/*
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
*
|
* Use of this source code is governed by a BSD-style license
|
* that can be found in the LICENSE file in the root of the source
|
* tree. An additional intellectual property rights grant can be found
|
* in the file PATENTS. All contributing project authors may
|
* be found in the AUTHORS file in the root of the source tree.
|
*/
|
|
#include "webrtc/base/common.h"
|
#include "webrtc/base/gunit.h"
|
#include "webrtc/base/helpers.h"
|
#include "webrtc/base/thread.h"
|
#include "webrtc/base/timeutils.h"
|
|
namespace rtc {
|
|
TEST(TimeTest, TimeInMs) {
|
uint32_t ts_earlier = Time();
|
Thread::SleepMs(100);
|
uint32_t ts_now = Time();
|
// Allow for the thread to wakeup ~20ms early.
|
EXPECT_GE(ts_now, ts_earlier + 80);
|
// Make sure the Time is not returning in smaller unit like microseconds.
|
EXPECT_LT(ts_now, ts_earlier + 1000);
|
}
|
|
TEST(TimeTest, Comparison) {
|
// Obtain two different times, in known order
|
TimeStamp ts_earlier = Time();
|
Thread::SleepMs(100);
|
TimeStamp ts_now = Time();
|
EXPECT_NE(ts_earlier, ts_now);
|
|
// Common comparisons
|
EXPECT_TRUE( TimeIsLaterOrEqual(ts_earlier, ts_now));
|
EXPECT_TRUE( TimeIsLater( ts_earlier, ts_now));
|
EXPECT_FALSE(TimeIsLaterOrEqual(ts_now, ts_earlier));
|
EXPECT_FALSE(TimeIsLater( ts_now, ts_earlier));
|
|
// Edge cases
|
EXPECT_TRUE( TimeIsLaterOrEqual(ts_earlier, ts_earlier));
|
EXPECT_FALSE(TimeIsLater( ts_earlier, ts_earlier));
|
|
// Obtain a third time
|
TimeStamp ts_later = TimeAfter(100);
|
EXPECT_NE(ts_now, ts_later);
|
EXPECT_TRUE( TimeIsLater(ts_now, ts_later));
|
EXPECT_TRUE( TimeIsLater(ts_earlier, ts_later));
|
|
// Common comparisons
|
EXPECT_TRUE( TimeIsBetween(ts_earlier, ts_now, ts_later));
|
EXPECT_FALSE(TimeIsBetween(ts_earlier, ts_later, ts_now));
|
EXPECT_FALSE(TimeIsBetween(ts_now, ts_earlier, ts_later));
|
EXPECT_TRUE( TimeIsBetween(ts_now, ts_later, ts_earlier));
|
EXPECT_TRUE( TimeIsBetween(ts_later, ts_earlier, ts_now));
|
EXPECT_FALSE(TimeIsBetween(ts_later, ts_now, ts_earlier));
|
|
// Edge cases
|
EXPECT_TRUE( TimeIsBetween(ts_earlier, ts_earlier, ts_earlier));
|
EXPECT_TRUE( TimeIsBetween(ts_earlier, ts_earlier, ts_later));
|
EXPECT_TRUE( TimeIsBetween(ts_earlier, ts_later, ts_later));
|
|
// Earlier of two times
|
EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_earlier));
|
EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_now));
|
EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_later));
|
EXPECT_EQ(ts_earlier, TimeMin(ts_now, ts_earlier));
|
EXPECT_EQ(ts_earlier, TimeMin(ts_later, ts_earlier));
|
|
// Later of two times
|
EXPECT_EQ(ts_earlier, TimeMax(ts_earlier, ts_earlier));
|
EXPECT_EQ(ts_now, TimeMax(ts_earlier, ts_now));
|
EXPECT_EQ(ts_later, TimeMax(ts_earlier, ts_later));
|
EXPECT_EQ(ts_now, TimeMax(ts_now, ts_earlier));
|
EXPECT_EQ(ts_later, TimeMax(ts_later, ts_earlier));
|
}
|
|
TEST(TimeTest, Intervals) {
|
TimeStamp ts_earlier = Time();
|
TimeStamp ts_later = TimeAfter(500);
|
|
// We can't depend on ts_later and ts_earlier to be exactly 500 apart
|
// since time elapses between the calls to Time() and TimeAfter(500)
|
EXPECT_LE(500, TimeDiff(ts_later, ts_earlier));
|
EXPECT_GE(-500, TimeDiff(ts_earlier, ts_later));
|
|
// Time has elapsed since ts_earlier
|
EXPECT_GE(TimeSince(ts_earlier), 0);
|
|
// ts_earlier is earlier than now, so TimeUntil ts_earlier is -ve
|
EXPECT_LE(TimeUntil(ts_earlier), 0);
|
|
// ts_later likely hasn't happened yet, so TimeSince could be -ve
|
// but within 500
|
EXPECT_GE(TimeSince(ts_later), -500);
|
|
// TimeUntil ts_later is at most 500
|
EXPECT_LE(TimeUntil(ts_later), 500);
|
}
|
|
TEST(TimeTest, BoundaryComparison) {
|
// Obtain two different times, in known order
|
TimeStamp ts_earlier = static_cast<TimeStamp>(-50);
|
TimeStamp ts_later = ts_earlier + 100;
|
EXPECT_NE(ts_earlier, ts_later);
|
|
// Common comparisons
|
EXPECT_TRUE( TimeIsLaterOrEqual(ts_earlier, ts_later));
|
EXPECT_TRUE( TimeIsLater( ts_earlier, ts_later));
|
EXPECT_FALSE(TimeIsLaterOrEqual(ts_later, ts_earlier));
|
EXPECT_FALSE(TimeIsLater( ts_later, ts_earlier));
|
|
// Earlier of two times
|
EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_earlier));
|
EXPECT_EQ(ts_earlier, TimeMin(ts_earlier, ts_later));
|
EXPECT_EQ(ts_earlier, TimeMin(ts_later, ts_earlier));
|
|
// Later of two times
|
EXPECT_EQ(ts_earlier, TimeMax(ts_earlier, ts_earlier));
|
EXPECT_EQ(ts_later, TimeMax(ts_earlier, ts_later));
|
EXPECT_EQ(ts_later, TimeMax(ts_later, ts_earlier));
|
|
// Interval
|
EXPECT_EQ(100, TimeDiff(ts_later, ts_earlier));
|
EXPECT_EQ(-100, TimeDiff(ts_earlier, ts_later));
|
}
|
|
TEST(TimeTest, DISABLED_CurrentTmTime) {
|
struct tm tm;
|
int microseconds;
|
|
time_t before = ::time(NULL);
|
CurrentTmTime(&tm, µseconds);
|
time_t after = ::time(NULL);
|
|
// Assert that 'tm' represents a time between 'before' and 'after'.
|
// mktime() uses local time, so we have to compensate for that.
|
time_t local_delta = before - ::mktime(::gmtime(&before)); // NOLINT
|
time_t t = ::mktime(&tm) + local_delta;
|
|
EXPECT_TRUE(before <= t && t <= after);
|
EXPECT_TRUE(0 <= microseconds && microseconds < 1000000);
|
}
|
|
class TimestampWrapAroundHandlerTest : public testing::Test {
|
public:
|
TimestampWrapAroundHandlerTest() {}
|
|
protected:
|
TimestampWrapAroundHandler wraparound_handler_;
|
};
|
|
TEST_F(TimestampWrapAroundHandlerTest, Unwrap) {
|
uint32_t ts = 0xfffffff2;
|
int64_t unwrapped_ts = ts;
|
EXPECT_EQ(ts, wraparound_handler_.Unwrap(ts));
|
ts = 2;
|
unwrapped_ts += 0x10;
|
EXPECT_EQ(unwrapped_ts, wraparound_handler_.Unwrap(ts));
|
ts = 0xfffffff2;
|
unwrapped_ts += 0xfffffff0;
|
EXPECT_EQ(unwrapped_ts, wraparound_handler_.Unwrap(ts));
|
ts = 0;
|
unwrapped_ts += 0xe;
|
EXPECT_EQ(unwrapped_ts, wraparound_handler_.Unwrap(ts));
|
}
|
|
class TmToSeconds : public testing::Test {
|
public:
|
TmToSeconds() {
|
// Set use of the test RNG to get deterministic expiration timestamp.
|
rtc::SetRandomTestMode(true);
|
}
|
~TmToSeconds() {
|
// Put it back for the next test.
|
rtc::SetRandomTestMode(false);
|
}
|
|
void TestTmToSeconds(int times) {
|
static char mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
for (int i = 0; i < times; i++) {
|
|
// First generate something correct and check that TmToSeconds is happy.
|
int year = rtc::CreateRandomId() % 400 + 1970;
|
|
bool leap_year = false;
|
if (year % 4 == 0)
|
leap_year = true;
|
if (year % 100 == 0)
|
leap_year = false;
|
if (year % 400 == 0)
|
leap_year = true;
|
|
std::tm tm;
|
tm.tm_year = year - 1900; // std::tm is year 1900 based.
|
tm.tm_mon = rtc::CreateRandomId() % 12;
|
tm.tm_mday = rtc::CreateRandomId() % mdays[tm.tm_mon] + 1;
|
tm.tm_hour = rtc::CreateRandomId() % 24;
|
tm.tm_min = rtc::CreateRandomId() % 60;
|
tm.tm_sec = rtc::CreateRandomId() % 60;
|
int64_t t = rtc::TmToSeconds(tm);
|
EXPECT_TRUE(t >= 0);
|
|
// Now damage a random field and check that TmToSeconds is unhappy.
|
switch (rtc::CreateRandomId() % 11) {
|
case 0:
|
tm.tm_year = 1969 - 1900;
|
break;
|
case 1:
|
tm.tm_mon = -1;
|
break;
|
case 2:
|
tm.tm_mon = 12;
|
break;
|
case 3:
|
tm.tm_mday = 0;
|
break;
|
case 4:
|
tm.tm_mday = mdays[tm.tm_mon] + (leap_year && tm.tm_mon == 1) + 1;
|
break;
|
case 5:
|
tm.tm_hour = -1;
|
break;
|
case 6:
|
tm.tm_hour = 24;
|
break;
|
case 7:
|
tm.tm_min = -1;
|
break;
|
case 8:
|
tm.tm_min = 60;
|
break;
|
case 9:
|
tm.tm_sec = -1;
|
break;
|
case 10:
|
tm.tm_sec = 60;
|
break;
|
}
|
EXPECT_EQ(rtc::TmToSeconds(tm), -1);
|
}
|
// Check consistency with the system gmtime_r. With time_t, we can only
|
// portably test dates until 2038, which is achieved by the % 0x80000000.
|
for (int i = 0; i < times; i++) {
|
time_t t = rtc::CreateRandomId() % 0x80000000;
|
#if defined(WEBRTC_WIN)
|
std::tm* tm = std::gmtime(&t);
|
EXPECT_TRUE(tm);
|
EXPECT_TRUE(rtc::TmToSeconds(*tm) == t);
|
#else
|
std::tm tm;
|
EXPECT_TRUE(gmtime_r(&t, &tm));
|
EXPECT_TRUE(rtc::TmToSeconds(tm) == t);
|
#endif
|
}
|
}
|
};
|
|
TEST_F(TmToSeconds, TestTmToSeconds) {
|
TestTmToSeconds(100000);
|
}
|
|
} // namespace rtc
|