/*
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
*
|
* Use of this source code is governed by a BSD-style license
|
* that can be found in the LICENSE file in the root of the source
|
* tree. An additional intellectual property rights grant can be found
|
* in the file PATENTS. All contributing project authors may
|
* be found in the AUTHORS file in the root of the source tree.
|
*/
|
|
#include <stdint.h>
|
|
#if defined(WEBRTC_POSIX)
|
#include <sys/time.h>
|
#if defined(WEBRTC_MAC)
|
#include <mach/mach_time.h>
|
#endif
|
#endif
|
|
#if defined(WEBRTC_WIN)
|
#ifndef WIN32_LEAN_AND_MEAN
|
#define WIN32_LEAN_AND_MEAN
|
#endif
|
#include <windows.h>
|
#include <mmsystem.h>
|
#endif
|
|
#include "webrtc/base/checks.h"
|
#include "webrtc/base/timeutils.h"
|
|
#define EFFICIENT_IMPLEMENTATION 1
|
|
namespace rtc {
|
|
const uint32_t HALF = 0x80000000;
|
|
uint64_t TimeNanos() {
|
int64_t ticks = 0;
|
#if defined(WEBRTC_MAC)
|
static mach_timebase_info_data_t timebase;
|
if (timebase.denom == 0) {
|
// Get the timebase if this is the first time we run.
|
// Recommended by Apple's QA1398.
|
if (mach_timebase_info(&timebase) != KERN_SUCCESS) {
|
RTC_DCHECK(false);
|
}
|
}
|
// Use timebase to convert absolute time tick units into nanoseconds.
|
ticks = mach_absolute_time() * timebase.numer / timebase.denom;
|
#elif defined(WEBRTC_POSIX)
|
struct timespec ts;
|
// TODO: Do we need to handle the case when CLOCK_MONOTONIC
|
// is not supported?
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) +
|
static_cast<int64_t>(ts.tv_nsec);
|
#elif defined(WEBRTC_WIN)
|
static volatile LONG last_timegettime = 0;
|
static volatile int64_t num_wrap_timegettime = 0;
|
volatile LONG* last_timegettime_ptr = &last_timegettime;
|
DWORD now = timeGetTime();
|
// Atomically update the last gotten time
|
DWORD old = InterlockedExchange(last_timegettime_ptr, now);
|
if (now < old) {
|
// If now is earlier than old, there may have been a race between
|
// threads.
|
// 0x0fffffff ~3.1 days, the code will not take that long to execute
|
// so it must have been a wrap around.
|
if (old > 0xf0000000 && now < 0x0fffffff) {
|
num_wrap_timegettime++;
|
}
|
}
|
ticks = now + (num_wrap_timegettime << 32);
|
// TODO: Calculate with nanosecond precision. Otherwise, we're just
|
// wasting a multiply and divide when doing Time() on Windows.
|
ticks = ticks * kNumNanosecsPerMillisec;
|
#endif
|
return ticks;
|
}
|
|
uint32_t Time() {
|
return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
|
}
|
|
uint64_t TimeMicros() {
|
return static_cast<uint64_t>(TimeNanos() / kNumNanosecsPerMicrosec);
|
}
|
|
#if defined(WEBRTC_WIN)
|
static const uint64_t kFileTimeToUnixTimeEpochOffset = 116444736000000000ULL;
|
|
struct timeval {
|
long tv_sec, tv_usec; // NOLINT
|
};
|
|
// Emulate POSIX gettimeofday().
|
// Based on breakpad/src/third_party/glog/src/utilities.cc
|
static int gettimeofday(struct timeval *tv, void *tz) {
|
// FILETIME is measured in tens of microseconds since 1601-01-01 UTC.
|
FILETIME ft;
|
GetSystemTimeAsFileTime(&ft);
|
|
LARGE_INTEGER li;
|
li.LowPart = ft.dwLowDateTime;
|
li.HighPart = ft.dwHighDateTime;
|
|
// Convert to seconds and microseconds since Unix time Epoch.
|
int64_t micros = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) / 10;
|
tv->tv_sec = static_cast<long>(micros / kNumMicrosecsPerSec); // NOLINT
|
tv->tv_usec = static_cast<long>(micros % kNumMicrosecsPerSec); // NOLINT
|
|
return 0;
|
}
|
|
// Emulate POSIX gmtime_r().
|
static struct tm *gmtime_r(const time_t *timep, struct tm *result) {
|
// On Windows, gmtime is thread safe.
|
struct tm *tm = gmtime(timep); // NOLINT
|
if (tm == NULL) {
|
return NULL;
|
}
|
*result = *tm;
|
return result;
|
}
|
#endif // WEBRTC_WIN
|
|
void CurrentTmTime(struct tm *tm, int *microseconds) {
|
struct timeval timeval;
|
if (gettimeofday(&timeval, NULL) < 0) {
|
// Incredibly unlikely code path.
|
timeval.tv_sec = timeval.tv_usec = 0;
|
}
|
time_t secs = timeval.tv_sec;
|
gmtime_r(&secs, tm);
|
*microseconds = timeval.tv_usec;
|
}
|
|
uint32_t TimeAfter(int32_t elapsed) {
|
RTC_DCHECK_GE(elapsed, 0);
|
RTC_DCHECK_LT(static_cast<uint32_t>(elapsed), HALF);
|
return Time() + elapsed;
|
}
|
|
bool TimeIsBetween(uint32_t earlier, uint32_t middle, uint32_t later) {
|
if (earlier <= later) {
|
return ((earlier <= middle) && (middle <= later));
|
} else {
|
return !((later < middle) && (middle < earlier));
|
}
|
}
|
|
bool TimeIsLaterOrEqual(uint32_t earlier, uint32_t later) {
|
#if EFFICIENT_IMPLEMENTATION
|
int32_t diff = later - earlier;
|
return (diff >= 0 && static_cast<uint32_t>(diff) < HALF);
|
#else
|
const bool later_or_equal = TimeIsBetween(earlier, later, earlier + HALF);
|
return later_or_equal;
|
#endif
|
}
|
|
bool TimeIsLater(uint32_t earlier, uint32_t later) {
|
#if EFFICIENT_IMPLEMENTATION
|
int32_t diff = later - earlier;
|
return (diff > 0 && static_cast<uint32_t>(diff) < HALF);
|
#else
|
const bool earlier_or_equal = TimeIsBetween(later, earlier, later + HALF);
|
return !earlier_or_equal;
|
#endif
|
}
|
|
int32_t TimeDiff(uint32_t later, uint32_t earlier) {
|
#if EFFICIENT_IMPLEMENTATION
|
return later - earlier;
|
#else
|
const bool later_or_equal = TimeIsBetween(earlier, later, earlier + HALF);
|
if (later_or_equal) {
|
if (earlier <= later) {
|
return static_cast<long>(later - earlier);
|
} else {
|
return static_cast<long>(later + (UINT32_MAX - earlier) + 1);
|
}
|
} else {
|
if (later <= earlier) {
|
return -static_cast<long>(earlier - later);
|
} else {
|
return -static_cast<long>(earlier + (UINT32_MAX - later) + 1);
|
}
|
}
|
#endif
|
}
|
|
TimestampWrapAroundHandler::TimestampWrapAroundHandler()
|
: last_ts_(0), num_wrap_(0) {}
|
|
int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
|
if (ts < last_ts_) {
|
if (last_ts_ > 0xf0000000 && ts < 0x0fffffff) {
|
++num_wrap_;
|
}
|
}
|
last_ts_ = ts;
|
int64_t unwrapped_ts = ts + (num_wrap_ << 32);
|
return unwrapped_ts;
|
}
|
|
int64_t TmToSeconds(const std::tm& tm) {
|
static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
static short int cumul_mdays[12] = {0, 31, 59, 90, 120, 151,
|
181, 212, 243, 273, 304, 334};
|
int year = tm.tm_year + 1900;
|
int month = tm.tm_mon;
|
int day = tm.tm_mday - 1; // Make 0-based like the rest.
|
int hour = tm.tm_hour;
|
int min = tm.tm_min;
|
int sec = tm.tm_sec;
|
|
bool expiry_in_leap_year = (year % 4 == 0 &&
|
(year % 100 != 0 || year % 400 == 0));
|
|
if (year < 1970)
|
return -1;
|
if (month < 0 || month > 11)
|
return -1;
|
if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
|
return -1;
|
if (hour < 0 || hour > 23)
|
return -1;
|
if (min < 0 || min > 59)
|
return -1;
|
if (sec < 0 || sec > 59)
|
return -1;
|
|
day += cumul_mdays[month];
|
|
// Add number of leap days between 1970 and the expiration year, inclusive.
|
day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
|
(year / 400 - 1970 / 400));
|
|
// We will have added one day too much above if expiration is during a leap
|
// year, and expiration is in January or February.
|
if (expiry_in_leap_year && month <= 2 - 1) // |month| is zero based.
|
day -= 1;
|
|
// Combine all variables into seconds from 1970-01-01 00:00 (except |month|
|
// which was accumulated into |day| above).
|
return (((static_cast<int64_t>
|
(year - 1970) * 365 + day) * 24 + hour) * 60 + min) * 60 + sec;
|
}
|
|
} // namespace rtc
|