/*
|
* Copyright 2015 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#ifndef SkBlitMask_opts_DEFINED
|
#define SkBlitMask_opts_DEFINED
|
|
#include "Sk4px.h"
|
|
namespace SK_OPTS_NS {
|
|
#if defined(SK_ARM_HAS_NEON)
|
// The Sk4px versions below will work fine with NEON, but we have had many indications
|
// that it doesn't perform as well as this NEON-specific code. TODO(mtklein): why?
|
|
#define NEON_A (SK_A32_SHIFT / 8)
|
#define NEON_R (SK_R32_SHIFT / 8)
|
#define NEON_G (SK_G32_SHIFT / 8)
|
#define NEON_B (SK_B32_SHIFT / 8)
|
|
static inline uint16x8_t SkAlpha255To256_neon8(uint8x8_t alpha) {
|
return vaddw_u8(vdupq_n_u16(1), alpha);
|
}
|
|
static inline uint8x8_t SkAlphaMul_neon8(uint8x8_t color, uint16x8_t scale) {
|
return vshrn_n_u16(vmovl_u8(color) * scale, 8);
|
}
|
|
static inline uint8x8x4_t SkAlphaMulQ_neon8(uint8x8x4_t color, uint16x8_t scale) {
|
uint8x8x4_t ret;
|
|
ret.val[0] = SkAlphaMul_neon8(color.val[0], scale);
|
ret.val[1] = SkAlphaMul_neon8(color.val[1], scale);
|
ret.val[2] = SkAlphaMul_neon8(color.val[2], scale);
|
ret.val[3] = SkAlphaMul_neon8(color.val[3], scale);
|
|
return ret;
|
}
|
|
|
template <bool isColor>
|
static void D32_A8_Opaque_Color_neon(void* SK_RESTRICT dst, size_t dstRB,
|
const void* SK_RESTRICT maskPtr, size_t maskRB,
|
SkColor color, int width, int height) {
|
SkPMColor pmc = SkPreMultiplyColor(color);
|
SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
|
const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
|
uint8x8x4_t vpmc;
|
|
maskRB -= width;
|
dstRB -= (width << 2);
|
|
if (width >= 8) {
|
vpmc.val[NEON_A] = vdup_n_u8(SkGetPackedA32(pmc));
|
vpmc.val[NEON_R] = vdup_n_u8(SkGetPackedR32(pmc));
|
vpmc.val[NEON_G] = vdup_n_u8(SkGetPackedG32(pmc));
|
vpmc.val[NEON_B] = vdup_n_u8(SkGetPackedB32(pmc));
|
}
|
do {
|
int w = width;
|
while (w >= 8) {
|
uint8x8_t vmask = vld1_u8(mask);
|
uint16x8_t vscale, vmask256 = SkAlpha255To256_neon8(vmask);
|
if (isColor) {
|
vscale = vsubw_u8(vdupq_n_u16(256),
|
SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256));
|
} else {
|
vscale = vsubw_u8(vdupq_n_u16(256), vmask);
|
}
|
uint8x8x4_t vdev = vld4_u8((uint8_t*)device);
|
|
vdev.val[NEON_A] = SkAlphaMul_neon8(vpmc.val[NEON_A], vmask256)
|
+ SkAlphaMul_neon8(vdev.val[NEON_A], vscale);
|
vdev.val[NEON_R] = SkAlphaMul_neon8(vpmc.val[NEON_R], vmask256)
|
+ SkAlphaMul_neon8(vdev.val[NEON_R], vscale);
|
vdev.val[NEON_G] = SkAlphaMul_neon8(vpmc.val[NEON_G], vmask256)
|
+ SkAlphaMul_neon8(vdev.val[NEON_G], vscale);
|
vdev.val[NEON_B] = SkAlphaMul_neon8(vpmc.val[NEON_B], vmask256)
|
+ SkAlphaMul_neon8(vdev.val[NEON_B], vscale);
|
|
vst4_u8((uint8_t*)device, vdev);
|
|
mask += 8;
|
device += 8;
|
w -= 8;
|
}
|
|
while (w--) {
|
unsigned aa = *mask++;
|
if (isColor) {
|
*device = SkBlendARGB32(pmc, *device, aa);
|
} else {
|
*device = SkAlphaMulQ(pmc, SkAlpha255To256(aa))
|
+ SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
|
}
|
device += 1;
|
};
|
|
device = (uint32_t*)((char*)device + dstRB);
|
mask += maskRB;
|
|
} while (--height != 0);
|
}
|
|
static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
|
const SkAlpha* mask, size_t maskRB,
|
SkColor color, int w, int h) {
|
D32_A8_Opaque_Color_neon<true>(dst, dstRB, mask, maskRB, color, w, h);
|
}
|
|
// As above, but made slightly simpler by requiring that color is opaque.
|
static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
|
const SkAlpha* mask, size_t maskRB,
|
SkColor color, int w, int h) {
|
D32_A8_Opaque_Color_neon<false>(dst, dstRB, mask, maskRB, color, w, h);
|
}
|
|
// Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
|
static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
|
const SkAlpha* maskPtr, size_t maskRB,
|
int width, int height) {
|
SkPMColor* SK_RESTRICT device = (SkPMColor*)dst;
|
const uint8_t* SK_RESTRICT mask = (const uint8_t*)maskPtr;
|
|
maskRB -= width;
|
dstRB -= (width << 2);
|
do {
|
int w = width;
|
while (w >= 8) {
|
uint8x8_t vmask = vld1_u8(mask);
|
uint16x8_t vscale = vsubw_u8(vdupq_n_u16(256), vmask);
|
uint8x8x4_t vdevice = vld4_u8((uint8_t*)device);
|
|
vdevice = SkAlphaMulQ_neon8(vdevice, vscale);
|
vdevice.val[NEON_A] += vmask;
|
|
vst4_u8((uint8_t*)device, vdevice);
|
|
mask += 8;
|
device += 8;
|
w -= 8;
|
}
|
while (w-- > 0) {
|
unsigned aa = *mask++;
|
*device = (aa << SK_A32_SHIFT)
|
+ SkAlphaMulQ(*device, SkAlpha255To256(255 - aa));
|
device += 1;
|
};
|
device = (uint32_t*)((char*)device + dstRB);
|
mask += maskRB;
|
} while (--height != 0);
|
}
|
|
#else
|
static void blit_mask_d32_a8_general(SkPMColor* dst, size_t dstRB,
|
const SkAlpha* mask, size_t maskRB,
|
SkColor color, int w, int h) {
|
auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
|
auto fn = [&](const Sk4px& d, const Sk4px& aa) {
|
// = (s + d(1-sa))aa + d(1-aa)
|
// = s*aa + d(1-sa*aa)
|
auto left = s.approxMulDiv255(aa),
|
right = d.approxMulDiv255(left.alphas().inv());
|
return left + right; // This does not overflow (exhaustively checked).
|
};
|
while (h --> 0) {
|
Sk4px::MapDstAlpha(w, dst, mask, fn);
|
dst += dstRB / sizeof(*dst);
|
mask += maskRB / sizeof(*mask);
|
}
|
}
|
|
// As above, but made slightly simpler by requiring that color is opaque.
|
static void blit_mask_d32_a8_opaque(SkPMColor* dst, size_t dstRB,
|
const SkAlpha* mask, size_t maskRB,
|
SkColor color, int w, int h) {
|
SkASSERT(SkColorGetA(color) == 0xFF);
|
auto s = Sk4px::DupPMColor(SkPreMultiplyColor(color));
|
auto fn = [&](const Sk4px& d, const Sk4px& aa) {
|
// = (s + d(1-sa))aa + d(1-aa)
|
// = s*aa + d(1-sa*aa)
|
// ~~~>
|
// = s*aa + d(1-aa)
|
return s.approxMulDiv255(aa) + d.approxMulDiv255(aa.inv());
|
};
|
while (h --> 0) {
|
Sk4px::MapDstAlpha(w, dst, mask, fn);
|
dst += dstRB / sizeof(*dst);
|
mask += maskRB / sizeof(*mask);
|
}
|
}
|
|
// Same as _opaque, but assumes color == SK_ColorBLACK, a very common and even simpler case.
|
static void blit_mask_d32_a8_black(SkPMColor* dst, size_t dstRB,
|
const SkAlpha* mask, size_t maskRB,
|
int w, int h) {
|
auto fn = [](const Sk4px& d, const Sk4px& aa) {
|
// = (s + d(1-sa))aa + d(1-aa)
|
// = s*aa + d(1-sa*aa)
|
// ~~~>
|
// a = 1*aa + d(1-1*aa) = aa + d(1-aa)
|
// c = 0*aa + d(1-1*aa) = d(1-aa)
|
return Sk4px(Sk16b(aa) & Sk16b(0,0,0,255, 0,0,0,255, 0,0,0,255, 0,0,0,255))
|
+ d.approxMulDiv255(aa.inv());
|
};
|
while (h --> 0) {
|
Sk4px::MapDstAlpha(w, dst, mask, fn);
|
dst += dstRB / sizeof(*dst);
|
mask += maskRB / sizeof(*mask);
|
}
|
}
|
#endif
|
|
/*not static*/ inline void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
|
const SkAlpha* mask, size_t maskRB,
|
SkColor color, int w, int h) {
|
if (color == SK_ColorBLACK) {
|
blit_mask_d32_a8_black(dst, dstRB, mask, maskRB, w, h);
|
} else if (SkColorGetA(color) == 0xFF) {
|
blit_mask_d32_a8_opaque(dst, dstRB, mask, maskRB, color, w, h);
|
} else {
|
blit_mask_d32_a8_general(dst, dstRB, mask, maskRB, color, w, h);
|
}
|
}
|
|
} // SK_OPTS_NS
|
|
#endif//SkBlitMask_opts_DEFINED
|