/* -----------------------------------------------------------------------
|
ffi.c - Copyright (c) 2011 Timothy Wall
|
Copyright (c) 2011 Plausible Labs Cooperative, Inc.
|
Copyright (c) 2011 Anthony Green
|
Copyright (c) 2011 Free Software Foundation
|
Copyright (c) 1998, 2008, 2011 Red Hat, Inc.
|
|
ARM Foreign Function Interface
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
a copy of this software and associated documentation files (the
|
``Software''), to deal in the Software without restriction, including
|
without limitation the rights to use, copy, modify, merge, publish,
|
distribute, sublicense, and/or sell copies of the Software, and to
|
permit persons to whom the Software is furnished to do so, subject to
|
the following conditions:
|
|
The above copyright notice and this permission notice shall be included
|
in all copies or substantial portions of the Software.
|
|
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
DEALINGS IN THE SOFTWARE.
|
----------------------------------------------------------------------- */
|
|
#include <ffi.h>
|
#include <ffi_common.h>
|
|
#include <stdlib.h>
|
|
/* Forward declares. */
|
static int vfp_type_p (ffi_type *);
|
static void layout_vfp_args (ffi_cif *);
|
|
int ffi_prep_args_SYSV(char *stack, extended_cif *ecif, float *vfp_space);
|
int ffi_prep_args_VFP(char *stack, extended_cif *ecif, float *vfp_space);
|
|
static char* ffi_align(ffi_type **p_arg, char *argp)
|
{
|
/* Align if necessary */
|
register size_t alignment = (*p_arg)->alignment;
|
if (alignment < 4)
|
{
|
alignment = 4;
|
}
|
#ifdef _WIN32_WCE
|
if (alignment > 4)
|
{
|
alignment = 4;
|
}
|
#endif
|
if ((alignment - 1) & (unsigned) argp)
|
{
|
argp = (char *) ALIGN(argp, alignment);
|
}
|
|
if ((*p_arg)->type == FFI_TYPE_STRUCT)
|
{
|
argp = (char *) ALIGN(argp, 4);
|
}
|
return argp;
|
}
|
|
static size_t ffi_put_arg(ffi_type **arg_type, void **arg, char *stack)
|
{
|
register char* argp = stack;
|
register ffi_type **p_arg = arg_type;
|
register void **p_argv = arg;
|
register size_t z = (*p_arg)->size;
|
if (z < sizeof(int))
|
{
|
z = sizeof(int);
|
switch ((*p_arg)->type)
|
{
|
case FFI_TYPE_SINT8:
|
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
|
break;
|
|
case FFI_TYPE_UINT8:
|
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
|
break;
|
|
case FFI_TYPE_SINT16:
|
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
|
break;
|
|
case FFI_TYPE_UINT16:
|
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
|
break;
|
|
case FFI_TYPE_STRUCT:
|
memcpy(argp, *p_argv, (*p_arg)->size);
|
break;
|
|
default:
|
FFI_ASSERT(0);
|
}
|
}
|
else if (z == sizeof(int))
|
{
|
if ((*p_arg)->type == FFI_TYPE_FLOAT)
|
*(float *) argp = *(float *)(* p_argv);
|
else
|
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
|
}
|
else if (z == sizeof(double) && (*p_arg)->type == FFI_TYPE_DOUBLE)
|
{
|
*(double *) argp = *(double *)(* p_argv);
|
}
|
else
|
{
|
memcpy(argp, *p_argv, z);
|
}
|
return z;
|
}
|
/* ffi_prep_args is called by the assembly routine once stack space
|
has been allocated for the function's arguments
|
|
The vfp_space parameter is the load area for VFP regs, the return
|
value is cif->vfp_used (word bitset of VFP regs used for passing
|
arguments). These are only used for the VFP hard-float ABI.
|
*/
|
int ffi_prep_args_SYSV(char *stack, extended_cif *ecif, float *vfp_space)
|
{
|
register unsigned int i;
|
register void **p_argv;
|
register char *argp;
|
register ffi_type **p_arg;
|
argp = stack;
|
|
|
if ( ecif->cif->flags == FFI_TYPE_STRUCT ) {
|
*(void **) argp = ecif->rvalue;
|
argp += 4;
|
}
|
|
p_argv = ecif->avalue;
|
|
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
|
(i != 0);
|
i--, p_arg++, p_argv++)
|
{
|
argp = ffi_align(p_arg, argp);
|
argp += ffi_put_arg(p_arg, p_argv, argp);
|
}
|
|
return 0;
|
}
|
|
int ffi_prep_args_VFP(char *stack, extended_cif *ecif, float *vfp_space)
|
{
|
register unsigned int i, vi = 0;
|
register void **p_argv;
|
register char *argp, *regp, *eo_regp;
|
register ffi_type **p_arg;
|
char stack_used = 0;
|
char done_with_regs = 0;
|
char is_vfp_type;
|
|
// make sure we are using FFI_VFP
|
FFI_ASSERT(ecif->cif->abi == FFI_VFP);
|
|
/* the first 4 words on the stack are used for values passed in core
|
* registers. */
|
regp = stack;
|
eo_regp = argp = regp + 16;
|
|
|
/* if the function returns an FFI_TYPE_STRUCT in memory, that address is
|
* passed in r0 to the function */
|
if ( ecif->cif->flags == FFI_TYPE_STRUCT ) {
|
*(void **) regp = ecif->rvalue;
|
regp += 4;
|
}
|
|
p_argv = ecif->avalue;
|
|
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
|
(i != 0);
|
i--, p_arg++, p_argv++)
|
{
|
is_vfp_type = vfp_type_p (*p_arg);
|
|
/* Allocated in VFP registers. */
|
if(vi < ecif->cif->vfp_nargs && is_vfp_type)
|
{
|
char *vfp_slot = (char *)(vfp_space + ecif->cif->vfp_args[vi++]);
|
ffi_put_arg(p_arg, p_argv, vfp_slot);
|
continue;
|
}
|
/* Try allocating in core registers. */
|
else if (!done_with_regs && !is_vfp_type)
|
{
|
char *tregp = ffi_align(p_arg, regp);
|
size_t size = (*p_arg)->size;
|
size = (size < 4)? 4 : size; // pad
|
/* Check if there is space left in the aligned register area to place
|
* the argument */
|
if(tregp + size <= eo_regp)
|
{
|
regp = tregp + ffi_put_arg(p_arg, p_argv, tregp);
|
done_with_regs = (regp == argp);
|
// ensure we did not write into the stack area
|
FFI_ASSERT(regp <= argp);
|
continue;
|
}
|
/* In case there are no arguments in the stack area yet,
|
the argument is passed in the remaining core registers and on the
|
stack. */
|
else if (!stack_used)
|
{
|
stack_used = 1;
|
done_with_regs = 1;
|
argp = tregp + ffi_put_arg(p_arg, p_argv, tregp);
|
FFI_ASSERT(eo_regp < argp);
|
continue;
|
}
|
}
|
/* Base case, arguments are passed on the stack */
|
stack_used = 1;
|
argp = ffi_align(p_arg, argp);
|
argp += ffi_put_arg(p_arg, p_argv, argp);
|
}
|
/* Indicate the VFP registers used. */
|
return ecif->cif->vfp_used;
|
}
|
|
/* Perform machine dependent cif processing */
|
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
|
{
|
int type_code;
|
/* Round the stack up to a multiple of 8 bytes. This isn't needed
|
everywhere, but it is on some platforms, and it doesn't harm anything
|
when it isn't needed. */
|
cif->bytes = (cif->bytes + 7) & ~7;
|
|
/* Set the return type flag */
|
switch (cif->rtype->type)
|
{
|
case FFI_TYPE_VOID:
|
case FFI_TYPE_FLOAT:
|
case FFI_TYPE_DOUBLE:
|
cif->flags = (unsigned) cif->rtype->type;
|
break;
|
|
case FFI_TYPE_SINT64:
|
case FFI_TYPE_UINT64:
|
cif->flags = (unsigned) FFI_TYPE_SINT64;
|
break;
|
|
case FFI_TYPE_STRUCT:
|
if (cif->abi == FFI_VFP
|
&& (type_code = vfp_type_p (cif->rtype)) != 0)
|
{
|
/* A Composite Type passed in VFP registers, either
|
FFI_TYPE_STRUCT_VFP_FLOAT or FFI_TYPE_STRUCT_VFP_DOUBLE. */
|
cif->flags = (unsigned) type_code;
|
}
|
else if (cif->rtype->size <= 4)
|
/* A Composite Type not larger than 4 bytes is returned in r0. */
|
cif->flags = (unsigned)FFI_TYPE_INT;
|
else
|
/* A Composite Type larger than 4 bytes, or whose size cannot
|
be determined statically ... is stored in memory at an
|
address passed [in r0]. */
|
cif->flags = (unsigned)FFI_TYPE_STRUCT;
|
break;
|
|
default:
|
cif->flags = FFI_TYPE_INT;
|
break;
|
}
|
|
/* Map out the register placements of VFP register args.
|
The VFP hard-float calling conventions are slightly more sophisticated than
|
the base calling conventions, so we do it here instead of in ffi_prep_args(). */
|
if (cif->abi == FFI_VFP)
|
layout_vfp_args (cif);
|
|
return FFI_OK;
|
}
|
|
/* Perform machine dependent cif processing for variadic calls */
|
ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif,
|
unsigned int nfixedargs,
|
unsigned int ntotalargs)
|
{
|
/* VFP variadic calls actually use the SYSV ABI */
|
if (cif->abi == FFI_VFP)
|
cif->abi = FFI_SYSV;
|
|
return ffi_prep_cif_machdep(cif);
|
}
|
|
/* Prototypes for assembly functions, in sysv.S */
|
extern void ffi_call_SYSV (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
|
extern void ffi_call_VFP (void (*fn)(void), extended_cif *, unsigned, unsigned, unsigned *);
|
|
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
|
{
|
extended_cif ecif;
|
|
int small_struct = (cif->flags == FFI_TYPE_INT
|
&& cif->rtype->type == FFI_TYPE_STRUCT);
|
int vfp_struct = (cif->flags == FFI_TYPE_STRUCT_VFP_FLOAT
|
|| cif->flags == FFI_TYPE_STRUCT_VFP_DOUBLE);
|
|
unsigned int temp;
|
|
ecif.cif = cif;
|
ecif.avalue = avalue;
|
|
/* If the return value is a struct and we don't have a return */
|
/* value address then we need to make one */
|
|
if ((rvalue == NULL) &&
|
(cif->flags == FFI_TYPE_STRUCT))
|
{
|
ecif.rvalue = alloca(cif->rtype->size);
|
}
|
else if (small_struct)
|
ecif.rvalue = &temp;
|
else if (vfp_struct)
|
{
|
/* Largest case is double x 4. */
|
ecif.rvalue = alloca(32);
|
}
|
else
|
ecif.rvalue = rvalue;
|
|
switch (cif->abi)
|
{
|
case FFI_SYSV:
|
ffi_call_SYSV (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue);
|
break;
|
|
case FFI_VFP:
|
#ifdef __ARM_EABI__
|
ffi_call_VFP (fn, &ecif, cif->bytes, cif->flags, ecif.rvalue);
|
break;
|
#endif
|
|
default:
|
FFI_ASSERT(0);
|
break;
|
}
|
if (small_struct)
|
{
|
FFI_ASSERT(rvalue != NULL);
|
memcpy (rvalue, &temp, cif->rtype->size);
|
}
|
|
else if (vfp_struct)
|
{
|
FFI_ASSERT(rvalue != NULL);
|
memcpy (rvalue, ecif.rvalue, cif->rtype->size);
|
}
|
|
}
|
|
/** private members **/
|
|
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
|
void** args, ffi_cif* cif, float *vfp_stack);
|
|
static void ffi_prep_incoming_args_VFP (char *stack, void **ret,
|
void** args, ffi_cif* cif, float *vfp_stack);
|
|
void ffi_closure_SYSV (ffi_closure *);
|
|
void ffi_closure_VFP (ffi_closure *);
|
|
/* This function is jumped to by the trampoline */
|
|
unsigned int FFI_HIDDEN
|
ffi_closure_inner (ffi_closure *closure,
|
void **respp, void *args, void *vfp_args)
|
{
|
// our various things...
|
ffi_cif *cif;
|
void **arg_area;
|
|
cif = closure->cif;
|
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
|
|
/* this call will initialize ARG_AREA, such that each
|
* element in that array points to the corresponding
|
* value on the stack; and if the function returns
|
* a structure, it will re-set RESP to point to the
|
* structure return address. */
|
if (cif->abi == FFI_VFP)
|
ffi_prep_incoming_args_VFP(args, respp, arg_area, cif, vfp_args);
|
else
|
ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif, vfp_args);
|
|
(closure->fun) (cif, *respp, arg_area, closure->user_data);
|
|
return cif->flags;
|
}
|
|
/*@-exportheader@*/
|
static void
|
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
|
void **avalue, ffi_cif *cif,
|
/* Used only under VFP hard-float ABI. */
|
float *vfp_stack)
|
/*@=exportheader@*/
|
{
|
register unsigned int i;
|
register void **p_argv;
|
register char *argp;
|
register ffi_type **p_arg;
|
|
argp = stack;
|
|
if ( cif->flags == FFI_TYPE_STRUCT ) {
|
*rvalue = *(void **) argp;
|
argp += 4;
|
}
|
|
p_argv = avalue;
|
|
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
|
{
|
size_t z;
|
|
argp = ffi_align(p_arg, argp);
|
|
z = (*p_arg)->size;
|
|
/* because we're little endian, this is what it turns into. */
|
|
*p_argv = (void*) argp;
|
|
p_argv++;
|
argp += z;
|
}
|
|
return;
|
}
|
|
/*@-exportheader@*/
|
static void
|
ffi_prep_incoming_args_VFP(char *stack, void **rvalue,
|
void **avalue, ffi_cif *cif,
|
/* Used only under VFP hard-float ABI. */
|
float *vfp_stack)
|
/*@=exportheader@*/
|
{
|
register unsigned int i, vi = 0;
|
register void **p_argv;
|
register char *argp, *regp, *eo_regp;
|
register ffi_type **p_arg;
|
char done_with_regs = 0;
|
char stack_used = 0;
|
char is_vfp_type;
|
|
FFI_ASSERT(cif->abi == FFI_VFP);
|
regp = stack;
|
eo_regp = argp = regp + 16;
|
|
if ( cif->flags == FFI_TYPE_STRUCT ) {
|
*rvalue = *(void **) regp;
|
regp += 4;
|
}
|
|
p_argv = avalue;
|
|
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
|
{
|
size_t z;
|
is_vfp_type = vfp_type_p (*p_arg);
|
|
if(vi < cif->vfp_nargs && is_vfp_type)
|
{
|
*p_argv++ = (void*)(vfp_stack + cif->vfp_args[vi++]);
|
continue;
|
}
|
else if (!done_with_regs && !is_vfp_type)
|
{
|
char* tregp = ffi_align(p_arg, regp);
|
|
z = (*p_arg)->size;
|
z = (z < 4)? 4 : z; // pad
|
|
/* if the arguments either fits into the registers or uses registers
|
* and stack, while we haven't read other things from the stack */
|
if(tregp + z <= eo_regp || !stack_used)
|
{
|
/* because we're little endian, this is what it turns into. */
|
*p_argv = (void*) tregp;
|
|
p_argv++;
|
regp = tregp + z;
|
// if we read past the last core register, make sure we have not read
|
// from the stack before and continue reading after regp
|
if(regp > eo_regp)
|
{
|
if(stack_used)
|
{
|
abort(); // we should never read past the end of the register
|
// are if the stack is already in use
|
}
|
argp = regp;
|
}
|
if(regp >= eo_regp)
|
{
|
done_with_regs = 1;
|
stack_used = 1;
|
}
|
continue;
|
}
|
}
|
stack_used = 1;
|
|
argp = ffi_align(p_arg, argp);
|
|
z = (*p_arg)->size;
|
|
/* because we're little endian, this is what it turns into. */
|
|
*p_argv = (void*) argp;
|
|
p_argv++;
|
argp += z;
|
}
|
|
return;
|
}
|
|
/* How to make a trampoline. */
|
|
extern unsigned int ffi_arm_trampoline[3];
|
|
#if FFI_EXEC_TRAMPOLINE_TABLE
|
|
#include <mach/mach.h>
|
#include <pthread.h>
|
#include <stdio.h>
|
#include <stdlib.h>
|
|
extern void *ffi_closure_trampoline_table_page;
|
|
typedef struct ffi_trampoline_table ffi_trampoline_table;
|
typedef struct ffi_trampoline_table_entry ffi_trampoline_table_entry;
|
|
struct ffi_trampoline_table {
|
/* contiguous writable and executable pages */
|
vm_address_t config_page;
|
vm_address_t trampoline_page;
|
|
/* free list tracking */
|
uint16_t free_count;
|
ffi_trampoline_table_entry *free_list;
|
ffi_trampoline_table_entry *free_list_pool;
|
|
ffi_trampoline_table *prev;
|
ffi_trampoline_table *next;
|
};
|
|
struct ffi_trampoline_table_entry {
|
void *(*trampoline)();
|
ffi_trampoline_table_entry *next;
|
};
|
|
/* Override the standard architecture trampoline size */
|
// XXX TODO - Fix
|
#undef FFI_TRAMPOLINE_SIZE
|
#define FFI_TRAMPOLINE_SIZE 12
|
|
/* The trampoline configuration is placed at 4080 bytes prior to the trampoline's entry point */
|
#define FFI_TRAMPOLINE_CODELOC_CONFIG(codeloc) ((void **) (((uint8_t *) codeloc) - 4080));
|
|
/* The first 16 bytes of the config page are unused, as they are unaddressable from the trampoline page. */
|
#define FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET 16
|
|
/* Total number of trampolines that fit in one trampoline table */
|
#define FFI_TRAMPOLINE_COUNT ((PAGE_SIZE - FFI_TRAMPOLINE_CONFIG_PAGE_OFFSET) / FFI_TRAMPOLINE_SIZE)
|
|
static pthread_mutex_t ffi_trampoline_lock = PTHREAD_MUTEX_INITIALIZER;
|
static ffi_trampoline_table *ffi_trampoline_tables = NULL;
|
|
static ffi_trampoline_table *
|
ffi_trampoline_table_alloc ()
|
{
|
ffi_trampoline_table *table = NULL;
|
|
/* Loop until we can allocate two contiguous pages */
|
while (table == NULL) {
|
vm_address_t config_page = 0x0;
|
kern_return_t kt;
|
|
/* Try to allocate two pages */
|
kt = vm_allocate (mach_task_self (), &config_page, PAGE_SIZE*2, VM_FLAGS_ANYWHERE);
|
if (kt != KERN_SUCCESS) {
|
fprintf(stderr, "vm_allocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
|
break;
|
}
|
|
/* Now drop the second half of the allocation to make room for the trampoline table */
|
vm_address_t trampoline_page = config_page+PAGE_SIZE;
|
kt = vm_deallocate (mach_task_self (), trampoline_page, PAGE_SIZE);
|
if (kt != KERN_SUCCESS) {
|
fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
|
break;
|
}
|
|
/* Remap the trampoline table to directly follow the config page */
|
vm_prot_t cur_prot;
|
vm_prot_t max_prot;
|
|
kt = vm_remap (mach_task_self (), &trampoline_page, PAGE_SIZE, 0x0, FALSE, mach_task_self (), (vm_address_t) &ffi_closure_trampoline_table_page, FALSE, &cur_prot, &max_prot, VM_INHERIT_SHARE);
|
|
/* If we lost access to the destination trampoline page, drop our config allocation mapping and retry */
|
if (kt != KERN_SUCCESS) {
|
/* Log unexpected failures */
|
if (kt != KERN_NO_SPACE) {
|
fprintf(stderr, "vm_remap() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
|
}
|
|
vm_deallocate (mach_task_self (), config_page, PAGE_SIZE);
|
continue;
|
}
|
|
/* We have valid trampoline and config pages */
|
table = calloc (1, sizeof(ffi_trampoline_table));
|
table->free_count = FFI_TRAMPOLINE_COUNT;
|
table->config_page = config_page;
|
table->trampoline_page = trampoline_page;
|
|
/* Create and initialize the free list */
|
table->free_list_pool = calloc(FFI_TRAMPOLINE_COUNT, sizeof(ffi_trampoline_table_entry));
|
|
uint16_t i;
|
for (i = 0; i < table->free_count; i++) {
|
ffi_trampoline_table_entry *entry = &table->free_list_pool[i];
|
entry->trampoline = (void *) (table->trampoline_page + (i * FFI_TRAMPOLINE_SIZE));
|
|
if (i < table->free_count - 1)
|
entry->next = &table->free_list_pool[i+1];
|
}
|
|
table->free_list = table->free_list_pool;
|
}
|
|
return table;
|
}
|
|
void *
|
ffi_closure_alloc (size_t size, void **code)
|
{
|
/* Create the closure */
|
ffi_closure *closure = malloc(size);
|
if (closure == NULL)
|
return NULL;
|
|
pthread_mutex_lock(&ffi_trampoline_lock);
|
|
/* Check for an active trampoline table with available entries. */
|
ffi_trampoline_table *table = ffi_trampoline_tables;
|
if (table == NULL || table->free_list == NULL) {
|
table = ffi_trampoline_table_alloc ();
|
if (table == NULL) {
|
free(closure);
|
return NULL;
|
}
|
|
/* Insert the new table at the top of the list */
|
table->next = ffi_trampoline_tables;
|
if (table->next != NULL)
|
table->next->prev = table;
|
|
ffi_trampoline_tables = table;
|
}
|
|
/* Claim the free entry */
|
ffi_trampoline_table_entry *entry = ffi_trampoline_tables->free_list;
|
ffi_trampoline_tables->free_list = entry->next;
|
ffi_trampoline_tables->free_count--;
|
entry->next = NULL;
|
|
pthread_mutex_unlock(&ffi_trampoline_lock);
|
|
/* Initialize the return values */
|
*code = entry->trampoline;
|
closure->trampoline_table = table;
|
closure->trampoline_table_entry = entry;
|
|
return closure;
|
}
|
|
void
|
ffi_closure_free (void *ptr)
|
{
|
ffi_closure *closure = ptr;
|
|
pthread_mutex_lock(&ffi_trampoline_lock);
|
|
/* Fetch the table and entry references */
|
ffi_trampoline_table *table = closure->trampoline_table;
|
ffi_trampoline_table_entry *entry = closure->trampoline_table_entry;
|
|
/* Return the entry to the free list */
|
entry->next = table->free_list;
|
table->free_list = entry;
|
table->free_count++;
|
|
/* If all trampolines within this table are free, and at least one other table exists, deallocate
|
* the table */
|
if (table->free_count == FFI_TRAMPOLINE_COUNT && ffi_trampoline_tables != table) {
|
/* Remove from the list */
|
if (table->prev != NULL)
|
table->prev->next = table->next;
|
|
if (table->next != NULL)
|
table->next->prev = table->prev;
|
|
/* Deallocate pages */
|
kern_return_t kt;
|
kt = vm_deallocate (mach_task_self (), table->config_page, PAGE_SIZE);
|
if (kt != KERN_SUCCESS)
|
fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
|
|
kt = vm_deallocate (mach_task_self (), table->trampoline_page, PAGE_SIZE);
|
if (kt != KERN_SUCCESS)
|
fprintf(stderr, "vm_deallocate() failure: %d at %s:%d\n", kt, __FILE__, __LINE__);
|
|
/* Deallocate free list */
|
free (table->free_list_pool);
|
free (table);
|
} else if (ffi_trampoline_tables != table) {
|
/* Otherwise, bump this table to the top of the list */
|
table->prev = NULL;
|
table->next = ffi_trampoline_tables;
|
if (ffi_trampoline_tables != NULL)
|
ffi_trampoline_tables->prev = table;
|
|
ffi_trampoline_tables = table;
|
}
|
|
pthread_mutex_unlock (&ffi_trampoline_lock);
|
|
/* Free the closure */
|
free (closure);
|
}
|
|
#else
|
|
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
|
({ unsigned char *__tramp = (unsigned char*)(TRAMP); \
|
unsigned int __fun = (unsigned int)(FUN); \
|
unsigned int __ctx = (unsigned int)(CTX); \
|
unsigned char *insns = (unsigned char *)(CTX); \
|
memcpy (__tramp, ffi_arm_trampoline, sizeof ffi_arm_trampoline); \
|
*(unsigned int*) &__tramp[12] = __ctx; \
|
*(unsigned int*) &__tramp[16] = __fun; \
|
__clear_cache((&__tramp[0]), (&__tramp[19])); /* Clear data mapping. */ \
|
__clear_cache(insns, insns + 3 * sizeof (unsigned int)); \
|
/* Clear instruction \
|
mapping. */ \
|
})
|
|
#endif
|
|
/* the cif must already be prep'ed */
|
|
ffi_status
|
ffi_prep_closure_loc (ffi_closure* closure,
|
ffi_cif* cif,
|
void (*fun)(ffi_cif*,void*,void**,void*),
|
void *user_data,
|
void *codeloc)
|
{
|
void (*closure_func)(ffi_closure*) = NULL;
|
|
if (cif->abi == FFI_SYSV)
|
closure_func = &ffi_closure_SYSV;
|
#ifdef __ARM_EABI__
|
else if (cif->abi == FFI_VFP)
|
closure_func = &ffi_closure_VFP;
|
#endif
|
else
|
return FFI_BAD_ABI;
|
|
#if FFI_EXEC_TRAMPOLINE_TABLE
|
void **config = FFI_TRAMPOLINE_CODELOC_CONFIG(codeloc);
|
config[0] = closure;
|
config[1] = closure_func;
|
#else
|
FFI_INIT_TRAMPOLINE (&closure->tramp[0], \
|
closure_func, \
|
codeloc);
|
#endif
|
|
closure->cif = cif;
|
closure->user_data = user_data;
|
closure->fun = fun;
|
|
return FFI_OK;
|
}
|
|
/* Below are routines for VFP hard-float support. */
|
|
static int rec_vfp_type_p (ffi_type *t, int *elt, int *elnum)
|
{
|
switch (t->type)
|
{
|
case FFI_TYPE_FLOAT:
|
case FFI_TYPE_DOUBLE:
|
*elt = (int) t->type;
|
*elnum = 1;
|
return 1;
|
|
case FFI_TYPE_STRUCT_VFP_FLOAT:
|
*elt = FFI_TYPE_FLOAT;
|
*elnum = t->size / sizeof (float);
|
return 1;
|
|
case FFI_TYPE_STRUCT_VFP_DOUBLE:
|
*elt = FFI_TYPE_DOUBLE;
|
*elnum = t->size / sizeof (double);
|
return 1;
|
|
case FFI_TYPE_STRUCT:;
|
{
|
int base_elt = 0, total_elnum = 0;
|
ffi_type **el = t->elements;
|
while (*el)
|
{
|
int el_elt = 0, el_elnum = 0;
|
if (! rec_vfp_type_p (*el, &el_elt, &el_elnum)
|
|| (base_elt && base_elt != el_elt)
|
|| total_elnum + el_elnum > 4)
|
return 0;
|
base_elt = el_elt;
|
total_elnum += el_elnum;
|
el++;
|
}
|
*elnum = total_elnum;
|
*elt = base_elt;
|
return 1;
|
}
|
default: ;
|
}
|
return 0;
|
}
|
|
static int vfp_type_p (ffi_type *t)
|
{
|
int elt, elnum;
|
if (rec_vfp_type_p (t, &elt, &elnum))
|
{
|
if (t->type == FFI_TYPE_STRUCT)
|
{
|
if (elnum == 1)
|
t->type = elt;
|
else
|
t->type = (elt == FFI_TYPE_FLOAT
|
? FFI_TYPE_STRUCT_VFP_FLOAT
|
: FFI_TYPE_STRUCT_VFP_DOUBLE);
|
}
|
return (int) t->type;
|
}
|
return 0;
|
}
|
|
static int place_vfp_arg (ffi_cif *cif, ffi_type *t)
|
{
|
short reg = cif->vfp_reg_free;
|
int nregs = t->size / sizeof (float);
|
int align = ((t->type == FFI_TYPE_STRUCT_VFP_FLOAT
|
|| t->type == FFI_TYPE_FLOAT) ? 1 : 2);
|
/* Align register number. */
|
if ((reg & 1) && align == 2)
|
reg++;
|
while (reg + nregs <= 16)
|
{
|
int s, new_used = 0;
|
for (s = reg; s < reg + nregs; s++)
|
{
|
new_used |= (1 << s);
|
if (cif->vfp_used & (1 << s))
|
{
|
reg += align;
|
goto next_reg;
|
}
|
}
|
/* Found regs to allocate. */
|
cif->vfp_used |= new_used;
|
cif->vfp_args[cif->vfp_nargs++] = reg;
|
|
/* Update vfp_reg_free. */
|
if (cif->vfp_used & (1 << cif->vfp_reg_free))
|
{
|
reg += nregs;
|
while (cif->vfp_used & (1 << reg))
|
reg += 1;
|
cif->vfp_reg_free = reg;
|
}
|
return 0;
|
next_reg: ;
|
}
|
// done, mark all regs as used
|
cif->vfp_reg_free = 16;
|
cif->vfp_used = 0xFFFF;
|
return 1;
|
}
|
|
static void layout_vfp_args (ffi_cif *cif)
|
{
|
int i;
|
/* Init VFP fields */
|
cif->vfp_used = 0;
|
cif->vfp_nargs = 0;
|
cif->vfp_reg_free = 0;
|
memset (cif->vfp_args, -1, 16); /* Init to -1. */
|
|
for (i = 0; i < cif->nargs; i++)
|
{
|
ffi_type *t = cif->arg_types[i];
|
if (vfp_type_p (t) && place_vfp_arg (cif, t) == 1)
|
{
|
break;
|
}
|
}
|
}
|