// Copyright 2011 the V8 project authors. All rights reserved.
|
// Use of this source code is governed by a BSD-style license that can be
|
// found in the LICENSE file.
|
|
// A Disassembler object is used to disassemble a block of code instruction by
|
// instruction. The default implementation of the NameConverter object can be
|
// overriden to modify register names or to do symbol lookup on addresses.
|
//
|
// The example below will disassemble a block of code and print it to stdout.
|
//
|
// NameConverter converter;
|
// Disassembler d(converter);
|
// for (byte* pc = begin; pc < end;) {
|
// v8::internal::EmbeddedVector<char, 256> buffer;
|
// byte* prev_pc = pc;
|
// pc += d.InstructionDecode(buffer, pc);
|
// printf("%p %08x %s\n",
|
// prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
|
// }
|
//
|
// The Disassembler class also has a convenience method to disassemble a block
|
// of code into a FILE*, meaning that the above functionality could also be
|
// achieved by just calling Disassembler::Disassemble(stdout, begin, end);
|
|
|
#include <assert.h>
|
#include <stdarg.h>
|
#include <stdio.h>
|
#include <string.h>
|
|
#if V8_TARGET_ARCH_ARM
|
|
#include "src/arm/constants-arm.h"
|
#include "src/base/bits.h"
|
#include "src/base/platform/platform.h"
|
#include "src/disasm.h"
|
#include "src/macro-assembler.h"
|
|
|
namespace v8 {
|
namespace internal {
|
|
const auto GetRegConfig = RegisterConfiguration::Default;
|
|
//------------------------------------------------------------------------------
|
|
// Decoder decodes and disassembles instructions into an output buffer.
|
// It uses the converter to convert register names and call destinations into
|
// more informative description.
|
class Decoder {
|
public:
|
Decoder(const disasm::NameConverter& converter,
|
Vector<char> out_buffer)
|
: converter_(converter),
|
out_buffer_(out_buffer),
|
out_buffer_pos_(0) {
|
out_buffer_[out_buffer_pos_] = '\0';
|
}
|
|
~Decoder() {}
|
|
// Writes one disassembled instruction into 'buffer' (0-terminated).
|
// Returns the length of the disassembled machine instruction in bytes.
|
int InstructionDecode(byte* instruction);
|
|
static bool IsConstantPoolAt(byte* instr_ptr);
|
static int ConstantPoolSizeAt(byte* instr_ptr);
|
|
private:
|
// Bottleneck functions to print into the out_buffer.
|
void PrintChar(const char ch);
|
void Print(const char* str);
|
|
// Printing of common values.
|
void PrintRegister(int reg);
|
void PrintSRegister(int reg);
|
void PrintDRegister(int reg);
|
int FormatVFPRegister(Instruction* instr, const char* format);
|
void PrintMovwMovt(Instruction* instr);
|
int FormatVFPinstruction(Instruction* instr, const char* format);
|
void PrintCondition(Instruction* instr);
|
void PrintShiftRm(Instruction* instr);
|
void PrintShiftImm(Instruction* instr);
|
void PrintShiftSat(Instruction* instr);
|
void PrintPU(Instruction* instr);
|
void PrintSoftwareInterrupt(SoftwareInterruptCodes svc);
|
|
// Handle formatting of instructions and their options.
|
int FormatRegister(Instruction* instr, const char* option);
|
void FormatNeonList(int Vd, int type);
|
void FormatNeonMemory(int Rn, int align, int Rm);
|
int FormatOption(Instruction* instr, const char* option);
|
void Format(Instruction* instr, const char* format);
|
void Unknown(Instruction* instr);
|
|
// Each of these functions decodes one particular instruction type, a 3-bit
|
// field in the instruction encoding.
|
// Types 0 and 1 are combined as they are largely the same except for the way
|
// they interpret the shifter operand.
|
void DecodeType01(Instruction* instr);
|
void DecodeType2(Instruction* instr);
|
void DecodeType3(Instruction* instr);
|
void DecodeType4(Instruction* instr);
|
void DecodeType5(Instruction* instr);
|
void DecodeType6(Instruction* instr);
|
// Type 7 includes special Debugger instructions.
|
int DecodeType7(Instruction* instr);
|
// CP15 coprocessor instructions.
|
void DecodeTypeCP15(Instruction* instr);
|
// For VFP support.
|
void DecodeTypeVFP(Instruction* instr);
|
void DecodeType6CoprocessorIns(Instruction* instr);
|
|
void DecodeSpecialCondition(Instruction* instr);
|
|
void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
|
void DecodeVCMP(Instruction* instr);
|
void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
|
void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
|
|
const disasm::NameConverter& converter_;
|
Vector<char> out_buffer_;
|
int out_buffer_pos_;
|
|
DISALLOW_COPY_AND_ASSIGN(Decoder);
|
};
|
|
|
// Support for assertions in the Decoder formatting functions.
|
#define STRING_STARTS_WITH(string, compare_string) \
|
(strncmp(string, compare_string, strlen(compare_string)) == 0)
|
|
|
// Append the ch to the output buffer.
|
void Decoder::PrintChar(const char ch) {
|
out_buffer_[out_buffer_pos_++] = ch;
|
}
|
|
|
// Append the str to the output buffer.
|
void Decoder::Print(const char* str) {
|
char cur = *str++;
|
while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
|
PrintChar(cur);
|
cur = *str++;
|
}
|
out_buffer_[out_buffer_pos_] = 0;
|
}
|
|
|
// These condition names are defined in a way to match the native disassembler
|
// formatting. See for example the command "objdump -d <binary file>".
|
static const char* const cond_names[kNumberOfConditions] = {
|
"eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" ,
|
"hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
|
};
|
|
|
// Print the condition guarding the instruction.
|
void Decoder::PrintCondition(Instruction* instr) {
|
Print(cond_names[instr->ConditionValue()]);
|
}
|
|
|
// Print the register name according to the active name converter.
|
void Decoder::PrintRegister(int reg) {
|
Print(converter_.NameOfCPURegister(reg));
|
}
|
|
|
// Print the VFP S register name according to the active name converter.
|
void Decoder::PrintSRegister(int reg) {
|
Print(VFPRegisters::Name(reg, false));
|
}
|
|
|
// Print the VFP D register name according to the active name converter.
|
void Decoder::PrintDRegister(int reg) {
|
Print(VFPRegisters::Name(reg, true));
|
}
|
|
|
// These shift names are defined in a way to match the native disassembler
|
// formatting. See for example the command "objdump -d <binary file>".
|
static const char* const shift_names[kNumberOfShifts] = {
|
"lsl", "lsr", "asr", "ror"
|
};
|
|
|
// Print the register shift operands for the instruction. Generally used for
|
// data processing instructions.
|
void Decoder::PrintShiftRm(Instruction* instr) {
|
ShiftOp shift = instr->ShiftField();
|
int shift_index = instr->ShiftValue();
|
int shift_amount = instr->ShiftAmountValue();
|
int rm = instr->RmValue();
|
|
PrintRegister(rm);
|
|
if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) {
|
// Special case for using rm only.
|
return;
|
}
|
if (instr->RegShiftValue() == 0) {
|
// by immediate
|
if ((shift == ROR) && (shift_amount == 0)) {
|
Print(", RRX");
|
return;
|
} else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
|
shift_amount = 32;
|
}
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
", %s #%d",
|
shift_names[shift_index],
|
shift_amount);
|
} else {
|
// by register
|
int rs = instr->RsValue();
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
", %s ", shift_names[shift_index]);
|
PrintRegister(rs);
|
}
|
}
|
|
|
// Print the immediate operand for the instruction. Generally used for data
|
// processing instructions.
|
void Decoder::PrintShiftImm(Instruction* instr) {
|
int rotate = instr->RotateValue() * 2;
|
int immed8 = instr->Immed8Value();
|
int imm = base::bits::RotateRight32(immed8, rotate);
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%d", imm);
|
}
|
|
|
// Print the optional shift and immediate used by saturating instructions.
|
void Decoder::PrintShiftSat(Instruction* instr) {
|
int shift = instr->Bits(11, 7);
|
if (shift > 0) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
", %s #%d",
|
shift_names[instr->Bit(6) * 2],
|
instr->Bits(11, 7));
|
}
|
}
|
|
|
// Print PU formatting to reduce complexity of FormatOption.
|
void Decoder::PrintPU(Instruction* instr) {
|
switch (instr->PUField()) {
|
case da_x: {
|
Print("da");
|
break;
|
}
|
case ia_x: {
|
Print("ia");
|
break;
|
}
|
case db_x: {
|
Print("db");
|
break;
|
}
|
case ib_x: {
|
Print("ib");
|
break;
|
}
|
default: {
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
|
|
// Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
|
// the FormatOption method.
|
void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) {
|
switch (svc) {
|
case kCallRtRedirected:
|
Print("call rt redirected");
|
return;
|
case kBreakpoint:
|
Print("breakpoint");
|
return;
|
default:
|
if (svc >= kStopCode) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%d - 0x%x",
|
svc & kStopCodeMask,
|
svc & kStopCodeMask);
|
} else {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%d",
|
svc);
|
}
|
return;
|
}
|
}
|
|
|
// Handle all register based formatting in this function to reduce the
|
// complexity of FormatOption.
|
int Decoder::FormatRegister(Instruction* instr, const char* format) {
|
DCHECK_EQ(format[0], 'r');
|
if (format[1] == 'n') { // 'rn: Rn register
|
int reg = instr->RnValue();
|
PrintRegister(reg);
|
return 2;
|
} else if (format[1] == 'd') { // 'rd: Rd register
|
int reg = instr->RdValue();
|
PrintRegister(reg);
|
return 2;
|
} else if (format[1] == 's') { // 'rs: Rs register
|
int reg = instr->RsValue();
|
PrintRegister(reg);
|
return 2;
|
} else if (format[1] == 'm') { // 'rm: Rm register
|
int reg = instr->RmValue();
|
PrintRegister(reg);
|
return 2;
|
} else if (format[1] == 't') { // 'rt: Rt register
|
int reg = instr->RtValue();
|
PrintRegister(reg);
|
return 2;
|
} else if (format[1] == 'l') {
|
// 'rlist: register list for load and store multiple instructions
|
DCHECK(STRING_STARTS_WITH(format, "rlist"));
|
int rlist = instr->RlistValue();
|
int reg = 0;
|
Print("{");
|
// Print register list in ascending order, by scanning the bit mask.
|
while (rlist != 0) {
|
if ((rlist & 1) != 0) {
|
PrintRegister(reg);
|
if ((rlist >> 1) != 0) {
|
Print(", ");
|
}
|
}
|
reg++;
|
rlist >>= 1;
|
}
|
Print("}");
|
return 5;
|
}
|
UNREACHABLE();
|
}
|
|
|
// Handle all VFP register based formatting in this function to reduce the
|
// complexity of FormatOption.
|
int Decoder::FormatVFPRegister(Instruction* instr, const char* format) {
|
DCHECK((format[0] == 'S') || (format[0] == 'D'));
|
|
VFPRegPrecision precision =
|
format[0] == 'D' ? kDoublePrecision : kSinglePrecision;
|
|
int retval = 2;
|
int reg = -1;
|
if (format[1] == 'n') {
|
reg = instr->VFPNRegValue(precision);
|
} else if (format[1] == 'm') {
|
reg = instr->VFPMRegValue(precision);
|
} else if (format[1] == 'd') {
|
if ((instr->TypeValue() == 7) &&
|
(instr->Bit(24) == 0x0) &&
|
(instr->Bits(11, 9) == 0x5) &&
|
(instr->Bit(4) == 0x1)) {
|
// vmov.32 has Vd in a different place.
|
reg = instr->Bits(19, 16) | (instr->Bit(7) << 4);
|
} else {
|
reg = instr->VFPDRegValue(precision);
|
}
|
|
if (format[2] == '+') {
|
int immed8 = instr->Immed8Value();
|
if (format[0] == 'S') reg += immed8 - 1;
|
if (format[0] == 'D') reg += (immed8 / 2 - 1);
|
}
|
if (format[2] == '+') retval = 3;
|
} else {
|
UNREACHABLE();
|
}
|
|
if (precision == kSinglePrecision) {
|
PrintSRegister(reg);
|
} else {
|
PrintDRegister(reg);
|
}
|
|
return retval;
|
}
|
|
|
int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) {
|
Print(format);
|
return 0;
|
}
|
|
|
void Decoder::FormatNeonList(int Vd, int type) {
|
if (type == nlt_1) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"{d%d}", Vd);
|
} else if (type == nlt_2) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"{d%d, d%d}", Vd, Vd + 1);
|
} else if (type == nlt_3) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"{d%d, d%d, d%d}", Vd, Vd + 1, Vd + 2);
|
} else if (type == nlt_4) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"{d%d, d%d, d%d, d%d}", Vd, Vd + 1, Vd + 2, Vd + 3);
|
}
|
}
|
|
|
void Decoder::FormatNeonMemory(int Rn, int align, int Rm) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "[%s",
|
converter_.NameOfCPURegister(Rn));
|
if (align != 0) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
":%d", (1 << align) << 6);
|
}
|
if (Rm == 15) {
|
Print("]");
|
} else if (Rm == 13) {
|
Print("]!");
|
} else {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "], %s",
|
converter_.NameOfCPURegister(Rm));
|
}
|
}
|
|
|
// Print the movw or movt instruction.
|
void Decoder::PrintMovwMovt(Instruction* instr) {
|
int imm = instr->ImmedMovwMovtValue();
|
int rd = instr->RdValue();
|
PrintRegister(rd);
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", #%d", imm);
|
}
|
|
|
// FormatOption takes a formatting string and interprets it based on
|
// the current instructions. The format string points to the first
|
// character of the option string (the option escape has already been
|
// consumed by the caller.) FormatOption returns the number of
|
// characters that were consumed from the formatting string.
|
int Decoder::FormatOption(Instruction* instr, const char* format) {
|
switch (format[0]) {
|
case 'a': { // 'a: accumulate multiplies
|
if (instr->Bit(21) == 0) {
|
Print("ul");
|
} else {
|
Print("la");
|
}
|
return 1;
|
}
|
case 'b': { // 'b: byte loads or stores
|
if (instr->HasB()) {
|
Print("b");
|
}
|
return 1;
|
}
|
case 'c': { // 'cond: conditional execution
|
DCHECK(STRING_STARTS_WITH(format, "cond"));
|
PrintCondition(instr);
|
return 4;
|
}
|
case 'd': { // 'd: vmov double immediate.
|
double d = instr->DoubleImmedVmov().get_scalar();
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%g", d);
|
return 1;
|
}
|
case 'f': { // 'f: bitfield instructions - v7 and above.
|
uint32_t lsbit = instr->Bits(11, 7);
|
uint32_t width = instr->Bits(20, 16) + 1;
|
if (instr->Bit(21) == 0) {
|
// BFC/BFI:
|
// Bits 20-16 represent most-significant bit. Covert to width.
|
width -= lsbit;
|
DCHECK_GT(width, 0);
|
}
|
DCHECK_LE(width + lsbit, 32);
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"#%d, #%d", lsbit, width);
|
return 1;
|
}
|
case 'h': { // 'h: halfword operation for extra loads and stores
|
if (instr->HasH()) {
|
Print("h");
|
} else {
|
Print("b");
|
}
|
return 1;
|
}
|
case 'i': { // 'i: immediate value from adjacent bits.
|
// Expects tokens in the form imm%02d@%02d, i.e. imm05@07, imm10@16
|
int width = (format[3] - '0') * 10 + (format[4] - '0');
|
int lsb = (format[6] - '0') * 10 + (format[7] - '0');
|
|
DCHECK((width >= 1) && (width <= 32));
|
DCHECK((lsb >= 0) && (lsb <= 31));
|
DCHECK_LE(width + lsb, 32);
|
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%d",
|
instr->Bits(width + lsb - 1, lsb));
|
return 8;
|
}
|
case 'l': { // 'l: branch and link
|
if (instr->HasLink()) {
|
Print("l");
|
}
|
return 1;
|
}
|
case 'm': {
|
if (format[1] == 'w') {
|
// 'mw: movt/movw instructions.
|
PrintMovwMovt(instr);
|
return 2;
|
}
|
if (format[1] == 'e') { // 'memop: load/store instructions.
|
DCHECK(STRING_STARTS_WITH(format, "memop"));
|
if (instr->HasL()) {
|
Print("ldr");
|
} else {
|
if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0) &&
|
(instr->Bits(7, 6) == 3) && (instr->Bit(4) == 1)) {
|
if (instr->Bit(5) == 1) {
|
Print("strd");
|
} else {
|
Print("ldrd");
|
}
|
return 5;
|
}
|
Print("str");
|
}
|
return 5;
|
}
|
// 'msg: for simulator break instructions
|
DCHECK(STRING_STARTS_WITH(format, "msg"));
|
byte* str =
|
reinterpret_cast<byte*>(instr->InstructionBits() & 0x0FFFFFFF);
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%s", converter_.NameInCode(str));
|
return 3;
|
}
|
case 'o': {
|
if ((format[3] == '1') && (format[4] == '2')) {
|
// 'off12: 12-bit offset for load and store instructions
|
DCHECK(STRING_STARTS_WITH(format, "off12"));
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%d", instr->Offset12Value());
|
return 5;
|
} else if (format[3] == '0') {
|
// 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0.
|
DCHECK(STRING_STARTS_WITH(format, "off0to3and8to19"));
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%d",
|
(instr->Bits(19, 8) << 4) +
|
instr->Bits(3, 0));
|
return 15;
|
}
|
// 'off8: 8-bit offset for extra load and store instructions
|
DCHECK(STRING_STARTS_WITH(format, "off8"));
|
int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", offs8);
|
return 4;
|
}
|
case 'p': { // 'pu: P and U bits for load and store instructions
|
DCHECK(STRING_STARTS_WITH(format, "pu"));
|
PrintPU(instr);
|
return 2;
|
}
|
case 'r': {
|
return FormatRegister(instr, format);
|
}
|
case 's': {
|
if (format[1] == 'h') { // 'shift_op or 'shift_rm or 'shift_sat.
|
if (format[6] == 'o') { // 'shift_op
|
DCHECK(STRING_STARTS_WITH(format, "shift_op"));
|
if (instr->TypeValue() == 0) {
|
PrintShiftRm(instr);
|
} else {
|
DCHECK_EQ(instr->TypeValue(), 1);
|
PrintShiftImm(instr);
|
}
|
return 8;
|
} else if (format[6] == 's') { // 'shift_sat.
|
DCHECK(STRING_STARTS_WITH(format, "shift_sat"));
|
PrintShiftSat(instr);
|
return 9;
|
} else { // 'shift_rm
|
DCHECK(STRING_STARTS_WITH(format, "shift_rm"));
|
PrintShiftRm(instr);
|
return 8;
|
}
|
} else if (format[1] == 'v') { // 'svc
|
DCHECK(STRING_STARTS_WITH(format, "svc"));
|
PrintSoftwareInterrupt(instr->SvcValue());
|
return 3;
|
} else if (format[1] == 'i') { // 'sign: signed extra loads and stores
|
DCHECK(STRING_STARTS_WITH(format, "sign"));
|
if (instr->HasSign()) {
|
Print("s");
|
}
|
return 4;
|
} else if (format[1] == 'p') {
|
if (format[8] == '_') { // 'spec_reg_fields
|
DCHECK(STRING_STARTS_WITH(format, "spec_reg_fields"));
|
Print("_");
|
int mask = instr->Bits(19, 16);
|
if (mask == 0) Print("(none)");
|
if ((mask & 0x8) != 0) Print("f");
|
if ((mask & 0x4) != 0) Print("s");
|
if ((mask & 0x2) != 0) Print("x");
|
if ((mask & 0x1) != 0) Print("c");
|
return 15;
|
} else { // 'spec_reg
|
DCHECK(STRING_STARTS_WITH(format, "spec_reg"));
|
if (instr->Bit(22) == 0) {
|
Print("CPSR");
|
} else {
|
Print("SPSR");
|
}
|
return 8;
|
}
|
}
|
// 's: S field of data processing instructions
|
if (instr->HasS()) {
|
Print("s");
|
}
|
return 1;
|
}
|
case 't': { // 'target: target of branch instructions
|
DCHECK(STRING_STARTS_WITH(format, "target"));
|
int off = (instr->SImmed24Value() << 2) + 8;
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%+d -> %s",
|
off,
|
converter_.NameOfAddress(
|
reinterpret_cast<byte*>(instr) + off));
|
return 6;
|
}
|
case 'u': { // 'u: signed or unsigned multiplies
|
// The manual gets the meaning of bit 22 backwards in the multiply
|
// instruction overview on page A3.16.2. The instructions that
|
// exist in u and s variants are the following:
|
// smull A4.1.87
|
// umull A4.1.129
|
// umlal A4.1.128
|
// smlal A4.1.76
|
// For these 0 means u and 1 means s. As can be seen on their individual
|
// pages. The other 18 mul instructions have the bit set or unset in
|
// arbitrary ways that are unrelated to the signedness of the instruction.
|
// None of these 18 instructions exist in both a 'u' and an 's' variant.
|
|
if (instr->Bit(22) == 0) {
|
Print("u");
|
} else {
|
Print("s");
|
}
|
return 1;
|
}
|
case 'v': {
|
return FormatVFPinstruction(instr, format);
|
}
|
case 'A': {
|
// Print pc-relative address.
|
int offset = instr->Offset12Value();
|
byte* pc = reinterpret_cast<byte*>(instr) + Instruction::kPcLoadDelta;
|
byte* addr;
|
switch (instr->PUField()) {
|
case db_x: {
|
addr = pc - offset;
|
break;
|
}
|
case ib_x: {
|
addr = pc + offset;
|
break;
|
}
|
default: {
|
UNREACHABLE();
|
return -1;
|
}
|
}
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%p",
|
static_cast<void*>(addr));
|
return 1;
|
}
|
case 'S':
|
case 'D': {
|
return FormatVFPRegister(instr, format);
|
}
|
case 'w': { // 'w: W field of load and store instructions
|
if (instr->HasW()) {
|
Print("!");
|
}
|
return 1;
|
}
|
default: {
|
UNREACHABLE();
|
break;
|
}
|
}
|
UNREACHABLE();
|
}
|
|
|
// Format takes a formatting string for a whole instruction and prints it into
|
// the output buffer. All escaped options are handed to FormatOption to be
|
// parsed further.
|
void Decoder::Format(Instruction* instr, const char* format) {
|
char cur = *format++;
|
while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
|
if (cur == '\'') { // Single quote is used as the formatting escape.
|
format += FormatOption(instr, format);
|
} else {
|
out_buffer_[out_buffer_pos_++] = cur;
|
}
|
cur = *format++;
|
}
|
out_buffer_[out_buffer_pos_] = '\0';
|
}
|
|
|
// The disassembler may end up decoding data inlined in the code. We do not want
|
// it to crash if the data does not resemble any known instruction.
|
#define VERIFY(condition) \
|
if(!(condition)) { \
|
Unknown(instr); \
|
return; \
|
}
|
|
|
// For currently unimplemented decodings the disassembler calls Unknown(instr)
|
// which will just print "unknown" of the instruction bits.
|
void Decoder::Unknown(Instruction* instr) {
|
Format(instr, "unknown");
|
}
|
|
|
void Decoder::DecodeType01(Instruction* instr) {
|
int type = instr->TypeValue();
|
if ((type == 0) && instr->IsSpecialType0()) {
|
// multiply instruction or extra loads and stores
|
if (instr->Bits(7, 4) == 9) {
|
if (instr->Bit(24) == 0) {
|
// multiply instructions
|
if (instr->Bit(23) == 0) {
|
if (instr->Bit(21) == 0) {
|
// The MUL instruction description (A 4.1.33) refers to Rd as being
|
// the destination for the operation, but it confusingly uses the
|
// Rn field to encode it.
|
Format(instr, "mul'cond's 'rn, 'rm, 'rs");
|
} else {
|
if (instr->Bit(22) == 0) {
|
// The MLA instruction description (A 4.1.28) refers to the order
|
// of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
|
// Rn field to encode the Rd register and the Rd field to encode
|
// the Rn register.
|
Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
|
} else {
|
// The MLS instruction description (A 4.1.29) refers to the order
|
// of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
|
// Rn field to encode the Rd register and the Rd field to encode
|
// the Rn register.
|
Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
|
}
|
}
|
} else {
|
// The signed/long multiply instructions use the terms RdHi and RdLo
|
// when referring to the target registers. They are mapped to the Rn
|
// and Rd fields as follows:
|
// RdLo == Rd field
|
// RdHi == Rn field
|
// The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs>
|
Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs");
|
}
|
} else {
|
if (instr->Bits(24, 23) == 3) {
|
if (instr->Bit(20) == 1) {
|
// ldrex
|
switch (instr->Bits(22, 21)) {
|
case 0:
|
Format(instr, "ldrex'cond 'rt, ['rn]");
|
break;
|
case 1:
|
Format(instr, "ldrexd'cond 'rt, ['rn]");
|
break;
|
case 2:
|
Format(instr, "ldrexb'cond 'rt, ['rn]");
|
break;
|
case 3:
|
Format(instr, "ldrexh'cond 'rt, ['rn]");
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
} else {
|
// strex
|
// The instruction is documented as strex rd, rt, [rn], but the
|
// "rt" register is using the rm bits.
|
switch (instr->Bits(22, 21)) {
|
case 0:
|
Format(instr, "strex'cond 'rd, 'rm, ['rn]");
|
break;
|
case 1:
|
Format(instr, "strexd'cond 'rd, 'rm, ['rn]");
|
break;
|
case 2:
|
Format(instr, "strexb'cond 'rd, 'rm, ['rn]");
|
break;
|
case 3:
|
Format(instr, "strexh'cond 'rd, 'rm, ['rn]");
|
break;
|
default:
|
UNREACHABLE();
|
break;
|
}
|
}
|
} else {
|
Unknown(instr); // not used by V8
|
}
|
}
|
} else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xD) == 0xD)) {
|
// ldrd, strd
|
switch (instr->PUField()) {
|
case da_x: {
|
if (instr->Bit(22) == 0) {
|
Format(instr, "'memop'cond's 'rd, ['rn], -'rm");
|
} else {
|
Format(instr, "'memop'cond's 'rd, ['rn], #-'off8");
|
}
|
break;
|
}
|
case ia_x: {
|
if (instr->Bit(22) == 0) {
|
Format(instr, "'memop'cond's 'rd, ['rn], +'rm");
|
} else {
|
Format(instr, "'memop'cond's 'rd, ['rn], #+'off8");
|
}
|
break;
|
}
|
case db_x: {
|
if (instr->Bit(22) == 0) {
|
Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w");
|
} else {
|
Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w");
|
}
|
break;
|
}
|
case ib_x: {
|
if (instr->Bit(22) == 0) {
|
Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w");
|
} else {
|
Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w");
|
}
|
break;
|
}
|
default: {
|
// The PU field is a 2-bit field.
|
UNREACHABLE();
|
break;
|
}
|
}
|
} else {
|
// extra load/store instructions
|
switch (instr->PUField()) {
|
case da_x: {
|
if (instr->Bit(22) == 0) {
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
|
} else {
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
|
}
|
break;
|
}
|
case ia_x: {
|
if (instr->Bit(22) == 0) {
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
|
} else {
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
|
}
|
break;
|
}
|
case db_x: {
|
if (instr->Bit(22) == 0) {
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
|
} else {
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
|
}
|
break;
|
}
|
case ib_x: {
|
if (instr->Bit(22) == 0) {
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
|
} else {
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
|
}
|
break;
|
}
|
default: {
|
// The PU field is a 2-bit field.
|
UNREACHABLE();
|
break;
|
}
|
}
|
return;
|
}
|
} else if ((type == 0) && instr->IsMiscType0()) {
|
if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) &&
|
(instr->Bits(15, 4) == 0xF00)) {
|
Format(instr, "msr'cond 'spec_reg'spec_reg_fields, 'rm");
|
} else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) &&
|
(instr->Bits(11, 0) == 0)) {
|
Format(instr, "mrs'cond 'rd, 'spec_reg");
|
} else if (instr->Bits(22, 21) == 1) {
|
switch (instr->BitField(7, 4)) {
|
case BX:
|
Format(instr, "bx'cond 'rm");
|
break;
|
case BLX:
|
Format(instr, "blx'cond 'rm");
|
break;
|
case BKPT:
|
Format(instr, "bkpt 'off0to3and8to19");
|
break;
|
default:
|
Unknown(instr); // not used by V8
|
break;
|
}
|
} else if (instr->Bits(22, 21) == 3) {
|
switch (instr->BitField(7, 4)) {
|
case CLZ:
|
Format(instr, "clz'cond 'rd, 'rm");
|
break;
|
default:
|
Unknown(instr); // not used by V8
|
break;
|
}
|
} else {
|
Unknown(instr); // not used by V8
|
}
|
} else if ((type == 1) && instr->IsNopLikeType1()) {
|
if (instr->BitField(7, 0) == 0) {
|
Format(instr, "nop'cond");
|
} else if (instr->BitField(7, 0) == 20) {
|
Format(instr, "csdb");
|
} else {
|
Unknown(instr); // Not used in V8.
|
}
|
} else {
|
switch (instr->OpcodeField()) {
|
case AND: {
|
Format(instr, "and'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case EOR: {
|
Format(instr, "eor'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case SUB: {
|
Format(instr, "sub'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case RSB: {
|
Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case ADD: {
|
Format(instr, "add'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case ADC: {
|
Format(instr, "adc'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case SBC: {
|
Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case RSC: {
|
Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case TST: {
|
if (instr->HasS()) {
|
Format(instr, "tst'cond 'rn, 'shift_op");
|
} else {
|
Format(instr, "movw'cond 'mw");
|
}
|
break;
|
}
|
case TEQ: {
|
if (instr->HasS()) {
|
Format(instr, "teq'cond 'rn, 'shift_op");
|
} else {
|
// Other instructions matching this pattern are handled in the
|
// miscellaneous instructions part above.
|
UNREACHABLE();
|
}
|
break;
|
}
|
case CMP: {
|
if (instr->HasS()) {
|
Format(instr, "cmp'cond 'rn, 'shift_op");
|
} else {
|
Format(instr, "movt'cond 'mw");
|
}
|
break;
|
}
|
case CMN: {
|
if (instr->HasS()) {
|
Format(instr, "cmn'cond 'rn, 'shift_op");
|
} else {
|
// Other instructions matching this pattern are handled in the
|
// miscellaneous instructions part above.
|
UNREACHABLE();
|
}
|
break;
|
}
|
case ORR: {
|
Format(instr, "orr'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case MOV: {
|
Format(instr, "mov'cond's 'rd, 'shift_op");
|
break;
|
}
|
case BIC: {
|
Format(instr, "bic'cond's 'rd, 'rn, 'shift_op");
|
break;
|
}
|
case MVN: {
|
Format(instr, "mvn'cond's 'rd, 'shift_op");
|
break;
|
}
|
default: {
|
// The Opcode field is a 4-bit field.
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
}
|
|
|
void Decoder::DecodeType2(Instruction* instr) {
|
switch (instr->PUField()) {
|
case da_x: {
|
if (instr->HasW()) {
|
Unknown(instr); // not used in V8
|
return;
|
}
|
Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
|
break;
|
}
|
case ia_x: {
|
if (instr->HasW()) {
|
Unknown(instr); // not used in V8
|
return;
|
}
|
Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
|
break;
|
}
|
case db_x: {
|
if (instr->HasL() && (instr->RnValue() == kPCRegister)) {
|
Format(instr, "'memop'cond'b 'rd, [pc, #-'off12]'w (addr 'A)");
|
} else {
|
Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
|
}
|
break;
|
}
|
case ib_x: {
|
if (instr->HasL() && (instr->RnValue() == kPCRegister)) {
|
Format(instr, "'memop'cond'b 'rd, [pc, #+'off12]'w (addr 'A)");
|
} else {
|
Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
|
}
|
break;
|
}
|
default: {
|
// The PU field is a 2-bit field.
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
|
|
void Decoder::DecodeType3(Instruction* instr) {
|
switch (instr->PUField()) {
|
case da_x: {
|
VERIFY(!instr->HasW());
|
Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
|
break;
|
}
|
case ia_x: {
|
if (instr->Bit(4) == 0) {
|
Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
|
} else {
|
if (instr->Bit(5) == 0) {
|
switch (instr->Bits(22, 21)) {
|
case 0:
|
if (instr->Bit(20) == 0) {
|
if (instr->Bit(6) == 0) {
|
Format(instr, "pkhbt'cond 'rd, 'rn, 'rm, lsl #'imm05@07");
|
} else {
|
if (instr->Bits(11, 7) == 0) {
|
Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #32");
|
} else {
|
Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #'imm05@07");
|
}
|
}
|
} else {
|
UNREACHABLE();
|
}
|
break;
|
case 1:
|
UNREACHABLE();
|
break;
|
case 2:
|
UNREACHABLE();
|
break;
|
case 3:
|
Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat");
|
break;
|
}
|
} else {
|
switch (instr->Bits(22, 21)) {
|
case 0:
|
UNREACHABLE();
|
break;
|
case 1:
|
if (instr->Bits(9, 6) == 1) {
|
if (instr->Bit(20) == 0) {
|
if (instr->Bits(19, 16) == 0xF) {
|
switch (instr->Bits(11, 10)) {
|
case 0:
|
Format(instr, "sxtb'cond 'rd, 'rm");
|
break;
|
case 1:
|
Format(instr, "sxtb'cond 'rd, 'rm, ror #8");
|
break;
|
case 2:
|
Format(instr, "sxtb'cond 'rd, 'rm, ror #16");
|
break;
|
case 3:
|
Format(instr, "sxtb'cond 'rd, 'rm, ror #24");
|
break;
|
}
|
} else {
|
switch (instr->Bits(11, 10)) {
|
case 0:
|
Format(instr, "sxtab'cond 'rd, 'rn, 'rm");
|
break;
|
case 1:
|
Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #8");
|
break;
|
case 2:
|
Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #16");
|
break;
|
case 3:
|
Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #24");
|
break;
|
}
|
}
|
} else {
|
if (instr->Bits(19, 16) == 0xF) {
|
switch (instr->Bits(11, 10)) {
|
case 0:
|
Format(instr, "sxth'cond 'rd, 'rm");
|
break;
|
case 1:
|
Format(instr, "sxth'cond 'rd, 'rm, ror #8");
|
break;
|
case 2:
|
Format(instr, "sxth'cond 'rd, 'rm, ror #16");
|
break;
|
case 3:
|
Format(instr, "sxth'cond 'rd, 'rm, ror #24");
|
break;
|
}
|
} else {
|
switch (instr->Bits(11, 10)) {
|
case 0:
|
Format(instr, "sxtah'cond 'rd, 'rn, 'rm");
|
break;
|
case 1:
|
Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #8");
|
break;
|
case 2:
|
Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #16");
|
break;
|
case 3:
|
Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #24");
|
break;
|
}
|
}
|
}
|
} else if (instr->Bits(27, 16) == 0x6BF &&
|
instr->Bits(11, 4) == 0xF3) {
|
Format(instr, "rev'cond 'rd, 'rm");
|
} else {
|
UNREACHABLE();
|
}
|
break;
|
case 2:
|
if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
|
if (instr->Bits(19, 16) == 0xF) {
|
switch (instr->Bits(11, 10)) {
|
case 0:
|
Format(instr, "uxtb16'cond 'rd, 'rm");
|
break;
|
case 1:
|
Format(instr, "uxtb16'cond 'rd, 'rm, ror #8");
|
break;
|
case 2:
|
Format(instr, "uxtb16'cond 'rd, 'rm, ror #16");
|
break;
|
case 3:
|
Format(instr, "uxtb16'cond 'rd, 'rm, ror #24");
|
break;
|
}
|
} else {
|
UNREACHABLE();
|
}
|
} else {
|
UNREACHABLE();
|
}
|
break;
|
case 3:
|
if ((instr->Bits(9, 6) == 1)) {
|
if ((instr->Bit(20) == 0)) {
|
if (instr->Bits(19, 16) == 0xF) {
|
switch (instr->Bits(11, 10)) {
|
case 0:
|
Format(instr, "uxtb'cond 'rd, 'rm");
|
break;
|
case 1:
|
Format(instr, "uxtb'cond 'rd, 'rm, ror #8");
|
break;
|
case 2:
|
Format(instr, "uxtb'cond 'rd, 'rm, ror #16");
|
break;
|
case 3:
|
Format(instr, "uxtb'cond 'rd, 'rm, ror #24");
|
break;
|
}
|
} else {
|
switch (instr->Bits(11, 10)) {
|
case 0:
|
Format(instr, "uxtab'cond 'rd, 'rn, 'rm");
|
break;
|
case 1:
|
Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #8");
|
break;
|
case 2:
|
Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #16");
|
break;
|
case 3:
|
Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #24");
|
break;
|
}
|
}
|
} else {
|
if (instr->Bits(19, 16) == 0xF) {
|
switch (instr->Bits(11, 10)) {
|
case 0:
|
Format(instr, "uxth'cond 'rd, 'rm");
|
break;
|
case 1:
|
Format(instr, "uxth'cond 'rd, 'rm, ror #8");
|
break;
|
case 2:
|
Format(instr, "uxth'cond 'rd, 'rm, ror #16");
|
break;
|
case 3:
|
Format(instr, "uxth'cond 'rd, 'rm, ror #24");
|
break;
|
}
|
} else {
|
switch (instr->Bits(11, 10)) {
|
case 0:
|
Format(instr, "uxtah'cond 'rd, 'rn, 'rm");
|
break;
|
case 1:
|
Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #8");
|
break;
|
case 2:
|
Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #16");
|
break;
|
case 3:
|
Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #24");
|
break;
|
}
|
}
|
}
|
} else {
|
// PU == 0b01, BW == 0b11, Bits(9, 6) != 0b0001
|
if ((instr->Bits(20, 16) == 0x1F) &&
|
(instr->Bits(11, 4) == 0xF3)) {
|
Format(instr, "rbit'cond 'rd, 'rm");
|
} else {
|
UNREACHABLE();
|
}
|
}
|
break;
|
}
|
}
|
}
|
break;
|
}
|
case db_x: {
|
if (instr->Bits(22, 20) == 0x5) {
|
if (instr->Bits(7, 4) == 0x1) {
|
if (instr->Bits(15, 12) == 0xF) {
|
Format(instr, "smmul'cond 'rn, 'rm, 'rs");
|
} else {
|
// SMMLA (in V8 notation matching ARM ISA format)
|
Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd");
|
}
|
break;
|
}
|
}
|
if (instr->Bits(5, 4) == 0x1) {
|
if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) {
|
if (instr->Bit(21) == 0x1) {
|
// UDIV (in V8 notation matching ARM ISA format) rn = rm/rs
|
Format(instr, "udiv'cond'b 'rn, 'rm, 'rs");
|
} else {
|
// SDIV (in V8 notation matching ARM ISA format) rn = rm/rs
|
Format(instr, "sdiv'cond'b 'rn, 'rm, 'rs");
|
}
|
break;
|
}
|
}
|
Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
|
break;
|
}
|
case ib_x: {
|
if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
|
uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
|
uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
|
uint32_t msbit = widthminus1 + lsbit;
|
if (msbit <= 31) {
|
if (instr->Bit(22)) {
|
Format(instr, "ubfx'cond 'rd, 'rm, 'f");
|
} else {
|
Format(instr, "sbfx'cond 'rd, 'rm, 'f");
|
}
|
} else {
|
UNREACHABLE();
|
}
|
} else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
|
uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
|
uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
|
if (msbit >= lsbit) {
|
if (instr->RmValue() == 15) {
|
Format(instr, "bfc'cond 'rd, 'f");
|
} else {
|
Format(instr, "bfi'cond 'rd, 'rm, 'f");
|
}
|
} else {
|
UNREACHABLE();
|
}
|
} else {
|
Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
|
}
|
break;
|
}
|
default: {
|
// The PU field is a 2-bit field.
|
UNREACHABLE();
|
break;
|
}
|
}
|
}
|
|
|
void Decoder::DecodeType4(Instruction* instr) {
|
if (instr->Bit(22) != 0) {
|
// Privileged mode currently not supported.
|
Unknown(instr);
|
} else {
|
if (instr->HasL()) {
|
Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
|
} else {
|
Format(instr, "stm'cond'pu 'rn'w, 'rlist");
|
}
|
}
|
}
|
|
|
void Decoder::DecodeType5(Instruction* instr) {
|
Format(instr, "b'l'cond 'target");
|
}
|
|
|
void Decoder::DecodeType6(Instruction* instr) {
|
DecodeType6CoprocessorIns(instr);
|
}
|
|
|
int Decoder::DecodeType7(Instruction* instr) {
|
if (instr->Bit(24) == 1) {
|
if (instr->SvcValue() >= kStopCode) {
|
Format(instr, "stop'cond 'svc");
|
} else {
|
Format(instr, "svc'cond 'svc");
|
}
|
} else {
|
switch (instr->CoprocessorValue()) {
|
case 10: // Fall through.
|
case 11:
|
DecodeTypeVFP(instr);
|
break;
|
case 15:
|
DecodeTypeCP15(instr);
|
break;
|
default:
|
Unknown(instr);
|
break;
|
}
|
}
|
return kInstrSize;
|
}
|
|
|
// void Decoder::DecodeTypeVFP(Instruction* instr)
|
// vmov: Sn = Rt
|
// vmov: Rt = Sn
|
// vcvt: Dd = Sm
|
// vcvt: Sd = Dm
|
// vcvt.f64.s32 Dd, Dd, #<fbits>
|
// Dd = vabs(Dm)
|
// Sd = vabs(Sm)
|
// Dd = vneg(Dm)
|
// Sd = vneg(Sm)
|
// Dd = vadd(Dn, Dm)
|
// Sd = vadd(Sn, Sm)
|
// Dd = vsub(Dn, Dm)
|
// Sd = vsub(Sn, Sm)
|
// Dd = vmul(Dn, Dm)
|
// Sd = vmul(Sn, Sm)
|
// Dd = vmla(Dn, Dm)
|
// Sd = vmla(Sn, Sm)
|
// Dd = vmls(Dn, Dm)
|
// Sd = vmls(Sn, Sm)
|
// Dd = vdiv(Dn, Dm)
|
// Sd = vdiv(Sn, Sm)
|
// vcmp(Dd, Dm)
|
// vcmp(Sd, Sm)
|
// Dd = vsqrt(Dm)
|
// Sd = vsqrt(Sm)
|
// vmrs
|
// vmsr
|
// Qd = vdup.size(Qd, Rt)
|
// vmov.size: Dd[i] = Rt
|
// vmov.sign.size: Rt = Dn[i]
|
void Decoder::DecodeTypeVFP(Instruction* instr) {
|
VERIFY((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
|
VERIFY(instr->Bits(11, 9) == 0x5);
|
|
if (instr->Bit(4) == 0) {
|
if (instr->Opc1Value() == 0x7) {
|
// Other data processing instructions
|
if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
|
// vmov register to register.
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vmov'cond.f64 'Dd, 'Dm");
|
} else {
|
Format(instr, "vmov'cond.f32 'Sd, 'Sm");
|
}
|
} else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
|
// vabs
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vabs'cond.f64 'Dd, 'Dm");
|
} else {
|
Format(instr, "vabs'cond.f32 'Sd, 'Sm");
|
}
|
} else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
|
// vneg
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vneg'cond.f64 'Dd, 'Dm");
|
} else {
|
Format(instr, "vneg'cond.f32 'Sd, 'Sm");
|
}
|
} else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
|
DecodeVCVTBetweenDoubleAndSingle(instr);
|
} else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
|
DecodeVCVTBetweenFloatingPointAndInteger(instr);
|
} else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) &&
|
(instr->Bit(8) == 1)) {
|
// vcvt.f64.s32 Dd, Dd, #<fbits>
|
int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5));
|
Format(instr, "vcvt'cond.f64.s32 'Dd, 'Dd");
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
", #%d", fraction_bits);
|
} else if (((instr->Opc2Value() >> 1) == 0x6) &&
|
(instr->Opc3Value() & 0x1)) {
|
DecodeVCVTBetweenFloatingPointAndInteger(instr);
|
} else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
|
(instr->Opc3Value() & 0x1)) {
|
DecodeVCMP(instr);
|
} else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vsqrt'cond.f64 'Dd, 'Dm");
|
} else {
|
Format(instr, "vsqrt'cond.f32 'Sd, 'Sm");
|
}
|
} else if (instr->Opc3Value() == 0x0) {
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vmov'cond.f64 'Dd, 'd");
|
} else {
|
Format(instr, "vmov'cond.f32 'Sd, 'd");
|
}
|
} else if (((instr->Opc2Value() == 0x6)) && instr->Opc3Value() == 0x3) {
|
// vrintz - round towards zero (truncate)
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vrintz'cond.f64.f64 'Dd, 'Dm");
|
} else {
|
Format(instr, "vrintz'cond.f32.f32 'Sd, 'Sm");
|
}
|
} else {
|
Unknown(instr); // Not used by V8.
|
}
|
} else if (instr->Opc1Value() == 0x3) {
|
if (instr->SzValue() == 0x1) {
|
if (instr->Opc3Value() & 0x1) {
|
Format(instr, "vsub'cond.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vadd'cond.f64 'Dd, 'Dn, 'Dm");
|
}
|
} else {
|
if (instr->Opc3Value() & 0x1) {
|
Format(instr, "vsub'cond.f32 'Sd, 'Sn, 'Sm");
|
} else {
|
Format(instr, "vadd'cond.f32 'Sd, 'Sn, 'Sm");
|
}
|
}
|
} else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vmul'cond.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vmul'cond.f32 'Sd, 'Sn, 'Sm");
|
}
|
} else if ((instr->Opc1Value() == 0x0) && !(instr->Opc3Value() & 0x1)) {
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vmla'cond.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vmla'cond.f32 'Sd, 'Sn, 'Sm");
|
}
|
} else if ((instr->Opc1Value() == 0x0) && (instr->Opc3Value() & 0x1)) {
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vmls'cond.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vmls'cond.f32 'Sd, 'Sn, 'Sm");
|
}
|
} else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
|
if (instr->SzValue() == 0x1) {
|
Format(instr, "vdiv'cond.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vdiv'cond.f32 'Sd, 'Sn, 'Sm");
|
}
|
} else {
|
Unknown(instr); // Not used by V8.
|
}
|
} else {
|
if ((instr->VCValue() == 0x0) &&
|
(instr->VAValue() == 0x0)) {
|
DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
|
} else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1)) {
|
const char* rt_name = converter_.NameOfCPURegister(instr->RtValue());
|
if (instr->Bit(23) == 0) {
|
int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5);
|
if ((opc1_opc2 & 0xB) == 0) {
|
// NeonS32/NeonU32
|
if (instr->Bit(21) == 0x0) {
|
Format(instr, "vmov'cond.32 'Dd[0], 'rt");
|
} else {
|
Format(instr, "vmov'cond.32 'Dd[1], 'rt");
|
}
|
} else {
|
int vd = instr->VFPNRegValue(kDoublePrecision);
|
if ((opc1_opc2 & 0x8) != 0) {
|
// NeonS8 / NeonU8
|
int i = opc1_opc2 & 0x7;
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vmov.8 d%d[%d], %s", vd, i, rt_name);
|
} else if ((opc1_opc2 & 0x1) != 0) {
|
// NeonS16 / NeonU16
|
int i = (opc1_opc2 >> 1) & 0x3;
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vmov.16 d%d[%d], %s", vd, i, rt_name);
|
} else {
|
Unknown(instr);
|
}
|
}
|
} else {
|
int size = 32;
|
if (instr->Bit(5) != 0) {
|
size = 16;
|
} else if (instr->Bit(22) != 0) {
|
size = 8;
|
}
|
int Vd = instr->VFPNRegValue(kSimd128Precision);
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vdup.%i q%d, %s", size, Vd, rt_name);
|
}
|
} else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1)) {
|
int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5);
|
if ((opc1_opc2 & 0xB) == 0) {
|
// NeonS32 / NeonU32
|
if (instr->Bit(21) == 0x0) {
|
Format(instr, "vmov'cond.32 'rt, 'Dd[0]");
|
} else {
|
Format(instr, "vmov'cond.32 'rt, 'Dd[1]");
|
}
|
} else {
|
char sign = instr->Bit(23) != 0 ? 'u' : 's';
|
const char* rt_name = converter_.NameOfCPURegister(instr->RtValue());
|
int vn = instr->VFPNRegValue(kDoublePrecision);
|
if ((opc1_opc2 & 0x8) != 0) {
|
// NeonS8 / NeonU8
|
int i = opc1_opc2 & 0x7;
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vmov.%c8 %s, d%d[%d]",
|
sign, rt_name, vn, i);
|
} else if ((opc1_opc2 & 0x1) != 0) {
|
// NeonS16 / NeonU16
|
int i = (opc1_opc2 >> 1) & 0x3;
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vmov.%c16 %s, d%d[%d]",
|
sign, rt_name, vn, i);
|
} else {
|
Unknown(instr);
|
}
|
}
|
} else if ((instr->VCValue() == 0x0) &&
|
(instr->VAValue() == 0x7) &&
|
(instr->Bits(19, 16) == 0x1)) {
|
if (instr->VLValue() == 0) {
|
if (instr->Bits(15, 12) == 0xF) {
|
Format(instr, "vmsr'cond FPSCR, APSR");
|
} else {
|
Format(instr, "vmsr'cond FPSCR, 'rt");
|
}
|
} else {
|
if (instr->Bits(15, 12) == 0xF) {
|
Format(instr, "vmrs'cond APSR, FPSCR");
|
} else {
|
Format(instr, "vmrs'cond 'rt, FPSCR");
|
}
|
}
|
} else {
|
Unknown(instr); // Not used by V8.
|
}
|
}
|
}
|
|
void Decoder::DecodeTypeCP15(Instruction* instr) {
|
VERIFY((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0));
|
VERIFY(instr->CoprocessorValue() == 15);
|
|
if (instr->Bit(4) == 1) {
|
int crn = instr->Bits(19, 16);
|
int crm = instr->Bits(3, 0);
|
int opc1 = instr->Bits(23, 21);
|
int opc2 = instr->Bits(7, 5);
|
if ((opc1 == 0) && (crn == 7)) {
|
// ARMv6 memory barrier operations.
|
// Details available in ARM DDI 0406C.b, B3-1750.
|
if ((crm == 10) && (opc2 == 5)) {
|
Format(instr, "mcr'cond (CP15DMB)");
|
} else if ((crm == 10) && (opc2 == 4)) {
|
Format(instr, "mcr'cond (CP15DSB)");
|
} else if ((crm == 5) && (opc2 == 4)) {
|
Format(instr, "mcr'cond (CP15ISB)");
|
} else {
|
Unknown(instr);
|
}
|
} else {
|
Unknown(instr);
|
}
|
} else {
|
Unknown(instr);
|
}
|
}
|
|
void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
|
Instruction* instr) {
|
VERIFY((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
|
(instr->VAValue() == 0x0));
|
|
bool to_arm_register = (instr->VLValue() == 0x1);
|
|
if (to_arm_register) {
|
Format(instr, "vmov'cond 'rt, 'Sn");
|
} else {
|
Format(instr, "vmov'cond 'Sn, 'rt");
|
}
|
}
|
|
|
void Decoder::DecodeVCMP(Instruction* instr) {
|
VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
|
VERIFY(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
|
(instr->Opc3Value() & 0x1));
|
|
// Comparison.
|
bool dp_operation = (instr->SzValue() == 1);
|
bool raise_exception_for_qnan = (instr->Bit(7) == 0x1);
|
|
if (dp_operation && !raise_exception_for_qnan) {
|
if (instr->Opc2Value() == 0x4) {
|
Format(instr, "vcmp'cond.f64 'Dd, 'Dm");
|
} else if (instr->Opc2Value() == 0x5) {
|
Format(instr, "vcmp'cond.f64 'Dd, #0.0");
|
} else {
|
Unknown(instr); // invalid
|
}
|
} else if (!raise_exception_for_qnan) {
|
if (instr->Opc2Value() == 0x4) {
|
Format(instr, "vcmp'cond.f32 'Sd, 'Sm");
|
} else if (instr->Opc2Value() == 0x5) {
|
Format(instr, "vcmp'cond.f32 'Sd, #0.0");
|
} else {
|
Unknown(instr); // invalid
|
}
|
} else {
|
Unknown(instr); // Not used by V8.
|
}
|
}
|
|
|
void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
|
VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
|
VERIFY((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
|
|
bool double_to_single = (instr->SzValue() == 1);
|
|
if (double_to_single) {
|
Format(instr, "vcvt'cond.f32.f64 'Sd, 'Dm");
|
} else {
|
Format(instr, "vcvt'cond.f64.f32 'Dd, 'Sm");
|
}
|
}
|
|
|
void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
|
VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
|
VERIFY(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
|
(((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
|
|
bool to_integer = (instr->Bit(18) == 1);
|
bool dp_operation = (instr->SzValue() == 1);
|
if (to_integer) {
|
bool unsigned_integer = (instr->Bit(16) == 0);
|
|
if (dp_operation) {
|
if (unsigned_integer) {
|
Format(instr, "vcvt'cond.u32.f64 'Sd, 'Dm");
|
} else {
|
Format(instr, "vcvt'cond.s32.f64 'Sd, 'Dm");
|
}
|
} else {
|
if (unsigned_integer) {
|
Format(instr, "vcvt'cond.u32.f32 'Sd, 'Sm");
|
} else {
|
Format(instr, "vcvt'cond.s32.f32 'Sd, 'Sm");
|
}
|
}
|
} else {
|
bool unsigned_integer = (instr->Bit(7) == 0);
|
|
if (dp_operation) {
|
if (unsigned_integer) {
|
Format(instr, "vcvt'cond.f64.u32 'Dd, 'Sm");
|
} else {
|
Format(instr, "vcvt'cond.f64.s32 'Dd, 'Sm");
|
}
|
} else {
|
if (unsigned_integer) {
|
Format(instr, "vcvt'cond.f32.u32 'Sd, 'Sm");
|
} else {
|
Format(instr, "vcvt'cond.f32.s32 'Sd, 'Sm");
|
}
|
}
|
}
|
}
|
|
|
// Decode Type 6 coprocessor instructions.
|
// Dm = vmov(Rt, Rt2)
|
// <Rt, Rt2> = vmov(Dm)
|
// Ddst = MEM(Rbase + 4*offset).
|
// MEM(Rbase + 4*offset) = Dsrc.
|
void Decoder::DecodeType6CoprocessorIns(Instruction* instr) {
|
VERIFY(instr->TypeValue() == 6);
|
|
if (instr->CoprocessorValue() == 0xA) {
|
switch (instr->OpcodeValue()) {
|
case 0x8:
|
case 0xA:
|
if (instr->HasL()) {
|
Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]");
|
} else {
|
Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]");
|
}
|
break;
|
case 0xC:
|
case 0xE:
|
if (instr->HasL()) {
|
Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]");
|
} else {
|
Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]");
|
}
|
break;
|
case 0x4:
|
case 0x5:
|
case 0x6:
|
case 0x7:
|
case 0x9:
|
case 0xB: {
|
bool to_vfp_register = (instr->VLValue() == 0x1);
|
if (to_vfp_register) {
|
Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}");
|
} else {
|
Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}");
|
}
|
break;
|
}
|
default:
|
Unknown(instr); // Not used by V8.
|
}
|
} else if (instr->CoprocessorValue() == 0xB) {
|
switch (instr->OpcodeValue()) {
|
case 0x2:
|
// Load and store double to two GP registers
|
if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) {
|
Unknown(instr); // Not used by V8.
|
} else if (instr->HasL()) {
|
Format(instr, "vmov'cond 'rt, 'rn, 'Dm");
|
} else {
|
Format(instr, "vmov'cond 'Dm, 'rt, 'rn");
|
}
|
break;
|
case 0x8:
|
case 0xA:
|
if (instr->HasL()) {
|
Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]");
|
} else {
|
Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]");
|
}
|
break;
|
case 0xC:
|
case 0xE:
|
if (instr->HasL()) {
|
Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]");
|
} else {
|
Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]");
|
}
|
break;
|
case 0x4:
|
case 0x5:
|
case 0x6:
|
case 0x7:
|
case 0x9:
|
case 0xB: {
|
bool to_vfp_register = (instr->VLValue() == 0x1);
|
if (to_vfp_register) {
|
Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}");
|
} else {
|
Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}");
|
}
|
break;
|
}
|
default:
|
Unknown(instr); // Not used by V8.
|
}
|
} else {
|
Unknown(instr); // Not used by V8.
|
}
|
}
|
|
|
static const char* const barrier_option_names[] = {
|
"invalid", "oshld", "oshst", "osh", "invalid", "nshld", "nshst", "nsh",
|
"invalid", "ishld", "ishst", "ish", "invalid", "ld", "st", "sy",
|
};
|
|
|
void Decoder::DecodeSpecialCondition(Instruction* instr) {
|
switch (instr->SpecialValue()) {
|
case 4: {
|
int Vd, Vm, Vn;
|
if (instr->Bit(6) == 0) {
|
Vd = instr->VFPDRegValue(kDoublePrecision);
|
Vm = instr->VFPMRegValue(kDoublePrecision);
|
Vn = instr->VFPNRegValue(kDoublePrecision);
|
} else {
|
Vd = instr->VFPDRegValue(kSimd128Precision);
|
Vm = instr->VFPMRegValue(kSimd128Precision);
|
Vn = instr->VFPNRegValue(kSimd128Precision);
|
}
|
int size = kBitsPerByte * (1 << instr->Bits(21, 20));
|
switch (instr->Bits(11, 8)) {
|
case 0x0: {
|
if (instr->Bit(4) == 1) {
|
// vqadd.s<size> Qd, Qm, Qn.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vqadd.s%d q%d, q%d, q%d", size, Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0x1: {
|
if (instr->Bits(21, 20) == 2 && instr->Bit(6) == 1 &&
|
instr->Bit(4) == 1) {
|
if (Vm == Vn) {
|
// vmov Qd, Qm
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vmov q%d, q%d", Vd, Vm);
|
} else {
|
// vorr Qd, Qm, Qn.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vorr q%d, q%d, q%d", Vd, Vn, Vm);
|
}
|
} else if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 1 &&
|
instr->Bit(4) == 1) {
|
// vand Qd, Qm, Qn.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vand q%d, q%d, q%d", Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0x2: {
|
if (instr->Bit(4) == 1) {
|
// vqsub.s<size> Qd, Qm, Qn.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vqsub.s%d q%d, q%d, q%d", size, Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0x3: {
|
const char* op = (instr->Bit(4) == 1) ? "vcge" : "vcgt";
|
// vcge/vcgt.s<size> Qd, Qm, Qn.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "%s.s%d q%d, q%d, q%d",
|
op, size, Vd, Vn, Vm);
|
break;
|
}
|
case 0x6: {
|
// vmin/vmax.s<size> Qd, Qm, Qn.
|
const char* op = instr->Bit(4) == 1 ? "vmin" : "vmax";
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "%s.s%d q%d, q%d, q%d",
|
op, size, Vd, Vn, Vm);
|
break;
|
}
|
case 0x8: {
|
const char* op = (instr->Bit(4) == 0) ? "vadd" : "vtst";
|
// vadd/vtst.i<size> Qd, Qm, Qn.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "%s.i%d q%d, q%d, q%d",
|
op, size, Vd, Vn, Vm);
|
break;
|
}
|
case 0x9: {
|
if (instr->Bit(6) == 1 && instr->Bit(4) == 1) {
|
// vmul.i<size> Qd, Qm, Qn.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vmul.i%d q%d, q%d, q%d", size, Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0xA: {
|
// vpmin/vpmax.s<size> Dd, Dm, Dn.
|
const char* op = instr->Bit(4) == 1 ? "vpmin" : "vpmax";
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "%s.s%d d%d, d%d, d%d",
|
op, size, Vd, Vn, Vm);
|
break;
|
}
|
case 0xB: {
|
// vpadd.i<size> Dd, Dm, Dn.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vpadd.i%d d%d, d%d, d%d",
|
size, Vd, Vn, Vm);
|
break;
|
}
|
case 0xD: {
|
if (instr->Bit(4) == 0) {
|
const char* op = (instr->Bits(21, 20) == 0) ? "vadd" : "vsub";
|
// vadd/vsub.f32 Qd, Qm, Qn.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%s.f32 q%d, q%d, q%d", op, Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0xE: {
|
if (instr->Bits(21, 20) == 0 && instr->Bit(4) == 0) {
|
// vceq.f32 Qd, Qm, Qn.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vceq.f32 q%d, q%d, q%d", Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0xF: {
|
if (instr->Bit(20) == 0 && instr->Bit(6) == 1) {
|
if (instr->Bit(4) == 1) {
|
// vrecps/vrsqrts.f32 Qd, Qm, Qn.
|
const char* op = instr->Bit(21) == 0 ? "vrecps" : "vrsqrts";
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%s.f32 q%d, q%d, q%d", op, Vd, Vn, Vm);
|
} else {
|
// vmin/max.f32 Qd, Qm, Qn.
|
const char* op = instr->Bit(21) == 1 ? "vmin" : "vmax";
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%s.f32 q%d, q%d, q%d", op, Vd, Vn, Vm);
|
}
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
default:
|
Unknown(instr);
|
break;
|
}
|
break;
|
}
|
case 5:
|
if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
|
(instr->Bit(4) == 1)) {
|
// vmovl signed
|
if ((instr->VdValue() & 1) != 0) Unknown(instr);
|
int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
|
int Vm = (instr->Bit(5) << 4) | instr->VmValue();
|
int imm3 = instr->Bits(21, 19);
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vmovl.s%d q%d, d%d", imm3 * 8, Vd, Vm);
|
} else if (instr->Bits(21, 20) == 3 && instr->Bit(4) == 0) {
|
// vext.8 Qd, Qm, Qn, imm4
|
int imm4 = instr->Bits(11, 8);
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
int Vn = instr->VFPNRegValue(kSimd128Precision);
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vext.8 q%d, q%d, q%d, #%d",
|
Vd, Vn, Vm, imm4);
|
} else if (instr->Bits(11, 7) == 0xA && instr->Bit(4) == 1) {
|
// vshl.i<size> Qd, Qm, shift
|
int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16));
|
int shift = instr->Bits(21, 16) - size;
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vshl.i%d q%d, q%d, #%d",
|
size, Vd, Vm, shift);
|
} else if (instr->Bits(11, 7) == 0 && instr->Bit(4) == 1) {
|
// vshr.s<size> Qd, Qm, shift
|
int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16));
|
int shift = 2 * size - instr->Bits(21, 16);
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vshr.s%d q%d, q%d, #%d",
|
size, Vd, Vm, shift);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
case 6: {
|
int Vd, Vm, Vn;
|
if (instr->Bit(6) == 0) {
|
Vd = instr->VFPDRegValue(kDoublePrecision);
|
Vm = instr->VFPMRegValue(kDoublePrecision);
|
Vn = instr->VFPNRegValue(kDoublePrecision);
|
} else {
|
Vd = instr->VFPDRegValue(kSimd128Precision);
|
Vm = instr->VFPMRegValue(kSimd128Precision);
|
Vn = instr->VFPNRegValue(kSimd128Precision);
|
}
|
int size = kBitsPerByte * (1 << instr->Bits(21, 20));
|
switch (instr->Bits(11, 8)) {
|
case 0x0: {
|
if (instr->Bit(4) == 1) {
|
// vqadd.u<size> Qd, Qm, Qn.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vqadd.u%d q%d, q%d, q%d", size, Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0x1: {
|
if (instr->Bits(21, 20) == 1 && instr->Bit(4) == 1) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vbsl q%d, q%d, q%d", Vd, Vn, Vm);
|
} else if (instr->Bits(21, 20) == 0 && instr->Bit(4) == 1) {
|
if (instr->Bit(6) == 0) {
|
// veor Dd, Dn, Dm
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"veor d%d, d%d, d%d", Vd, Vn, Vm);
|
|
} else {
|
// veor Qd, Qn, Qm
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"veor q%d, q%d, q%d", Vd, Vn, Vm);
|
}
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0x2: {
|
if (instr->Bit(4) == 1) {
|
// vqsub.u<size> Qd, Qm, Qn.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vqsub.u%d q%d, q%d, q%d", size, Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0x3: {
|
const char* op = (instr->Bit(4) == 1) ? "vcge" : "vcgt";
|
// vcge/vcgt.u<size> Qd, Qm, Qn.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "%s.u%d q%d, q%d, q%d",
|
op, size, Vd, Vn, Vm);
|
break;
|
}
|
case 0x6: {
|
// vmin/vmax.u<size> Qd, Qm, Qn.
|
const char* op = instr->Bit(4) == 1 ? "vmin" : "vmax";
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "%s.u%d q%d, q%d, q%d",
|
op, size, Vd, Vn, Vm);
|
break;
|
}
|
case 0x8: {
|
if (instr->Bit(4) == 0) {
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vsub.i%d q%d, q%d, q%d", size, Vd, Vn, Vm);
|
} else {
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vceq.i%d q%d, q%d, q%d", size, Vd, Vn, Vm);
|
}
|
break;
|
}
|
case 0xA: {
|
// vpmin/vpmax.u<size> Dd, Dm, Dn.
|
const char* op = instr->Bit(4) == 1 ? "vpmin" : "vpmax";
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "%s.u%d d%d, d%d, d%d",
|
op, size, Vd, Vn, Vm);
|
break;
|
}
|
case 0xD: {
|
if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 1 &&
|
instr->Bit(4) == 1) {
|
// vmul.f32 Qd, Qm, Qn
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vmul.f32 q%d, q%d, q%d", Vd, Vn, Vm);
|
} else if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 0 &&
|
instr->Bit(4) == 0) {
|
// vpadd.f32 Dd, Dm, Dn.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vpadd.f32 d%d, d%d, d%d", Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
case 0xE: {
|
if (instr->Bit(20) == 0 && instr->Bit(4) == 0) {
|
const char* op = (instr->Bit(21) == 0) ? "vcge" : "vcgt";
|
// vcge/vcgt.f32 Qd, Qm, Qn.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%s.f32 q%d, q%d, q%d", op, Vd, Vn, Vm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
}
|
default:
|
Unknown(instr);
|
break;
|
}
|
break;
|
}
|
case 7:
|
if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
|
(instr->Bit(4) == 1)) {
|
// vmovl unsigned
|
if ((instr->VdValue() & 1) != 0) Unknown(instr);
|
int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
|
int Vm = (instr->Bit(5) << 4) | instr->VmValue();
|
int imm3 = instr->Bits(21, 19);
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vmovl.u%d q%d, d%d", imm3 * 8, Vd, Vm);
|
} else if (instr->Opc1Value() == 7 && instr->Bit(4) == 0) {
|
if (instr->Bits(11, 7) == 0x18) {
|
int Vm = instr->VFPMRegValue(kDoublePrecision);
|
int imm4 = instr->Bits(19, 16);
|
int size = 0, index = 0;
|
if ((imm4 & 0x1) != 0) {
|
size = 8;
|
index = imm4 >> 1;
|
} else if ((imm4 & 0x2) != 0) {
|
size = 16;
|
index = imm4 >> 2;
|
} else {
|
size = 32;
|
index = imm4 >> 3;
|
}
|
if (instr->Bit(6) == 0) {
|
int Vd = instr->VFPDRegValue(kDoublePrecision);
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vdup.%i d%d, d%d[%d]",
|
size, Vd, Vm, index);
|
} else {
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vdup.%i q%d, d%d[%d]",
|
size, Vd, Vm, index);
|
}
|
} else if (instr->Bits(11, 10) == 0x2) {
|
int Vd = instr->VFPDRegValue(kDoublePrecision);
|
int Vn = instr->VFPNRegValue(kDoublePrecision);
|
int Vm = instr->VFPMRegValue(kDoublePrecision);
|
int len = instr->Bits(9, 8);
|
NeonListOperand list(DwVfpRegister::from_code(Vn), len + 1);
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "%s d%d, ",
|
instr->Bit(6) == 0 ? "vtbl.8" : "vtbx.8", Vd);
|
FormatNeonList(Vn, list.type());
|
Print(", ");
|
PrintDRegister(Vm);
|
} else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 8) == 0x2 &&
|
instr->Bits(7, 6) != 0) {
|
// vqmovn.<type><size> Dd, Qm.
|
int Vd = instr->VFPDRegValue(kDoublePrecision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
char type = instr->Bit(6) != 0 ? 'u' : 's';
|
int size = 2 * kBitsPerByte * (1 << instr->Bits(19, 18));
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vqmovn.%c%i d%d, q%d",
|
type, size, Vd, Vm);
|
} else {
|
int Vd, Vm;
|
if (instr->Bit(6) == 0) {
|
Vd = instr->VFPDRegValue(kDoublePrecision);
|
Vm = instr->VFPMRegValue(kDoublePrecision);
|
} else {
|
Vd = instr->VFPDRegValue(kSimd128Precision);
|
Vm = instr->VFPMRegValue(kSimd128Precision);
|
}
|
if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 7) == 0) {
|
if (instr->Bit(6) == 0) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vswp d%d, d%d", Vd, Vm);
|
} else {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vswp q%d, q%d", Vd, Vm);
|
}
|
} else if (instr->Bits(19, 16) == 0 && instr->Bits(11, 6) == 0x17) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vmvn q%d, q%d", Vd, Vm);
|
} else if (instr->Bits(19, 16) == 0xB && instr->Bits(11, 9) == 0x3 &&
|
instr->Bit(6) == 1) {
|
const char* suffix = nullptr;
|
int op = instr->Bits(8, 7);
|
switch (op) {
|
case 0:
|
suffix = "f32.s32";
|
break;
|
case 1:
|
suffix = "f32.u32";
|
break;
|
case 2:
|
suffix = "s32.f32";
|
break;
|
case 3:
|
suffix = "u32.f32";
|
break;
|
}
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vcvt.%s q%d, q%d", suffix, Vd, Vm);
|
} else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 8) == 0x1) {
|
int size = kBitsPerByte * (1 << instr->Bits(19, 18));
|
const char* op = instr->Bit(7) != 0 ? "vzip" : "vuzp";
|
if (instr->Bit(6) == 0) {
|
// vzip/vuzp.<size> Dd, Dm.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%s.%d d%d, d%d", op, size, Vd, Vm);
|
} else {
|
// vzip/vuzp.<size> Qd, Qm.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%s.%d q%d, q%d", op, size, Vd, Vm);
|
}
|
} else if (instr->Bits(17, 16) == 0 && instr->Bits(11, 9) == 0 &&
|
instr->Bit(6) == 1) {
|
int size = kBitsPerByte * (1 << instr->Bits(19, 18));
|
int op = kBitsPerByte
|
<< (static_cast<int>(Neon64) - instr->Bits(8, 7));
|
// vrev<op>.<size> Qd, Qm.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vrev%d.%d q%d, q%d", op, size, Vd, Vm);
|
} else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 7) == 0x1) {
|
int size = kBitsPerByte * (1 << instr->Bits(19, 18));
|
if (instr->Bit(6) == 0) {
|
// vtrn.<size> Dd, Dm.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vtrn.%d d%d, d%d", size, Vd, Vm);
|
} else {
|
// vtrn.<size> Qd, Qm.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"vtrn.%d q%d, q%d", size, Vd, Vm);
|
}
|
} else if (instr->Bits(17, 16) == 0x1 && instr->Bit(11) == 0 &&
|
instr->Bit(6) == 1) {
|
int size = kBitsPerByte * (1 << instr->Bits(19, 18));
|
char type = instr->Bit(10) != 0 ? 'f' : 's';
|
if (instr->Bits(9, 6) == 0xD) {
|
// vabs<type>.<size> Qd, Qm.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vabs.%c%d q%d, q%d",
|
type, size, Vd, Vm);
|
} else if (instr->Bits(9, 6) == 0xF) {
|
// vneg<type>.<size> Qd, Qm.
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vneg.%c%d q%d, q%d",
|
type, size, Vd, Vm);
|
} else {
|
Unknown(instr);
|
}
|
} else if (instr->Bits(19, 18) == 0x2 && instr->Bits(11, 8) == 0x5 &&
|
instr->Bit(6) == 1) {
|
// vrecpe/vrsqrte.f32 Qd, Qm.
|
const char* op = instr->Bit(7) == 0 ? "vrecpe" : "vrsqrte";
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%s.f32 q%d, q%d", op, Vd, Vm);
|
} else {
|
Unknown(instr);
|
}
|
}
|
} else if (instr->Bits(11, 7) == 0 && instr->Bit(4) == 1 &&
|
instr->Bit(6) == 1) {
|
// vshr.u<size> Qd, Qm, shift
|
int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16));
|
int shift = 2 * size - instr->Bits(21, 16);
|
int Vd = instr->VFPDRegValue(kSimd128Precision);
|
int Vm = instr->VFPMRegValue(kSimd128Precision);
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vshr.u%d q%d, q%d, #%d",
|
size, Vd, Vm, shift);
|
} else if (instr->Bit(10) == 1 && instr->Bit(6) == 0 &&
|
instr->Bit(4) == 1) {
|
// vsli.<size> Dd, Dm, shift
|
// vsri.<size> Dd, Dm, shift
|
int imm7 = instr->Bits(21, 16);
|
if (instr->Bit(7) != 0) imm7 += 64;
|
int size = base::bits::RoundDownToPowerOfTwo32(imm7);
|
int shift;
|
char direction;
|
if (instr->Bit(8) == 1) {
|
shift = imm7 - size;
|
direction = 'l'; // vsli
|
} else {
|
shift = 2 * size - imm7;
|
direction = 'r'; // vsri
|
}
|
int Vd = instr->VFPDRegValue(kDoublePrecision);
|
int Vm = instr->VFPMRegValue(kDoublePrecision);
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "vs%ci.%d d%d, d%d, #%d",
|
direction, size, Vd, Vm, shift);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
case 8:
|
if (instr->Bits(21, 20) == 0) {
|
// vst1
|
int Vd = (instr->Bit(22) << 4) | instr->VdValue();
|
int Rn = instr->VnValue();
|
int type = instr->Bits(11, 8);
|
int size = instr->Bits(7, 6);
|
int align = instr->Bits(5, 4);
|
int Rm = instr->VmValue();
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vst1.%d ",
|
(1 << size) << 3);
|
FormatNeonList(Vd, type);
|
Print(", ");
|
FormatNeonMemory(Rn, align, Rm);
|
} else if (instr->Bits(21, 20) == 2) {
|
// vld1
|
int Vd = (instr->Bit(22) << 4) | instr->VdValue();
|
int Rn = instr->VnValue();
|
int type = instr->Bits(11, 8);
|
int size = instr->Bits(7, 6);
|
int align = instr->Bits(5, 4);
|
int Rm = instr->VmValue();
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vld1.%d ",
|
(1 << size) << 3);
|
FormatNeonList(Vd, type);
|
Print(", ");
|
FormatNeonMemory(Rn, align, Rm);
|
} else {
|
Unknown(instr);
|
}
|
break;
|
case 0xA:
|
case 0xB:
|
if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xF)) {
|
const char* rn_name = converter_.NameOfCPURegister(instr->Bits(19, 16));
|
int offset = instr->Bits(11, 0);
|
if (offset == 0) {
|
out_buffer_pos_ +=
|
SNPrintF(out_buffer_ + out_buffer_pos_, "pld [%s]", rn_name);
|
} else if (instr->Bit(23) == 0) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"pld [%s, #-%d]", rn_name, offset);
|
} else {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"pld [%s, #+%d]", rn_name, offset);
|
}
|
} else if (instr->SpecialValue() == 0xA && instr->Bits(22, 20) == 7) {
|
int option = instr->Bits(3, 0);
|
switch (instr->Bits(7, 4)) {
|
case 4:
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "dsb %s",
|
barrier_option_names[option]);
|
break;
|
case 5:
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "dmb %s",
|
barrier_option_names[option]);
|
break;
|
case 6:
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "isb %s",
|
barrier_option_names[option]);
|
break;
|
default:
|
Unknown(instr);
|
}
|
} else {
|
Unknown(instr);
|
}
|
break;
|
case 0x1D:
|
if (instr->Opc1Value() == 0x7 && instr->Bits(19, 18) == 0x2 &&
|
instr->Bits(11, 9) == 0x5 && instr->Bits(7, 6) == 0x1 &&
|
instr->Bit(4) == 0x0) {
|
// VRINTA, VRINTN, VRINTP, VRINTM (floating-point)
|
bool dp_operation = (instr->SzValue() == 1);
|
int rounding_mode = instr->Bits(17, 16);
|
switch (rounding_mode) {
|
case 0x0:
|
if (dp_operation) {
|
Format(instr, "vrinta.f64.f64 'Dd, 'Dm");
|
} else {
|
Format(instr, "vrinta.f32.f32 'Sd, 'Sm");
|
}
|
break;
|
case 0x1:
|
if (dp_operation) {
|
Format(instr, "vrintn.f64.f64 'Dd, 'Dm");
|
} else {
|
Format(instr, "vrintn.f32.f32 'Sd, 'Sm");
|
}
|
break;
|
case 0x2:
|
if (dp_operation) {
|
Format(instr, "vrintp.f64.f64 'Dd, 'Dm");
|
} else {
|
Format(instr, "vrintp.f32.f32 'Sd, 'Sm");
|
}
|
break;
|
case 0x3:
|
if (dp_operation) {
|
Format(instr, "vrintm.f64.f64 'Dd, 'Dm");
|
} else {
|
Format(instr, "vrintm.f32.f32 'Sd, 'Sm");
|
}
|
break;
|
default:
|
UNREACHABLE(); // Case analysis is exhaustive.
|
break;
|
}
|
} else if ((instr->Opc1Value() == 0x4) && (instr->Bits(11, 9) == 0x5) &&
|
(instr->Bit(4) == 0x0)) {
|
// VMAXNM, VMINNM (floating-point)
|
if (instr->SzValue() == 0x1) {
|
if (instr->Bit(6) == 0x1) {
|
Format(instr, "vminnm.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vmaxnm.f64 'Dd, 'Dn, 'Dm");
|
}
|
} else {
|
if (instr->Bit(6) == 0x1) {
|
Format(instr, "vminnm.f32 'Sd, 'Sn, 'Sm");
|
} else {
|
Format(instr, "vmaxnm.f32 'Sd, 'Sn, 'Sm");
|
}
|
}
|
} else {
|
Unknown(instr);
|
}
|
break;
|
case 0x1C:
|
if ((instr->Bits(11, 9) == 0x5) && (instr->Bit(6) == 0) &&
|
(instr->Bit(4) == 0)) {
|
// VSEL* (floating-point)
|
bool dp_operation = (instr->SzValue() == 1);
|
switch (instr->Bits(21, 20)) {
|
case 0x0:
|
if (dp_operation) {
|
Format(instr, "vseleq.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vseleq.f32 'Sd, 'Sn, 'Sm");
|
}
|
break;
|
case 0x1:
|
if (dp_operation) {
|
Format(instr, "vselvs.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vselvs.f32 'Sd, 'Sn, 'Sm");
|
}
|
break;
|
case 0x2:
|
if (dp_operation) {
|
Format(instr, "vselge.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vselge.f32 'Sd, 'Sn, 'Sm");
|
}
|
break;
|
case 0x3:
|
if (dp_operation) {
|
Format(instr, "vselgt.f64 'Dd, 'Dn, 'Dm");
|
} else {
|
Format(instr, "vselgt.f32 'Sd, 'Sn, 'Sm");
|
}
|
break;
|
default:
|
UNREACHABLE(); // Case analysis is exhaustive.
|
break;
|
}
|
} else {
|
Unknown(instr);
|
}
|
break;
|
default:
|
Unknown(instr);
|
break;
|
}
|
}
|
|
#undef VERIFIY
|
|
bool Decoder::IsConstantPoolAt(byte* instr_ptr) {
|
int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
|
return (instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker;
|
}
|
|
|
int Decoder::ConstantPoolSizeAt(byte* instr_ptr) {
|
if (IsConstantPoolAt(instr_ptr)) {
|
int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
|
return DecodeConstantPoolLength(instruction_bits);
|
} else {
|
return -1;
|
}
|
}
|
|
|
// Disassemble the instruction at *instr_ptr into the output buffer.
|
int Decoder::InstructionDecode(byte* instr_ptr) {
|
Instruction* instr = Instruction::At(reinterpret_cast<Address>(instr_ptr));
|
// Print raw instruction bytes.
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"%08x ",
|
instr->InstructionBits());
|
if (instr->ConditionField() == kSpecialCondition) {
|
DecodeSpecialCondition(instr);
|
return kInstrSize;
|
}
|
int instruction_bits = *(reinterpret_cast<int*>(instr_ptr));
|
if ((instruction_bits & kConstantPoolMarkerMask) == kConstantPoolMarker) {
|
out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_,
|
"constant pool begin (length %d)",
|
DecodeConstantPoolLength(instruction_bits));
|
return kInstrSize;
|
}
|
switch (instr->TypeValue()) {
|
case 0:
|
case 1: {
|
DecodeType01(instr);
|
break;
|
}
|
case 2: {
|
DecodeType2(instr);
|
break;
|
}
|
case 3: {
|
DecodeType3(instr);
|
break;
|
}
|
case 4: {
|
DecodeType4(instr);
|
break;
|
}
|
case 5: {
|
DecodeType5(instr);
|
break;
|
}
|
case 6: {
|
DecodeType6(instr);
|
break;
|
}
|
case 7: {
|
return DecodeType7(instr);
|
}
|
default: {
|
// The type field is 3-bits in the ARM encoding.
|
UNREACHABLE();
|
break;
|
}
|
}
|
return kInstrSize;
|
}
|
|
|
} // namespace internal
|
} // namespace v8
|
|
|
//------------------------------------------------------------------------------
|
|
namespace disasm {
|
|
|
const char* NameConverter::NameOfAddress(byte* addr) const {
|
v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast<void*>(addr));
|
return tmp_buffer_.start();
|
}
|
|
|
const char* NameConverter::NameOfConstant(byte* addr) const {
|
return NameOfAddress(addr);
|
}
|
|
|
const char* NameConverter::NameOfCPURegister(int reg) const {
|
return v8::internal::GetRegConfig()->GetGeneralRegisterName(reg);
|
}
|
|
|
const char* NameConverter::NameOfByteCPURegister(int reg) const {
|
UNREACHABLE(); // ARM does not have the concept of a byte register
|
return "nobytereg";
|
}
|
|
|
const char* NameConverter::NameOfXMMRegister(int reg) const {
|
UNREACHABLE(); // ARM does not have any XMM registers
|
return "noxmmreg";
|
}
|
|
|
const char* NameConverter::NameInCode(byte* addr) const {
|
// The default name converter is called for unknown code. So we will not try
|
// to access any memory.
|
return "";
|
}
|
|
|
//------------------------------------------------------------------------------
|
|
int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
|
byte* instruction) {
|
v8::internal::Decoder d(converter_, buffer);
|
return d.InstructionDecode(instruction);
|
}
|
|
|
int Disassembler::ConstantPoolSizeAt(byte* instruction) {
|
return v8::internal::Decoder::ConstantPoolSizeAt(instruction);
|
}
|
|
void Disassembler::Disassemble(FILE* f, byte* begin, byte* end,
|
UnimplementedOpcodeAction unimplemented_action) {
|
NameConverter converter;
|
Disassembler d(converter, unimplemented_action);
|
for (byte* pc = begin; pc < end;) {
|
v8::internal::EmbeddedVector<char, 128> buffer;
|
buffer[0] = '\0';
|
byte* prev_pc = pc;
|
pc += d.InstructionDecode(buffer, pc);
|
v8::internal::PrintF(f, "%p %08x %s\n", static_cast<void*>(prev_pc),
|
*reinterpret_cast<int32_t*>(prev_pc), buffer.start());
|
}
|
}
|
|
} // namespace disasm
|
|
#endif // V8_TARGET_ARCH_ARM
|