/*
|
* Copyright 2015 Google Inc.
|
*
|
* Use of this source code is governed by a BSD-style license that can be
|
* found in the LICENSE file.
|
*/
|
|
#include "SkBmpRLECodec.h"
|
#include "SkCodecPriv.h"
|
#include "SkColorData.h"
|
#include "SkStream.h"
|
|
/*
|
* Creates an instance of the decoder
|
* Called only by NewFromStream
|
*/
|
SkBmpRLECodec::SkBmpRLECodec(SkEncodedInfo&& info,
|
std::unique_ptr<SkStream> stream,
|
uint16_t bitsPerPixel, uint32_t numColors,
|
uint32_t bytesPerColor, uint32_t offset,
|
SkCodec::SkScanlineOrder rowOrder)
|
: INHERITED(std::move(info), std::move(stream), bitsPerPixel, rowOrder)
|
, fColorTable(nullptr)
|
, fNumColors(numColors)
|
, fBytesPerColor(bytesPerColor)
|
, fOffset(offset)
|
, fBytesBuffered(0)
|
, fCurrRLEByte(0)
|
, fSampleX(1)
|
{}
|
|
/*
|
* Initiates the bitmap decode
|
*/
|
SkCodec::Result SkBmpRLECodec::onGetPixels(const SkImageInfo& dstInfo,
|
void* dst, size_t dstRowBytes,
|
const Options& opts,
|
int* rowsDecoded) {
|
if (opts.fSubset) {
|
// Subsets are not supported.
|
return kUnimplemented;
|
}
|
|
Result result = this->prepareToDecode(dstInfo, opts);
|
if (kSuccess != result) {
|
return result;
|
}
|
|
// Perform the decode
|
int rows = this->decodeRows(dstInfo, dst, dstRowBytes, opts);
|
if (rows != dstInfo.height()) {
|
// We set rowsDecoded equal to the height because the background has already
|
// been filled. RLE encodings sometimes skip pixels, so we always start by
|
// filling the background.
|
*rowsDecoded = dstInfo.height();
|
return kIncompleteInput;
|
}
|
|
return kSuccess;
|
}
|
|
/*
|
* Process the color table for the bmp input
|
*/
|
bool SkBmpRLECodec::createColorTable(SkColorType dstColorType) {
|
// Allocate memory for color table
|
uint32_t colorBytes = 0;
|
SkPMColor colorTable[256];
|
if (this->bitsPerPixel() <= 8) {
|
// Inform the caller of the number of colors
|
uint32_t maxColors = 1 << this->bitsPerPixel();
|
// Don't bother reading more than maxColors.
|
const uint32_t numColorsToRead =
|
fNumColors == 0 ? maxColors : SkTMin(fNumColors, maxColors);
|
|
// Read the color table from the stream
|
colorBytes = numColorsToRead * fBytesPerColor;
|
std::unique_ptr<uint8_t[]> cBuffer(new uint8_t[colorBytes]);
|
if (stream()->read(cBuffer.get(), colorBytes) != colorBytes) {
|
SkCodecPrintf("Error: unable to read color table.\n");
|
return false;
|
}
|
|
// Fill in the color table
|
PackColorProc packARGB = choose_pack_color_proc(false, dstColorType);
|
uint32_t i = 0;
|
for (; i < numColorsToRead; i++) {
|
uint8_t blue = get_byte(cBuffer.get(), i*fBytesPerColor);
|
uint8_t green = get_byte(cBuffer.get(), i*fBytesPerColor + 1);
|
uint8_t red = get_byte(cBuffer.get(), i*fBytesPerColor + 2);
|
colorTable[i] = packARGB(0xFF, red, green, blue);
|
}
|
|
// To avoid segmentation faults on bad pixel data, fill the end of the
|
// color table with black. This is the same the behavior as the
|
// chromium decoder.
|
for (; i < maxColors; i++) {
|
colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0);
|
}
|
|
// Set the color table
|
fColorTable.reset(new SkColorTable(colorTable, maxColors));
|
}
|
|
// Check that we have not read past the pixel array offset
|
if(fOffset < colorBytes) {
|
// This may occur on OS 2.1 and other old versions where the color
|
// table defaults to max size, and the bmp tries to use a smaller
|
// color table. This is invalid, and our decision is to indicate
|
// an error, rather than try to guess the intended size of the
|
// color table.
|
SkCodecPrintf("Error: pixel data offset less than color table size.\n");
|
return false;
|
}
|
|
// After reading the color table, skip to the start of the pixel array
|
if (stream()->skip(fOffset - colorBytes) != fOffset - colorBytes) {
|
SkCodecPrintf("Error: unable to skip to image data.\n");
|
return false;
|
}
|
|
// Return true on success
|
return true;
|
}
|
|
bool SkBmpRLECodec::initializeStreamBuffer() {
|
fBytesBuffered = this->stream()->read(fStreamBuffer, kBufferSize);
|
if (fBytesBuffered == 0) {
|
SkCodecPrintf("Error: could not read RLE image data.\n");
|
return false;
|
}
|
fCurrRLEByte = 0;
|
return true;
|
}
|
|
/*
|
* @return the number of bytes remaining in the stream buffer after
|
* attempting to read more bytes from the stream
|
*/
|
size_t SkBmpRLECodec::checkForMoreData() {
|
const size_t remainingBytes = fBytesBuffered - fCurrRLEByte;
|
uint8_t* buffer = fStreamBuffer;
|
|
// We will be reusing the same buffer, starting over from the beginning.
|
// Move any remaining bytes to the start of the buffer.
|
// We use memmove() instead of memcpy() because there is risk that the dst
|
// and src memory will overlap in corrupt images.
|
memmove(buffer, SkTAddOffset<uint8_t>(buffer, fCurrRLEByte), remainingBytes);
|
|
// Adjust the buffer ptr to the start of the unfilled data.
|
buffer += remainingBytes;
|
|
// Try to read additional bytes from the stream. There are fCurrRLEByte
|
// bytes of additional space remaining in the buffer, assuming that we
|
// have already copied remainingBytes to the start of the buffer.
|
size_t additionalBytes = this->stream()->read(buffer, fCurrRLEByte);
|
|
// Update counters and return the number of bytes we currently have
|
// available. We are at the start of the buffer again.
|
fCurrRLEByte = 0;
|
fBytesBuffered = remainingBytes + additionalBytes;
|
return fBytesBuffered;
|
}
|
|
/*
|
* Set an RLE pixel using the color table
|
*/
|
void SkBmpRLECodec::setPixel(void* dst, size_t dstRowBytes,
|
const SkImageInfo& dstInfo, uint32_t x, uint32_t y,
|
uint8_t index) {
|
if (dst && is_coord_necessary(x, fSampleX, dstInfo.width())) {
|
// Set the row
|
uint32_t row = this->getDstRow(y, dstInfo.height());
|
|
// Set the pixel based on destination color type
|
const int dstX = get_dst_coord(x, fSampleX);
|
switch (dstInfo.colorType()) {
|
case kRGBA_8888_SkColorType:
|
case kBGRA_8888_SkColorType: {
|
SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes);
|
dstRow[dstX] = fColorTable->operator[](index);
|
break;
|
}
|
case kRGB_565_SkColorType: {
|
uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, row * (int) dstRowBytes);
|
dstRow[dstX] = SkPixel32ToPixel16(fColorTable->operator[](index));
|
break;
|
}
|
default:
|
// This case should not be reached. We should catch an invalid
|
// color type when we check that the conversion is possible.
|
SkASSERT(false);
|
break;
|
}
|
}
|
}
|
|
/*
|
* Set an RLE pixel from R, G, B values
|
*/
|
void SkBmpRLECodec::setRGBPixel(void* dst, size_t dstRowBytes,
|
const SkImageInfo& dstInfo, uint32_t x,
|
uint32_t y, uint8_t red, uint8_t green,
|
uint8_t blue) {
|
if (dst && is_coord_necessary(x, fSampleX, dstInfo.width())) {
|
// Set the row
|
uint32_t row = this->getDstRow(y, dstInfo.height());
|
|
// Set the pixel based on destination color type
|
const int dstX = get_dst_coord(x, fSampleX);
|
switch (dstInfo.colorType()) {
|
case kRGBA_8888_SkColorType: {
|
SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes);
|
dstRow[dstX] = SkPackARGB_as_RGBA(0xFF, red, green, blue);
|
break;
|
}
|
case kBGRA_8888_SkColorType: {
|
SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, row * (int) dstRowBytes);
|
dstRow[dstX] = SkPackARGB_as_BGRA(0xFF, red, green, blue);
|
break;
|
}
|
case kRGB_565_SkColorType: {
|
uint16_t* dstRow = SkTAddOffset<uint16_t>(dst, row * (int) dstRowBytes);
|
dstRow[dstX] = SkPack888ToRGB16(red, green, blue);
|
break;
|
}
|
default:
|
// This case should not be reached. We should catch an invalid
|
// color type when we check that the conversion is possible.
|
SkASSERT(false);
|
break;
|
}
|
}
|
}
|
|
SkCodec::Result SkBmpRLECodec::onPrepareToDecode(const SkImageInfo& dstInfo,
|
const SkCodec::Options& options) {
|
// FIXME: Support subsets for scanline decodes.
|
if (options.fSubset) {
|
// Subsets are not supported.
|
return kUnimplemented;
|
}
|
|
// Reset fSampleX. If it needs to be a value other than 1, it will get modified by
|
// the sampler.
|
fSampleX = 1;
|
fLinesToSkip = 0;
|
|
SkColorType colorTableColorType = dstInfo.colorType();
|
if (this->colorXform()) {
|
// Just set a known colorType for the colorTable. No need to actually transform
|
// the colors in the colorTable.
|
colorTableColorType = kBGRA_8888_SkColorType;
|
}
|
|
// Create the color table if necessary and prepare the stream for decode
|
// Note that if it is non-NULL, inputColorCount will be modified
|
if (!this->createColorTable(colorTableColorType)) {
|
SkCodecPrintf("Error: could not create color table.\n");
|
return SkCodec::kInvalidInput;
|
}
|
|
// Initialize a buffer for encoded RLE data
|
if (!this->initializeStreamBuffer()) {
|
SkCodecPrintf("Error: cannot initialize stream buffer.\n");
|
return SkCodec::kInvalidInput;
|
}
|
|
return SkCodec::kSuccess;
|
}
|
|
/*
|
* Performs the bitmap decoding for RLE input format
|
* RLE decoding is performed all at once, rather than a one row at a time
|
*/
|
int SkBmpRLECodec::decodeRows(const SkImageInfo& info, void* dst, size_t dstRowBytes,
|
const Options& opts) {
|
int height = info.height();
|
|
// Account for sampling.
|
SkImageInfo dstInfo = info.makeWH(this->fillWidth(), height);
|
|
// Set the background as transparent. Then, if the RLE code skips pixels,
|
// the skipped pixels will be transparent.
|
if (dst) {
|
SkSampler::Fill(dstInfo, dst, dstRowBytes, opts.fZeroInitialized);
|
}
|
|
// Adjust the height and the dst if the previous call to decodeRows() left us
|
// with lines that need to be skipped.
|
if (height > fLinesToSkip) {
|
height -= fLinesToSkip;
|
if (dst) {
|
dst = SkTAddOffset<void>(dst, fLinesToSkip * dstRowBytes);
|
}
|
fLinesToSkip = 0;
|
|
dstInfo = dstInfo.makeWH(dstInfo.width(), height);
|
} else {
|
fLinesToSkip -= height;
|
return height;
|
}
|
|
void* decodeDst = dst;
|
size_t decodeRowBytes = dstRowBytes;
|
SkImageInfo decodeInfo = dstInfo;
|
if (decodeDst) {
|
if (this->colorXform()) {
|
decodeInfo = decodeInfo.makeColorType(kXformSrcColorType);
|
if (kRGBA_F16_SkColorType == dstInfo.colorType()) {
|
int count = height * dstInfo.width();
|
this->resetXformBuffer(count);
|
sk_bzero(this->xformBuffer(), count * sizeof(uint32_t));
|
decodeDst = this->xformBuffer();
|
decodeRowBytes = dstInfo.width() * sizeof(uint32_t);
|
}
|
}
|
}
|
|
int decodedHeight = this->decodeRLE(decodeInfo, decodeDst, decodeRowBytes);
|
if (this->colorXform() && decodeDst) {
|
for (int y = 0; y < decodedHeight; y++) {
|
this->applyColorXform(dst, decodeDst, dstInfo.width());
|
decodeDst = SkTAddOffset<void>(decodeDst, decodeRowBytes);
|
dst = SkTAddOffset<void>(dst, dstRowBytes);
|
}
|
}
|
|
return decodedHeight;
|
}
|
|
int SkBmpRLECodec::decodeRLE(const SkImageInfo& dstInfo, void* dst, size_t dstRowBytes) {
|
// Use the original width to count the number of pixels in each row.
|
const int width = this->dimensions().width();
|
|
// This tells us the number of rows that we are meant to decode.
|
const int height = dstInfo.height();
|
|
// Set RLE flags
|
constexpr uint8_t RLE_ESCAPE = 0;
|
constexpr uint8_t RLE_EOL = 0;
|
constexpr uint8_t RLE_EOF = 1;
|
constexpr uint8_t RLE_DELTA = 2;
|
|
// Destination parameters
|
int x = 0;
|
int y = 0;
|
|
while (true) {
|
// If we have reached a row that is beyond the requested height, we have
|
// succeeded.
|
if (y >= height) {
|
// It would be better to check for the EOF marker before indicating
|
// success, but we may be performing a scanline decode, which
|
// would require us to stop before decoding the full height.
|
return height;
|
}
|
|
// Every entry takes at least two bytes
|
if ((int) fBytesBuffered - fCurrRLEByte < 2) {
|
if (this->checkForMoreData() < 2) {
|
return y;
|
}
|
}
|
|
// Read the next two bytes. These bytes have different meanings
|
// depending on their values. In the first interpretation, the first
|
// byte is an escape flag and the second byte indicates what special
|
// task to perform.
|
const uint8_t flag = fStreamBuffer[fCurrRLEByte++];
|
const uint8_t task = fStreamBuffer[fCurrRLEByte++];
|
|
// Perform decoding
|
if (RLE_ESCAPE == flag) {
|
switch (task) {
|
case RLE_EOL:
|
x = 0;
|
y++;
|
break;
|
case RLE_EOF:
|
return height;
|
case RLE_DELTA: {
|
// Two bytes are needed to specify delta
|
if ((int) fBytesBuffered - fCurrRLEByte < 2) {
|
if (this->checkForMoreData() < 2) {
|
return y;
|
}
|
}
|
// Modify x and y
|
const uint8_t dx = fStreamBuffer[fCurrRLEByte++];
|
const uint8_t dy = fStreamBuffer[fCurrRLEByte++];
|
x += dx;
|
y += dy;
|
if (x > width) {
|
SkCodecPrintf("Warning: invalid RLE input.\n");
|
return y - dy;
|
} else if (y > height) {
|
fLinesToSkip = y - height;
|
return height;
|
}
|
break;
|
}
|
default: {
|
// If task does not match any of the above signals, it
|
// indicates that we have a sequence of non-RLE pixels.
|
// Furthermore, the value of task is equal to the number
|
// of pixels to interpret.
|
uint8_t numPixels = task;
|
const size_t rowBytes = compute_row_bytes(numPixels,
|
this->bitsPerPixel());
|
// Abort if setting numPixels moves us off the edge of the
|
// image.
|
if (x + numPixels > width) {
|
SkCodecPrintf("Warning: invalid RLE input.\n");
|
return y;
|
}
|
|
// Also abort if there are not enough bytes
|
// remaining in the stream to set numPixels.
|
|
// At most, alignedRowBytes can be 255 (max uint8_t) *
|
// 3 (max bytes per pixel) + 1 (aligned) = 766. If
|
// fStreamBuffer was smaller than this,
|
// checkForMoreData would never succeed for some bmps.
|
static_assert(255 * 3 + 1 < kBufferSize,
|
"kBufferSize needs to be larger!");
|
const size_t alignedRowBytes = SkAlign2(rowBytes);
|
if ((int) fBytesBuffered - fCurrRLEByte < alignedRowBytes) {
|
SkASSERT(alignedRowBytes < kBufferSize);
|
if (this->checkForMoreData() < alignedRowBytes) {
|
return y;
|
}
|
}
|
// Set numPixels number of pixels
|
while (numPixels > 0) {
|
switch(this->bitsPerPixel()) {
|
case 4: {
|
SkASSERT(fCurrRLEByte < fBytesBuffered);
|
uint8_t val = fStreamBuffer[fCurrRLEByte++];
|
setPixel(dst, dstRowBytes, dstInfo, x++,
|
y, val >> 4);
|
numPixels--;
|
if (numPixels != 0) {
|
setPixel(dst, dstRowBytes, dstInfo,
|
x++, y, val & 0xF);
|
numPixels--;
|
}
|
break;
|
}
|
case 8:
|
SkASSERT(fCurrRLEByte < fBytesBuffered);
|
setPixel(dst, dstRowBytes, dstInfo, x++,
|
y, fStreamBuffer[fCurrRLEByte++]);
|
numPixels--;
|
break;
|
case 24: {
|
SkASSERT(fCurrRLEByte + 2 < fBytesBuffered);
|
uint8_t blue = fStreamBuffer[fCurrRLEByte++];
|
uint8_t green = fStreamBuffer[fCurrRLEByte++];
|
uint8_t red = fStreamBuffer[fCurrRLEByte++];
|
setRGBPixel(dst, dstRowBytes, dstInfo,
|
x++, y, red, green, blue);
|
numPixels--;
|
break;
|
}
|
default:
|
SkASSERT(false);
|
return y;
|
}
|
}
|
// Skip a byte if necessary to maintain alignment
|
if (!SkIsAlign2(rowBytes)) {
|
fCurrRLEByte++;
|
}
|
break;
|
}
|
}
|
} else {
|
// If the first byte read is not a flag, it indicates the number of
|
// pixels to set in RLE mode.
|
const uint8_t numPixels = flag;
|
const int endX = SkTMin<int>(x + numPixels, width);
|
|
if (24 == this->bitsPerPixel()) {
|
// In RLE24, the second byte read is part of the pixel color.
|
// There are two more required bytes to finish encoding the
|
// color.
|
if ((int) fBytesBuffered - fCurrRLEByte < 2) {
|
if (this->checkForMoreData() < 2) {
|
return y;
|
}
|
}
|
|
// Fill the pixels up to endX with the specified color
|
uint8_t blue = task;
|
uint8_t green = fStreamBuffer[fCurrRLEByte++];
|
uint8_t red = fStreamBuffer[fCurrRLEByte++];
|
while (x < endX) {
|
setRGBPixel(dst, dstRowBytes, dstInfo, x++, y, red, green, blue);
|
}
|
} else {
|
// In RLE8 or RLE4, the second byte read gives the index in the
|
// color table to look up the pixel color.
|
// RLE8 has one color index that gets repeated
|
// RLE4 has two color indexes in the upper and lower 4 bits of
|
// the bytes, which are alternated
|
uint8_t indices[2] = { task, task };
|
if (4 == this->bitsPerPixel()) {
|
indices[0] >>= 4;
|
indices[1] &= 0xf;
|
}
|
|
// Set the indicated number of pixels
|
for (int which = 0; x < endX; x++) {
|
setPixel(dst, dstRowBytes, dstInfo, x, y, indices[which]);
|
which = !which;
|
}
|
}
|
}
|
}
|
}
|
|
bool SkBmpRLECodec::skipRows(int count) {
|
const SkImageInfo rowInfo = SkImageInfo::Make(this->dimensions().width(), count,
|
kN32_SkColorType, kUnpremul_SkAlphaType);
|
return count == this->decodeRows(rowInfo, nullptr, 0, this->options());
|
}
|
|
// FIXME: Make SkBmpRLECodec have no knowledge of sampling.
|
// Or it should do all sampling natively.
|
// It currently is a hybrid that needs to know what SkScaledCodec is doing.
|
class SkBmpRLESampler : public SkSampler {
|
public:
|
SkBmpRLESampler(SkBmpRLECodec* codec)
|
: fCodec(codec)
|
{
|
SkASSERT(fCodec);
|
}
|
|
int fillWidth() const override {
|
return fCodec->fillWidth();
|
}
|
|
private:
|
int onSetSampleX(int sampleX) override {
|
return fCodec->setSampleX(sampleX);
|
}
|
|
// Unowned pointer. fCodec will delete this class in its destructor.
|
SkBmpRLECodec* fCodec;
|
};
|
|
SkSampler* SkBmpRLECodec::getSampler(bool createIfNecessary) {
|
if (!fSampler && createIfNecessary) {
|
fSampler.reset(new SkBmpRLESampler(this));
|
}
|
|
return fSampler.get();
|
}
|
|
int SkBmpRLECodec::setSampleX(int sampleX) {
|
fSampleX = sampleX;
|
return this->fillWidth();
|
}
|
|
int SkBmpRLECodec::fillWidth() const {
|
return get_scaled_dimension(this->dimensions().width(), fSampleX);
|
}
|