kBrilloMajorPayloadVersion, kSourceMinorPayloadVersion);
  install_plan_.hash_checks_mandatory = true;
  performer_.set_public_key_path(GetBuildArtifactsPath(kUnittestPublicKeyPath));
  ErrorCode error;
  EXPECT_EQ(MetadataParseResult::kSuccess,
            performer_.ParsePayloadMetadata(payload_data, &error));
  EXPECT_EQ(ErrorCode::kSuccess, error);
}
 
TEST_F(DeltaPerformerTest, BadDeltaMagicTest) {
  EXPECT_TRUE(performer_.Write("junk", 4));
  EXPECT_FALSE(performer_.Write("morejunk", 8));
  EXPECT_LT(performer_.Close(), 0);
}
 
TEST_F(DeltaPerformerTest, MissingMandatoryMetadataSizeTest) {
  DoMetadataSizeTest(0, 75456, true);
}
 
TEST_F(DeltaPerformerTest, MissingNonMandatoryMetadataSizeTest) {
  DoMetadataSizeTest(0, 123456, false);
}
 
TEST_F(DeltaPerformerTest, InvalidMandatoryMetadataSizeTest) {
  DoMetadataSizeTest(13000, 140000, true);
}
 
TEST_F(DeltaPerformerTest, InvalidNonMandatoryMetadataSizeTest) {
  DoMetadataSizeTest(40000, 50000, false);
}
 
TEST_F(DeltaPerformerTest, ValidMandatoryMetadataSizeTest) {
  DoMetadataSizeTest(85376, 85376, true);
}
 
TEST_F(DeltaPerformerTest, MandatoryEmptyMetadataSignatureTest) {
  DoMetadataSignatureTest(kEmptyMetadataSignature, true, true);
}
 
TEST_F(DeltaPerformerTest, NonMandatoryEmptyMetadataSignatureTest) {
  DoMetadataSignatureTest(kEmptyMetadataSignature, true, false);
}
 
TEST_F(DeltaPerformerTest, MandatoryInvalidMetadataSignatureTest) {
  DoMetadataSignatureTest(kInvalidMetadataSignature, true, true);
}
 
TEST_F(DeltaPerformerTest, NonMandatoryInvalidMetadataSignatureTest) {
  DoMetadataSignatureTest(kInvalidMetadataSignature, true, false);
}
 
TEST_F(DeltaPerformerTest, MandatoryValidMetadataSignature1Test) {
  DoMetadataSignatureTest(kValidMetadataSignature, false, true);
}
 
TEST_F(DeltaPerformerTest, MandatoryValidMetadataSignature2Test) {
  DoMetadataSignatureTest(kValidMetadataSignature, true, true);
}
 
TEST_F(DeltaPerformerTest, NonMandatoryValidMetadataSignatureTest) {
  DoMetadataSignatureTest(kValidMetadataSignature, true, false);
}
 
TEST_F(DeltaPerformerTest, UsePublicKeyFromResponse) {
  // The result of the GetPublicKeyResponse() method is based on three things
  //
  //  1. Whether it's an official build; and
  //  2. Whether the Public RSA key to be used is in the root filesystem; and
  //  3. Whether the response has a public key
  //
  // We test all eight combinations to ensure that we only use the
  // public key in the response if
  //
  //  a. it's not an official build; and
  //  b. there is no key in the root filesystem.
 
  base::ScopedTempDir temp_dir;
  ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
  string non_existing_file = temp_dir.GetPath().Append("non-existing").value();
  string existing_file = temp_dir.GetPath().Append("existing").value();
  constexpr char kExistingKey[] = "Existing";
  ASSERT_TRUE(test_utils::WriteFileString(existing_file, kExistingKey));
 
  // Non-official build, non-existing public-key, key in response ->
  // kResponseKey
  fake_hardware_.SetIsOfficialBuild(false);
  performer_.public_key_path_ = non_existing_file;
  // This is the result of 'echo -n "Response" | base64' and is not meant to be
  // a valid public key, but it is valid base-64.
  constexpr char kResponseKey[] = "Response";
  constexpr char kBase64ResponseKey[] = "UmVzcG9uc2U=";
  install_plan_.public_key_rsa = kBase64ResponseKey;
  string public_key;
  EXPECT_TRUE(performer_.GetPublicKey(&public_key));
  EXPECT_EQ(public_key, kResponseKey);
  // Same with official build -> no key
  fake_hardware_.SetIsOfficialBuild(true);
  EXPECT_TRUE(performer_.GetPublicKey(&public_key));
  EXPECT_TRUE(public_key.empty());
 
  // Non-official build, existing public-key, key in response -> kExistingKey
  fake_hardware_.SetIsOfficialBuild(false);
  performer_.public_key_path_ = existing_file;
  install_plan_.public_key_rsa = kBase64ResponseKey;
  EXPECT_TRUE(performer_.GetPublicKey(&public_key));
  EXPECT_EQ(public_key, kExistingKey);
  // Same with official build -> kExistingKey
  fake_hardware_.SetIsOfficialBuild(true);
  EXPECT_TRUE(performer_.GetPublicKey(&public_key));
  EXPECT_EQ(public_key, kExistingKey);
 
  // Non-official build, non-existing public-key, no key in response -> no key
  fake_hardware_.SetIsOfficialBuild(false);
  performer_.public_key_path_ = non_existing_file;
  install_plan_.public_key_rsa = "";
  EXPECT_TRUE(performer_.GetPublicKey(&public_key));
  EXPECT_TRUE(public_key.empty());
  // Same with official build -> no key
  fake_hardware_.SetIsOfficialBuild(true);
  EXPECT_TRUE(performer_.GetPublicKey(&public_key));
  EXPECT_TRUE(public_key.empty());
 
  // Non-official build, existing public-key, no key in response -> kExistingKey
  fake_hardware_.SetIsOfficialBuild(false);
  performer_.public_key_path_ = existing_file;
  install_plan_.public_key_rsa = "";
  EXPECT_TRUE(performer_.GetPublicKey(&public_key));
  EXPECT_EQ(public_key, kExistingKey);
  // Same with official build -> kExistingKey
  fake_hardware_.SetIsOfficialBuild(true);
  EXPECT_TRUE(performer_.GetPublicKey(&public_key));
  EXPECT_EQ(public_key, kExistingKey);
 
  // Non-official build, non-existing public-key, key in response
  // but invalid base64 -> false
  fake_hardware_.SetIsOfficialBuild(false);
  performer_.public_key_path_ = non_existing_file;
  install_plan_.public_key_rsa = "not-valid-base64";
  EXPECT_FALSE(performer_.GetPublicKey(&public_key));
}
 
TEST_F(DeltaPerformerTest, ConfVersionsMatch) {
  // Test that the versions in update_engine.conf that is installed to the
  // image match the maximum supported delta versions in the update engine.
  uint32_t minor_version;
  brillo::KeyValueStore store;
  EXPECT_TRUE(store.Load(GetBuildArtifactsPath().Append("update_engine.conf")));
  EXPECT_TRUE(utils::GetMinorVersion(store, &minor_version));
  EXPECT_EQ(kMaxSupportedMinorPayloadVersion, minor_version);
 
  string major_version_str;
  uint64_t major_version;
  EXPECT_TRUE(store.GetString("PAYLOAD_MAJOR_VERSION", &major_version_str));
  EXPECT_TRUE(base::StringToUint64(major_version_str, &major_version));
  EXPECT_EQ(kMaxSupportedMajorPayloadVersion, major_version);
}
 
}  // namespace chromeos_update_engine