/*
|
* Copyright (C) 2007 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
//#define LOG_NDEBUG 0
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
#include <sys/types.h>
|
#include <errno.h>
|
#include <dlfcn.h>
|
|
#include <algorithm>
|
#include <cinttypes>
|
#include <cmath>
|
#include <cstdint>
|
#include <functional>
|
#include <mutex>
|
#include <optional>
|
#include <unordered_map>
|
|
#include <cutils/properties.h>
|
#include <log/log.h>
|
|
#include <binder/IPCThreadState.h>
|
#include <binder/IServiceManager.h>
|
#include <binder/PermissionCache.h>
|
|
#include <compositionengine/CompositionEngine.h>
|
#include <compositionengine/Display.h>
|
#include <compositionengine/DisplayColorProfile.h>
|
#include <compositionengine/Layer.h>
|
#include <compositionengine/OutputLayer.h>
|
#include <compositionengine/RenderSurface.h>
|
#include <compositionengine/impl/LayerCompositionState.h>
|
#include <compositionengine/impl/OutputCompositionState.h>
|
#include <compositionengine/impl/OutputLayerCompositionState.h>
|
#include <dvr/vr_flinger.h>
|
#include <gui/BufferQueue.h>
|
#include <gui/GuiConfig.h>
|
#include <gui/IDisplayEventConnection.h>
|
#include <gui/IProducerListener.h>
|
#include <gui/LayerDebugInfo.h>
|
#include <gui/Surface.h>
|
#include <input/IInputFlinger.h>
|
#include <renderengine/RenderEngine.h>
|
#include <ui/ColorSpace.h>
|
#include <ui/DebugUtils.h>
|
#include <ui/DisplayInfo.h>
|
#include <ui/DisplayStatInfo.h>
|
#include <ui/GraphicBufferAllocator.h>
|
#include <ui/PixelFormat.h>
|
#include <ui/UiConfig.h>
|
#include <utils/StopWatch.h>
|
#include <utils/String16.h>
|
#include <utils/String8.h>
|
#include <utils/Timers.h>
|
#include <utils/Trace.h>
|
#include <utils/misc.h>
|
|
#include <private/android_filesystem_config.h>
|
#include <private/gui/SyncFeatures.h>
|
|
#include "BufferLayer.h"
|
#include "BufferQueueLayer.h"
|
#include "BufferStateLayer.h"
|
#include "Client.h"
|
#include "ColorLayer.h"
|
#include "Colorizer.h"
|
#include "ContainerLayer.h"
|
#include "DisplayDevice.h"
|
#include "Layer.h"
|
#include "LayerVector.h"
|
#include "MonitoredProducer.h"
|
#include "NativeWindowSurface.h"
|
#include "RefreshRateOverlay.h"
|
#include "StartPropertySetThread.h"
|
#include "SurfaceFlinger.h"
|
#include "SurfaceInterceptor.h"
|
|
#include "DisplayHardware/ComposerHal.h"
|
#include "DisplayHardware/DisplayIdentification.h"
|
#include "DisplayHardware/FramebufferSurface.h"
|
#include "DisplayHardware/HWComposer.h"
|
#include "DisplayHardware/VirtualDisplaySurface.h"
|
#include "Effects/Daltonizer.h"
|
#include "RegionSamplingThread.h"
|
#include "Scheduler/DispSync.h"
|
#include "Scheduler/DispSyncSource.h"
|
#include "Scheduler/EventControlThread.h"
|
#include "Scheduler/EventThread.h"
|
#include "Scheduler/InjectVSyncSource.h"
|
#include "Scheduler/MessageQueue.h"
|
#include "Scheduler/PhaseOffsets.h"
|
#include "Scheduler/Scheduler.h"
|
#include "TimeStats/TimeStats.h"
|
|
#include <cutils/compiler.h>
|
|
#include "android-base/stringprintf.h"
|
|
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
|
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
|
#include <android/hardware/configstore/1.1/types.h>
|
#include <android/hardware/power/1.0/IPower.h>
|
#include <configstore/Utils.h>
|
|
#include <layerproto/LayerProtoParser.h>
|
#include "SurfaceFlingerProperties.h"
|
|
namespace android {
|
|
using namespace android::hardware::configstore;
|
using namespace android::hardware::configstore::V1_0;
|
using namespace android::sysprop;
|
|
using android::hardware::power::V1_0::PowerHint;
|
using base::StringAppendF;
|
using ui::ColorMode;
|
using ui::Dataspace;
|
using ui::DisplayPrimaries;
|
using ui::Hdr;
|
using ui::RenderIntent;
|
|
namespace {
|
|
#pragma clang diagnostic push
|
#pragma clang diagnostic error "-Wswitch-enum"
|
|
bool isWideColorMode(const ColorMode colorMode) {
|
switch (colorMode) {
|
case ColorMode::DISPLAY_P3:
|
case ColorMode::ADOBE_RGB:
|
case ColorMode::DCI_P3:
|
case ColorMode::BT2020:
|
case ColorMode::DISPLAY_BT2020:
|
case ColorMode::BT2100_PQ:
|
case ColorMode::BT2100_HLG:
|
return true;
|
case ColorMode::NATIVE:
|
case ColorMode::STANDARD_BT601_625:
|
case ColorMode::STANDARD_BT601_625_UNADJUSTED:
|
case ColorMode::STANDARD_BT601_525:
|
case ColorMode::STANDARD_BT601_525_UNADJUSTED:
|
case ColorMode::STANDARD_BT709:
|
case ColorMode::SRGB:
|
return false;
|
}
|
return false;
|
}
|
|
bool isHdrColorMode(const ColorMode colorMode) {
|
switch (colorMode) {
|
case ColorMode::BT2100_PQ:
|
case ColorMode::BT2100_HLG:
|
return true;
|
case ColorMode::DISPLAY_P3:
|
case ColorMode::ADOBE_RGB:
|
case ColorMode::DCI_P3:
|
case ColorMode::BT2020:
|
case ColorMode::DISPLAY_BT2020:
|
case ColorMode::NATIVE:
|
case ColorMode::STANDARD_BT601_625:
|
case ColorMode::STANDARD_BT601_625_UNADJUSTED:
|
case ColorMode::STANDARD_BT601_525:
|
case ColorMode::STANDARD_BT601_525_UNADJUSTED:
|
case ColorMode::STANDARD_BT709:
|
case ColorMode::SRGB:
|
return false;
|
}
|
return false;
|
}
|
|
ui::Transform::orientation_flags fromSurfaceComposerRotation(ISurfaceComposer::Rotation rotation) {
|
switch (rotation) {
|
case ISurfaceComposer::eRotateNone:
|
return ui::Transform::ROT_0;
|
case ISurfaceComposer::eRotate90:
|
return ui::Transform::ROT_90;
|
case ISurfaceComposer::eRotate180:
|
return ui::Transform::ROT_180;
|
case ISurfaceComposer::eRotate270:
|
return ui::Transform::ROT_270;
|
}
|
ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation);
|
return ui::Transform::ROT_0;
|
}
|
|
#pragma clang diagnostic pop
|
|
class ConditionalLock {
|
public:
|
ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) {
|
if (lock) {
|
mMutex.lock();
|
}
|
}
|
~ConditionalLock() { if (mLocked) mMutex.unlock(); }
|
private:
|
Mutex& mMutex;
|
bool mLocked;
|
};
|
|
// Currently we only support V0_SRGB and DISPLAY_P3 as composition preference.
|
bool validateCompositionDataspace(Dataspace dataspace) {
|
return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3;
|
}
|
|
} // namespace anonymous
|
|
// ---------------------------------------------------------------------------
|
|
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
|
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
|
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
|
const String16 sDump("android.permission.DUMP");
|
|
// ---------------------------------------------------------------------------
|
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
|
bool SurfaceFlinger::useHwcForRgbToYuv;
|
uint64_t SurfaceFlinger::maxVirtualDisplaySize;
|
bool SurfaceFlinger::hasSyncFramework;
|
bool SurfaceFlinger::useVrFlinger;
|
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
|
bool SurfaceFlinger::hasWideColorDisplay;
|
int SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault;
|
bool SurfaceFlinger::useColorManagement;
|
bool SurfaceFlinger::useContextPriority;
|
Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB;
|
ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
|
Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB;
|
ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
|
|
std::string getHwcServiceName() {
|
char value[PROPERTY_VALUE_MAX] = {};
|
property_get("debug.sf.hwc_service_name", value, "default");
|
ALOGI("Using HWComposer service: '%s'", value);
|
return std::string(value);
|
}
|
|
bool useTrebleTestingOverride() {
|
char value[PROPERTY_VALUE_MAX] = {};
|
property_get("debug.sf.treble_testing_override", value, "false");
|
ALOGI("Treble testing override: '%s'", value);
|
return std::string(value) == "true";
|
}
|
|
std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
|
switch(displayColorSetting) {
|
case DisplayColorSetting::MANAGED:
|
return std::string("Managed");
|
case DisplayColorSetting::UNMANAGED:
|
return std::string("Unmanaged");
|
case DisplayColorSetting::ENHANCED:
|
return std::string("Enhanced");
|
default:
|
return std::string("Unknown ") +
|
std::to_string(static_cast<int>(displayColorSetting));
|
}
|
}
|
|
SurfaceFlingerBE::SurfaceFlingerBE() : mHwcServiceName(getHwcServiceName()) {}
|
|
SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag)
|
: mFactory(factory),
|
mPhaseOffsets(mFactory.createPhaseOffsets()),
|
mInterceptor(mFactory.createSurfaceInterceptor(this)),
|
mTimeStats(mFactory.createTimeStats()),
|
mEventQueue(mFactory.createMessageQueue()),
|
mCompositionEngine(mFactory.createCompositionEngine()) {}
|
|
SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) {
|
ALOGI("SurfaceFlinger is starting");
|
|
hasSyncFramework = running_without_sync_framework(true);
|
|
dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0);
|
|
useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false);
|
|
maxVirtualDisplaySize = max_virtual_display_dimension(0);
|
|
// Vr flinger is only enabled on Daydream ready devices.
|
useVrFlinger = use_vr_flinger(false);
|
|
maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2);
|
|
hasWideColorDisplay = has_wide_color_display(false);
|
|
useColorManagement = use_color_management(false);
|
|
mDefaultCompositionDataspace =
|
static_cast<ui::Dataspace>(default_composition_dataspace(Dataspace::V0_SRGB));
|
mWideColorGamutCompositionDataspace = static_cast<ui::Dataspace>(wcg_composition_dataspace(
|
hasWideColorDisplay ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB));
|
defaultCompositionDataspace = mDefaultCompositionDataspace;
|
wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace;
|
defaultCompositionPixelFormat = static_cast<ui::PixelFormat>(
|
default_composition_pixel_format(ui::PixelFormat::RGBA_8888));
|
wideColorGamutCompositionPixelFormat =
|
static_cast<ui::PixelFormat>(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888));
|
|
useContextPriority = use_context_priority(true);
|
|
int32_t user_rotation = property_get_int32("ro.primary_display.user_rotation", int32_t(0));
|
|
auto tmpPrimaryDisplayOrientation = primary_display_orientation(
|
SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_0);
|
switch (tmpPrimaryDisplayOrientation) {
|
case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_90:
|
SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation90;
|
break;
|
case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_180:
|
SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation180;
|
break;
|
case SurfaceFlingerProperties::primary_display_orientation_values::ORIENTATION_270:
|
SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation270;
|
break;
|
default:
|
SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault;
|
break;
|
}
|
switch (user_rotation) {
|
case 90:
|
SurfaceFlinger::primaryDisplayOrientation -= DisplayState::eOrientation90;
|
break;
|
case 180:
|
SurfaceFlinger::primaryDisplayOrientation -= DisplayState::eOrientation180;
|
break;
|
case 270:
|
SurfaceFlinger::primaryDisplayOrientation -= DisplayState::eOrientation270;
|
break;
|
default:
|
break;
|
}
|
if (SurfaceFlinger::primaryDisplayOrientation < 0)
|
SurfaceFlinger::primaryDisplayOrientation += DisplayState::eOrientationUnchanged; // add 4(360)
|
property_set("persist.vendor.overlay.user_rotation", std::to_string(user_rotation).c_str());
|
ALOGV("Primary Display Orientation is set to %2d.", SurfaceFlinger::primaryDisplayOrientation);
|
|
mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries();
|
|
// debugging stuff...
|
char value[PROPERTY_VALUE_MAX];
|
|
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
|
mGpuToCpuSupported = !atoi(value);
|
|
property_get("debug.sf.showupdates", value, "0");
|
mDebugRegion = atoi(value);
|
|
ALOGI_IF(mDebugRegion, "showupdates enabled");
|
|
// DDMS debugging deprecated (b/120782499)
|
property_get("debug.sf.ddms", value, "0");
|
int debugDdms = atoi(value);
|
ALOGI_IF(debugDdms, "DDMS debugging not supported");
|
|
property_get("debug.sf.disable_backpressure", value, "0");
|
mPropagateBackpressure = !atoi(value);
|
ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation");
|
|
property_get("debug.sf.enable_gl_backpressure", value, "0");
|
mPropagateBackpressureClientComposition = atoi(value);
|
ALOGI_IF(mPropagateBackpressureClientComposition,
|
"Enabling backpressure propagation for Client Composition");
|
|
property_get("debug.sf.enable_hwc_vds", value, "0");
|
mUseHwcVirtualDisplays = atoi(value);
|
ALOGI_IF(mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
|
|
property_get("ro.sf.disable_triple_buffer", value, "0");
|
mLayerTripleBufferingDisabled = atoi(value);
|
ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering");
|
|
const size_t defaultListSize = MAX_LAYERS;
|
auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize));
|
mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize;
|
|
mUseSmart90ForVideo = use_smart_90_for_video(false);
|
property_get("debug.sf.use_smart_90_for_video", value, "0");
|
|
int int_value = atoi(value);
|
if (int_value) {
|
mUseSmart90ForVideo = true;
|
}
|
|
property_get("debug.sf.luma_sampling", value, "1");
|
mLumaSampling = atoi(value);
|
|
const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
|
mVsyncModulator.setPhaseOffsets(early, gl, late);
|
|
// We should be reading 'persist.sys.sf.color_saturation' here
|
// but since /data may be encrypted, we need to wait until after vold
|
// comes online to attempt to read the property. The property is
|
// instead read after the boot animation
|
|
if (useTrebleTestingOverride()) {
|
// Without the override SurfaceFlinger cannot connect to HIDL
|
// services that are not listed in the manifests. Considered
|
// deriving the setting from the set service name, but it
|
// would be brittle if the name that's not 'default' is used
|
// for production purposes later on.
|
setenv("TREBLE_TESTING_OVERRIDE", "true", true);
|
}
|
}
|
|
void SurfaceFlinger::onFirstRef()
|
{
|
mEventQueue->init(this);
|
}
|
|
SurfaceFlinger::~SurfaceFlinger() = default;
|
|
void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
|
{
|
// the window manager died on us. prepare its eulogy.
|
|
// restore initial conditions (default device unblank, etc)
|
initializeDisplays();
|
|
// restart the boot-animation
|
startBootAnim();
|
}
|
|
static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) {
|
status_t err = client->initCheck();
|
if (err == NO_ERROR) {
|
return client;
|
}
|
return nullptr;
|
}
|
|
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
|
return initClient(new Client(this));
|
}
|
|
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
|
bool secure)
|
{
|
class DisplayToken : public BBinder {
|
sp<SurfaceFlinger> flinger;
|
virtual ~DisplayToken() {
|
// no more references, this display must be terminated
|
Mutex::Autolock _l(flinger->mStateLock);
|
flinger->mCurrentState.displays.removeItem(this);
|
flinger->setTransactionFlags(eDisplayTransactionNeeded);
|
}
|
public:
|
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
|
: flinger(flinger) {
|
}
|
};
|
|
sp<BBinder> token = new DisplayToken(this);
|
|
Mutex::Autolock _l(mStateLock);
|
// Display ID is assigned when virtual display is allocated by HWC.
|
DisplayDeviceState state;
|
state.isSecure = secure;
|
state.displayName = displayName;
|
mCurrentState.displays.add(token, state);
|
mInterceptor->saveDisplayCreation(state);
|
return token;
|
}
|
|
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) {
|
Mutex::Autolock _l(mStateLock);
|
|
ssize_t index = mCurrentState.displays.indexOfKey(displayToken);
|
if (index < 0) {
|
ALOGE("destroyDisplay: Invalid display token %p", displayToken.get());
|
return;
|
}
|
|
const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
|
if (!state.isVirtual()) {
|
ALOGE("destroyDisplay called for non-virtual display");
|
return;
|
}
|
mInterceptor->saveDisplayDeletion(state.sequenceId);
|
mCurrentState.displays.removeItemsAt(index);
|
setTransactionFlags(eDisplayTransactionNeeded);
|
}
|
|
std::vector<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIds() const {
|
Mutex::Autolock lock(mStateLock);
|
|
const auto internalDisplayId = getInternalDisplayIdLocked();
|
if (!internalDisplayId) {
|
return {};
|
}
|
|
std::vector<PhysicalDisplayId> displayIds;
|
displayIds.reserve(mPhysicalDisplayTokens.size());
|
displayIds.push_back(internalDisplayId->value);
|
|
for (const auto& [id, token] : mPhysicalDisplayTokens) {
|
if (id != *internalDisplayId) {
|
displayIds.push_back(id.value);
|
}
|
}
|
|
return displayIds;
|
}
|
|
sp<IBinder> SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const {
|
Mutex::Autolock lock(mStateLock);
|
return getPhysicalDisplayTokenLocked(DisplayId{displayId});
|
}
|
|
status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const {
|
if (!outGetColorManagement) {
|
return BAD_VALUE;
|
}
|
*outGetColorManagement = useColorManagement;
|
return NO_ERROR;
|
}
|
|
HWComposer& SurfaceFlinger::getHwComposer() const {
|
return mCompositionEngine->getHwComposer();
|
}
|
|
renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const {
|
return mCompositionEngine->getRenderEngine();
|
}
|
|
compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const {
|
return *mCompositionEngine.get();
|
}
|
|
void SurfaceFlinger::bootFinished()
|
{
|
if (mStartPropertySetThread->join() != NO_ERROR) {
|
ALOGE("Join StartPropertySetThread failed!");
|
}
|
const nsecs_t now = systemTime();
|
const nsecs_t duration = now - mBootTime;
|
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
|
|
// wait patiently for the window manager death
|
const String16 name("window");
|
sp<IBinder> window(defaultServiceManager()->getService(name));
|
if (window != 0) {
|
window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
|
}
|
sp<IBinder> input(defaultServiceManager()->getService(
|
String16("inputflinger")));
|
if (input == nullptr) {
|
ALOGE("Failed to link to input service");
|
} else {
|
mInputFlinger = interface_cast<IInputFlinger>(input);
|
}
|
|
if (mVrFlinger) {
|
mVrFlinger->OnBootFinished();
|
}
|
|
// stop boot animation
|
// formerly we would just kill the process, but we now ask it to exit so it
|
// can choose where to stop the animation.
|
property_set("service.bootanim.exit", "1");
|
|
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
|
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
|
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
|
|
postMessageAsync(new LambdaMessage([this]() NO_THREAD_SAFETY_ANALYSIS {
|
readPersistentProperties();
|
mBootStage = BootStage::FINISHED;
|
|
// set the refresh rate according to the policy
|
const auto& performanceRefreshRate =
|
mRefreshRateConfigs.getRefreshRate(RefreshRateType::PERFORMANCE);
|
|
if (performanceRefreshRate && isDisplayConfigAllowed(performanceRefreshRate->configId)) {
|
setRefreshRateTo(RefreshRateType::PERFORMANCE, Scheduler::ConfigEvent::None);
|
} else {
|
setRefreshRateTo(RefreshRateType::DEFAULT, Scheduler::ConfigEvent::None);
|
}
|
}));
|
|
// AW:add for BOOTEVENT bootanim is end
|
mStartPropertySetThread->addBootEvent(0);
|
}
|
|
uint32_t SurfaceFlinger::getNewTexture() {
|
{
|
std::lock_guard lock(mTexturePoolMutex);
|
if (!mTexturePool.empty()) {
|
uint32_t name = mTexturePool.back();
|
mTexturePool.pop_back();
|
ATRACE_INT("TexturePoolSize", mTexturePool.size());
|
return name;
|
}
|
|
// The pool was too small, so increase it for the future
|
++mTexturePoolSize;
|
}
|
|
// The pool was empty, so we need to get a new texture name directly using a
|
// blocking call to the main thread
|
uint32_t name = 0;
|
postMessageSync(new LambdaMessage([&]() { getRenderEngine().genTextures(1, &name); }));
|
return name;
|
}
|
|
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
|
std::lock_guard lock(mTexturePoolMutex);
|
// We don't change the pool size, so the fix-up logic in postComposition will decide whether
|
// to actually delete this or not based on mTexturePoolSize
|
mTexturePool.push_back(texture);
|
ATRACE_INT("TexturePoolSize", mTexturePool.size());
|
}
|
|
// Do not call property_set on main thread which will be blocked by init
|
// Use StartPropertySetThread instead.
|
void SurfaceFlinger::init() {
|
ALOGI( "SurfaceFlinger's main thread ready to run. "
|
"Initializing graphics H/W...");
|
|
ALOGI("Phase offset NS: %" PRId64 "", mPhaseOffsets->getCurrentAppOffset());
|
|
Mutex::Autolock _l(mStateLock);
|
// start the EventThread
|
mScheduler =
|
getFactory().createScheduler([this](bool enabled) { setPrimaryVsyncEnabled(enabled); },
|
mRefreshRateConfigs);
|
auto resyncCallback =
|
mScheduler->makeResyncCallback(std::bind(&SurfaceFlinger::getVsyncPeriod, this));
|
|
mAppConnectionHandle =
|
mScheduler->createConnection("app", mPhaseOffsets->getCurrentAppOffset(),
|
resyncCallback,
|
impl::EventThread::InterceptVSyncsCallback());
|
mSfConnectionHandle = mScheduler->createConnection("sf", mPhaseOffsets->getCurrentSfOffset(),
|
resyncCallback, [this](nsecs_t timestamp) {
|
mInterceptor->saveVSyncEvent(timestamp);
|
});
|
|
mEventQueue->setEventConnection(mScheduler->getEventConnection(mSfConnectionHandle));
|
mVsyncModulator.setSchedulerAndHandles(mScheduler.get(), mAppConnectionHandle.get(),
|
mSfConnectionHandle.get());
|
|
mRegionSamplingThread =
|
new RegionSamplingThread(*this, *mScheduler,
|
RegionSamplingThread::EnvironmentTimingTunables());
|
|
// Get a RenderEngine for the given display / config (can't fail)
|
int32_t renderEngineFeature = 0;
|
renderEngineFeature |= (useColorManagement ?
|
renderengine::RenderEngine::USE_COLOR_MANAGEMENT : 0);
|
renderEngineFeature |= (useContextPriority ?
|
renderengine::RenderEngine::USE_HIGH_PRIORITY_CONTEXT : 0);
|
renderEngineFeature |=
|
(enable_protected_contents(false) ? renderengine::RenderEngine::ENABLE_PROTECTED_CONTEXT
|
: 0);
|
|
// TODO(b/77156734): We need to stop casting and use HAL types when possible.
|
// Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display.
|
mCompositionEngine->setRenderEngine(
|
renderengine::RenderEngine::create(static_cast<int32_t>(defaultCompositionPixelFormat),
|
renderEngineFeature, maxFrameBufferAcquiredBuffers));
|
|
LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay,
|
"Starting with vr flinger active is not currently supported.");
|
mCompositionEngine->setHwComposer(getFactory().createHWComposer(getBE().mHwcServiceName));
|
mCompositionEngine->getHwComposer().registerCallback(this, getBE().mComposerSequenceId);
|
// Process any initial hotplug and resulting display changes.
|
processDisplayHotplugEventsLocked();
|
const auto display = getDefaultDisplayDeviceLocked();
|
LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback.");
|
LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(*display->getId()),
|
"Internal display is disconnected.");
|
|
if (useVrFlinger) {
|
auto vrFlingerRequestDisplayCallback = [this](bool requestDisplay) {
|
// This callback is called from the vr flinger dispatch thread. We
|
// need to call signalTransaction(), which requires holding
|
// mStateLock when we're not on the main thread. Acquiring
|
// mStateLock from the vr flinger dispatch thread might trigger a
|
// deadlock in surface flinger (see b/66916578), so post a message
|
// to be handled on the main thread instead.
|
postMessageAsync(new LambdaMessage([=] {
|
ALOGI("VR request display mode: requestDisplay=%d", requestDisplay);
|
mVrFlingerRequestsDisplay = requestDisplay;
|
signalTransaction();
|
}));
|
};
|
mVrFlinger = dvr::VrFlinger::Create(getHwComposer().getComposer(),
|
getHwComposer()
|
.fromPhysicalDisplayId(*display->getId())
|
.value_or(0),
|
vrFlingerRequestDisplayCallback);
|
if (!mVrFlinger) {
|
ALOGE("Failed to start vrflinger");
|
}
|
}
|
|
// initialize our drawing state
|
mDrawingState = mCurrentState;
|
|
// set initial conditions (e.g. unblank default device)
|
initializeDisplays();
|
|
getRenderEngine().primeCache();
|
|
// Inform native graphics APIs whether the present timestamp is supported:
|
|
const bool presentFenceReliable =
|
!getHwComposer().hasCapability(HWC2::Capability::PresentFenceIsNotReliable);
|
mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable);
|
|
if (mStartPropertySetThread->Start() != NO_ERROR) {
|
ALOGE("Run StartPropertySetThread failed!");
|
}
|
|
mScheduler->setChangeRefreshRateCallback(
|
[this](RefreshRateType type, Scheduler::ConfigEvent event) {
|
Mutex::Autolock lock(mStateLock);
|
setRefreshRateTo(type, event);
|
});
|
mScheduler->setGetVsyncPeriodCallback([this] {
|
Mutex::Autolock lock(mStateLock);
|
return getVsyncPeriod();
|
});
|
|
mRefreshRateConfigs.populate(getHwComposer().getConfigs(*display->getId()));
|
mRefreshRateStats.setConfigMode(getHwComposer().getActiveConfigIndex(*display->getId()));
|
|
// AW:add for BOOTEVENT bootanim is start
|
mStartPropertySetThread->addBootEvent(1);
|
|
ALOGV("Done initializing");
|
}
|
|
void SurfaceFlinger::readPersistentProperties() {
|
Mutex::Autolock _l(mStateLock);
|
|
char value[PROPERTY_VALUE_MAX];
|
|
property_get("persist.sys.sf.color_saturation", value, "1.0");
|
mGlobalSaturationFactor = atof(value);
|
updateColorMatrixLocked();
|
ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
|
|
property_get("persist.sys.sf.native_mode", value, "0");
|
mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
|
|
property_get("persist.sys.sf.color_mode", value, "0");
|
mForceColorMode = static_cast<ColorMode>(atoi(value));
|
}
|
|
void SurfaceFlinger::startBootAnim() {
|
// Start boot animation service by setting a property mailbox
|
// if property setting thread is already running, Start() will be just a NOP
|
mStartPropertySetThread->Start();
|
// Wait until property was set
|
if (mStartPropertySetThread->join() != NO_ERROR) {
|
ALOGE("Join StartPropertySetThread failed!");
|
}
|
}
|
|
size_t SurfaceFlinger::getMaxTextureSize() const {
|
return getRenderEngine().getMaxTextureSize();
|
}
|
|
size_t SurfaceFlinger::getMaxViewportDims() const {
|
return getRenderEngine().getMaxViewportDims();
|
}
|
|
// ----------------------------------------------------------------------------
|
|
bool SurfaceFlinger::authenticateSurfaceTexture(
|
const sp<IGraphicBufferProducer>& bufferProducer) const {
|
Mutex::Autolock _l(mStateLock);
|
return authenticateSurfaceTextureLocked(bufferProducer);
|
}
|
|
bool SurfaceFlinger::authenticateSurfaceTextureLocked(
|
const sp<IGraphicBufferProducer>& bufferProducer) const {
|
sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
|
return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0;
|
}
|
|
status_t SurfaceFlinger::getSupportedFrameTimestamps(
|
std::vector<FrameEvent>* outSupported) const {
|
*outSupported = {
|
FrameEvent::REQUESTED_PRESENT,
|
FrameEvent::ACQUIRE,
|
FrameEvent::LATCH,
|
FrameEvent::FIRST_REFRESH_START,
|
FrameEvent::LAST_REFRESH_START,
|
FrameEvent::GPU_COMPOSITION_DONE,
|
FrameEvent::DEQUEUE_READY,
|
FrameEvent::RELEASE,
|
};
|
ConditionalLock _l(mStateLock,
|
std::this_thread::get_id() != mMainThreadId);
|
if (!getHwComposer().hasCapability(
|
HWC2::Capability::PresentFenceIsNotReliable)) {
|
outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
|
}
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& displayToken,
|
Vector<DisplayInfo>* configs) {
|
if (!displayToken || !configs) {
|
return BAD_VALUE;
|
}
|
|
Mutex::Autolock lock(mStateLock);
|
|
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
|
if (!displayId) {
|
return NAME_NOT_FOUND;
|
}
|
|
// TODO: Not sure if display density should handled by SF any longer
|
class Density {
|
static float getDensityFromProperty(char const* propName) {
|
char property[PROPERTY_VALUE_MAX];
|
float density = 0.0f;
|
if (property_get(propName, property, nullptr) > 0) {
|
density = strtof(property, nullptr);
|
}
|
return density;
|
}
|
public:
|
static float getEmuDensity() {
|
return getDensityFromProperty("qemu.sf.lcd_density"); }
|
static float getBuildDensity() {
|
return getDensityFromProperty("ro.sf.lcd_density"); }
|
};
|
|
configs->clear();
|
|
for (const auto& hwConfig : getHwComposer().getConfigs(*displayId)) {
|
DisplayInfo info = DisplayInfo();
|
|
float xdpi = hwConfig->getDpiX();
|
float ydpi = hwConfig->getDpiY();
|
|
info.w = hwConfig->getWidth();
|
info.h = hwConfig->getHeight();
|
// Default display viewport to display width and height
|
info.viewportW = info.w;
|
info.viewportH = info.h;
|
|
if (displayId == getInternalDisplayIdLocked()) {
|
// The density of the device is provided by a build property
|
float density = Density::getBuildDensity() / 160.0f;
|
if (density == 0) {
|
// the build doesn't provide a density -- this is wrong!
|
// use xdpi instead
|
ALOGE("ro.sf.lcd_density must be defined as a build property");
|
density = xdpi / 160.0f;
|
}
|
if (Density::getEmuDensity()) {
|
// if "qemu.sf.lcd_density" is specified, it overrides everything
|
xdpi = ydpi = density = Density::getEmuDensity();
|
density /= 160.0f;
|
}
|
info.density = density;
|
|
// TODO: this needs to go away (currently needed only by webkit)
|
const auto display = getDefaultDisplayDeviceLocked();
|
info.orientation = display ? display->getOrientation() : 0;
|
|
// This is for screenrecord
|
const Rect viewport = display->getViewport();
|
if (viewport.isValid()) {
|
info.viewportW = uint32_t(viewport.getWidth());
|
info.viewportH = uint32_t(viewport.getHeight());
|
}
|
} else {
|
// TODO: where should this value come from?
|
static const int TV_DENSITY = 213;
|
info.density = TV_DENSITY / 160.0f;
|
info.orientation = 0;
|
}
|
|
info.xdpi = xdpi;
|
info.ydpi = ydpi;
|
info.fps = 1e9 / hwConfig->getVsyncPeriod();
|
const auto refreshRateType = mRefreshRateConfigs.getRefreshRateType(hwConfig->getId());
|
const auto offset = mPhaseOffsets->getOffsetsForRefreshRate(refreshRateType);
|
info.appVsyncOffset = offset.late.app;
|
|
// This is how far in advance a buffer must be queued for
|
// presentation at a given time. If you want a buffer to appear
|
// on the screen at time N, you must submit the buffer before
|
// (N - presentationDeadline).
|
//
|
// Normally it's one full refresh period (to give SF a chance to
|
// latch the buffer), but this can be reduced by configuring a
|
// DispSync offset. Any additional delays introduced by the hardware
|
// composer or panel must be accounted for here.
|
//
|
// We add an additional 1ms to allow for processing time and
|
// differences between the ideal and actual refresh rate.
|
info.presentationDeadline = hwConfig->getVsyncPeriod() - offset.late.sf + 1000000;
|
|
// All non-virtual displays are currently considered secure.
|
info.secure = true;
|
|
if (displayId == getInternalDisplayIdLocked() &&
|
primaryDisplayOrientation & DisplayState::eOrientationSwapMask) {
|
std::swap(info.w, info.h);
|
}
|
|
configs->push_back(info);
|
}
|
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>&, DisplayStatInfo* stats) {
|
if (!stats) {
|
return BAD_VALUE;
|
}
|
|
mScheduler->getDisplayStatInfo(stats);
|
return NO_ERROR;
|
}
|
|
int SurfaceFlinger::getActiveConfig(const sp<IBinder>& displayToken) {
|
const auto display = getDisplayDevice(displayToken);
|
if (!display) {
|
ALOGE("getActiveConfig: Invalid display token %p", displayToken.get());
|
return BAD_VALUE;
|
}
|
|
return display->getActiveConfig();
|
}
|
|
void SurfaceFlinger::setDesiredActiveConfig(const ActiveConfigInfo& info) {
|
ATRACE_CALL();
|
|
// Don't check against the current mode yet. Worst case we set the desired
|
// config twice. However event generation config might have changed so we need to update it
|
// accordingly
|
std::lock_guard<std::mutex> lock(mActiveConfigLock);
|
const Scheduler::ConfigEvent prevConfig = mDesiredActiveConfig.event;
|
mDesiredActiveConfig = info;
|
mDesiredActiveConfig.event = mDesiredActiveConfig.event | prevConfig;
|
|
if (!mDesiredActiveConfigChanged) {
|
// This will trigger HWC refresh without resetting the idle timer.
|
repaintEverythingForHWC();
|
// Start receiving vsync samples now, so that we can detect a period
|
// switch.
|
mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
|
mPhaseOffsets->setRefreshRateType(info.type);
|
const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
|
mVsyncModulator.onRefreshRateChangeInitiated();
|
mVsyncModulator.setPhaseOffsets(early, gl, late);
|
}
|
mDesiredActiveConfigChanged = true;
|
ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged);
|
|
if (mRefreshRateOverlay) {
|
mRefreshRateOverlay->changeRefreshRate(mDesiredActiveConfig.type);
|
}
|
}
|
|
status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& displayToken, int mode) {
|
ATRACE_CALL();
|
|
std::vector<int32_t> allowedConfig;
|
allowedConfig.push_back(mode);
|
|
return setAllowedDisplayConfigs(displayToken, allowedConfig);
|
}
|
|
void SurfaceFlinger::setActiveConfigInternal() {
|
ATRACE_CALL();
|
|
const auto display = getDefaultDisplayDeviceLocked();
|
if (!display) {
|
return;
|
}
|
|
std::lock_guard<std::mutex> lock(mActiveConfigLock);
|
mRefreshRateStats.setConfigMode(mUpcomingActiveConfig.configId);
|
|
display->setActiveConfig(mUpcomingActiveConfig.configId);
|
|
mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
|
mPhaseOffsets->setRefreshRateType(mUpcomingActiveConfig.type);
|
const auto [early, gl, late] = mPhaseOffsets->getCurrentOffsets();
|
mVsyncModulator.setPhaseOffsets(early, gl, late);
|
ATRACE_INT("ActiveConfigMode", mUpcomingActiveConfig.configId);
|
|
if (mUpcomingActiveConfig.event != Scheduler::ConfigEvent::None) {
|
mScheduler->onConfigChanged(mAppConnectionHandle, display->getId()->value,
|
mUpcomingActiveConfig.configId);
|
}
|
}
|
|
bool SurfaceFlinger::performSetActiveConfig() {
|
ATRACE_CALL();
|
if (mCheckPendingFence) {
|
if (previousFrameMissed()) {
|
// fence has not signaled yet. wait for the next invalidate
|
mEventQueue->invalidate();
|
return true;
|
}
|
|
// We received the present fence from the HWC, so we assume it successfully updated
|
// the config, hence we update SF.
|
mCheckPendingFence = false;
|
setActiveConfigInternal();
|
}
|
|
// Store the local variable to release the lock.
|
ActiveConfigInfo desiredActiveConfig;
|
{
|
std::lock_guard<std::mutex> lock(mActiveConfigLock);
|
if (!mDesiredActiveConfigChanged) {
|
return false;
|
}
|
desiredActiveConfig = mDesiredActiveConfig;
|
}
|
|
const auto display = getDefaultDisplayDeviceLocked();
|
if (!display || display->getActiveConfig() == desiredActiveConfig.configId) {
|
// display is not valid or we are already in the requested mode
|
// on both cases there is nothing left to do
|
std::lock_guard<std::mutex> lock(mActiveConfigLock);
|
mDesiredActiveConfig.event = Scheduler::ConfigEvent::None;
|
mDesiredActiveConfigChanged = false;
|
ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged);
|
return false;
|
}
|
|
// Desired active config was set, it is different than the config currently in use, however
|
// allowed configs might have change by the time we process the refresh.
|
// Make sure the desired config is still allowed
|
if (!isDisplayConfigAllowed(desiredActiveConfig.configId)) {
|
std::lock_guard<std::mutex> lock(mActiveConfigLock);
|
mDesiredActiveConfig.event = Scheduler::ConfigEvent::None;
|
mDesiredActiveConfig.configId = display->getActiveConfig();
|
mDesiredActiveConfigChanged = false;
|
ATRACE_INT("DesiredActiveConfigChanged", mDesiredActiveConfigChanged);
|
return false;
|
}
|
mUpcomingActiveConfig = desiredActiveConfig;
|
const auto displayId = display->getId();
|
LOG_ALWAYS_FATAL_IF(!displayId);
|
|
ATRACE_INT("ActiveConfigModeHWC", mUpcomingActiveConfig.configId);
|
getHwComposer().setActiveConfig(*displayId, mUpcomingActiveConfig.configId);
|
|
// we need to submit an empty frame to HWC to start the process
|
mCheckPendingFence = true;
|
mEventQueue->invalidate();
|
return false;
|
}
|
|
status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& displayToken,
|
Vector<ColorMode>* outColorModes) {
|
if (!displayToken || !outColorModes) {
|
return BAD_VALUE;
|
}
|
|
std::vector<ColorMode> modes;
|
bool isInternalDisplay = false;
|
{
|
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
|
|
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
|
if (!displayId) {
|
return NAME_NOT_FOUND;
|
}
|
|
modes = getHwComposer().getColorModes(*displayId);
|
isInternalDisplay = displayId == getInternalDisplayIdLocked();
|
}
|
outColorModes->clear();
|
|
// If it's built-in display and the configuration claims it's not wide color capable,
|
// filter out all wide color modes. The typical reason why this happens is that the
|
// hardware is not good enough to support GPU composition of wide color, and thus the
|
// OEMs choose to disable this capability.
|
if (isInternalDisplay && !hasWideColorDisplay) {
|
std::remove_copy_if(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes),
|
isWideColorMode);
|
} else {
|
std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes));
|
}
|
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getDisplayNativePrimaries(const sp<IBinder>& displayToken,
|
ui::DisplayPrimaries &primaries) {
|
if (!displayToken) {
|
return BAD_VALUE;
|
}
|
|
// Currently we only support this API for a single internal display.
|
if (getInternalDisplayToken() != displayToken) {
|
return BAD_VALUE;
|
}
|
|
memcpy(&primaries, &mInternalDisplayPrimaries, sizeof(ui::DisplayPrimaries));
|
return NO_ERROR;
|
}
|
|
ColorMode SurfaceFlinger::getActiveColorMode(const sp<IBinder>& displayToken) {
|
if (const auto display = getDisplayDevice(displayToken)) {
|
return display->getCompositionDisplay()->getState().colorMode;
|
}
|
return static_cast<ColorMode>(BAD_VALUE);
|
}
|
|
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ColorMode mode) {
|
postMessageSync(new LambdaMessage([&] {
|
Vector<ColorMode> modes;
|
getDisplayColorModes(displayToken, &modes);
|
bool exists = std::find(std::begin(modes), std::end(modes), mode) != std::end(modes);
|
if (mode < ColorMode::NATIVE || !exists) {
|
ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p",
|
decodeColorMode(mode).c_str(), mode, displayToken.get());
|
return;
|
}
|
const auto display = getDisplayDevice(displayToken);
|
if (!display) {
|
ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p",
|
decodeColorMode(mode).c_str(), mode, displayToken.get());
|
} else if (display->isVirtual()) {
|
ALOGW("Attempt to set active color mode %s (%d) for virtual display",
|
decodeColorMode(mode).c_str(), mode);
|
} else {
|
display->getCompositionDisplay()->setColorMode(mode, Dataspace::UNKNOWN,
|
RenderIntent::COLORIMETRIC);
|
}
|
}));
|
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::clearAnimationFrameStats() {
|
Mutex::Autolock _l(mStateLock);
|
mAnimFrameTracker.clearStats();
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
|
Mutex::Autolock _l(mStateLock);
|
mAnimFrameTracker.getStats(outStats);
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& displayToken,
|
HdrCapabilities* outCapabilities) const {
|
Mutex::Autolock _l(mStateLock);
|
|
const auto display = getDisplayDeviceLocked(displayToken);
|
if (!display) {
|
ALOGE("getHdrCapabilities: Invalid display token %p", displayToken.get());
|
return BAD_VALUE;
|
}
|
|
// At this point the DisplayDeivce should already be set up,
|
// meaning the luminance information is already queried from
|
// hardware composer and stored properly.
|
const HdrCapabilities& capabilities = display->getHdrCapabilities();
|
*outCapabilities = HdrCapabilities(capabilities.getSupportedHdrTypes(),
|
capabilities.getDesiredMaxLuminance(),
|
capabilities.getDesiredMaxAverageLuminance(),
|
capabilities.getDesiredMinLuminance());
|
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken,
|
ui::PixelFormat* outFormat,
|
ui::Dataspace* outDataspace,
|
uint8_t* outComponentMask) const {
|
if (!outFormat || !outDataspace || !outComponentMask) {
|
return BAD_VALUE;
|
}
|
const auto display = getDisplayDevice(displayToken);
|
if (!display || !display->getId()) {
|
ALOGE("getDisplayedContentSamplingAttributes: Bad display token: %p", display.get());
|
return BAD_VALUE;
|
}
|
return getHwComposer().getDisplayedContentSamplingAttributes(*display->getId(), outFormat,
|
outDataspace, outComponentMask);
|
}
|
|
status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken,
|
bool enable, uint8_t componentMask,
|
uint64_t maxFrames) const {
|
const auto display = getDisplayDevice(displayToken);
|
if (!display || !display->getId()) {
|
ALOGE("setDisplayContentSamplingEnabled: Bad display token: %p", display.get());
|
return BAD_VALUE;
|
}
|
|
return getHwComposer().setDisplayContentSamplingEnabled(*display->getId(), enable,
|
componentMask, maxFrames);
|
}
|
|
status_t SurfaceFlinger::getDisplayedContentSample(const sp<IBinder>& displayToken,
|
uint64_t maxFrames, uint64_t timestamp,
|
DisplayedFrameStats* outStats) const {
|
const auto display = getDisplayDevice(displayToken);
|
if (!display || !display->getId()) {
|
ALOGE("getDisplayContentSample: Bad display token: %p", displayToken.get());
|
return BAD_VALUE;
|
}
|
|
return getHwComposer().getDisplayedContentSample(*display->getId(), maxFrames, timestamp,
|
outStats);
|
}
|
|
status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const {
|
if (!outSupported) {
|
return BAD_VALUE;
|
}
|
*outSupported = getRenderEngine().supportsProtectedContent();
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::isWideColorDisplay(const sp<IBinder>& displayToken,
|
bool* outIsWideColorDisplay) const {
|
if (!displayToken || !outIsWideColorDisplay) {
|
return BAD_VALUE;
|
}
|
Mutex::Autolock _l(mStateLock);
|
const auto display = getDisplayDeviceLocked(displayToken);
|
if (!display) {
|
return BAD_VALUE;
|
}
|
|
// Use hasWideColorDisplay to override built-in display.
|
const auto displayId = display->getId();
|
if (displayId && displayId == getInternalDisplayIdLocked()) {
|
*outIsWideColorDisplay = hasWideColorDisplay;
|
return NO_ERROR;
|
}
|
*outIsWideColorDisplay = display->hasWideColorGamut();
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
|
postMessageSync(new LambdaMessage([&] {
|
Mutex::Autolock _l(mStateLock);
|
|
if (mInjectVSyncs == enable) {
|
return;
|
}
|
|
auto resyncCallback =
|
mScheduler->makeResyncCallback(std::bind(&SurfaceFlinger::getVsyncPeriod, this));
|
|
// TODO(b/128863962): Part of the Injector should be refactored, so that it
|
// can be passed to Scheduler.
|
if (enable) {
|
ALOGV("VSync Injections enabled");
|
if (mVSyncInjector.get() == nullptr) {
|
mVSyncInjector = std::make_unique<InjectVSyncSource>();
|
mInjectorEventThread = std::make_unique<
|
impl::EventThread>(mVSyncInjector.get(),
|
impl::EventThread::InterceptVSyncsCallback(),
|
"injEventThread");
|
}
|
mEventQueue->setEventThread(mInjectorEventThread.get(), std::move(resyncCallback));
|
} else {
|
ALOGV("VSync Injections disabled");
|
mEventQueue->setEventThread(mScheduler->getEventThread(mSfConnectionHandle),
|
std::move(resyncCallback));
|
}
|
|
mInjectVSyncs = enable;
|
}));
|
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::injectVSync(nsecs_t when) {
|
Mutex::Autolock _l(mStateLock);
|
|
if (!mInjectVSyncs) {
|
ALOGE("VSync Injections not enabled");
|
return BAD_VALUE;
|
}
|
if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) {
|
ALOGV("Injecting VSync inside SurfaceFlinger");
|
mVSyncInjector->onInjectSyncEvent(when);
|
}
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers)
|
NO_THREAD_SAFETY_ANALYSIS {
|
outLayers->clear();
|
postMessageSync(new LambdaMessage([&]() {
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
outLayers->push_back(layer->getLayerDebugInfo());
|
});
|
|
}));
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getCompositionPreference(
|
Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
|
Dataspace* outWideColorGamutDataspace,
|
ui::PixelFormat* outWideColorGamutPixelFormat) const {
|
*outDataspace = mDefaultCompositionDataspace;
|
*outPixelFormat = defaultCompositionPixelFormat;
|
*outWideColorGamutDataspace = mWideColorGamutCompositionDataspace;
|
*outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat;
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea,
|
const sp<IBinder>& stopLayerHandle,
|
const sp<IRegionSamplingListener>& listener) {
|
if (!listener || samplingArea == Rect::INVALID_RECT) {
|
return BAD_VALUE;
|
}
|
mRegionSamplingThread->addListener(samplingArea, stopLayerHandle, listener);
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) {
|
if (!listener) {
|
return BAD_VALUE;
|
}
|
mRegionSamplingThread->removeListener(listener);
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
|
bool* outSupport) const {
|
if (!displayToken || !outSupport) {
|
return BAD_VALUE;
|
}
|
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
|
if (!displayId) {
|
return NAME_NOT_FOUND;
|
}
|
*outSupport =
|
getHwComposer().hasDisplayCapability(displayId, HWC2::DisplayCapability::Brightness);
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::setDisplayBrightness(const sp<IBinder>& displayToken,
|
float brightness) const {
|
if (!displayToken) {
|
return BAD_VALUE;
|
}
|
const auto displayId = getPhysicalDisplayIdLocked(displayToken);
|
if (!displayId) {
|
return NAME_NOT_FOUND;
|
}
|
return getHwComposer().setDisplayBrightness(*displayId, brightness);
|
}
|
|
status_t SurfaceFlinger::notifyPowerHint(int32_t hintId) {
|
PowerHint powerHint = static_cast<PowerHint>(hintId);
|
|
if (powerHint == PowerHint::INTERACTION) {
|
mScheduler->notifyTouchEvent();
|
}
|
|
return NO_ERROR;
|
}
|
|
// ----------------------------------------------------------------------------
|
|
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
|
ISurfaceComposer::VsyncSource vsyncSource) {
|
auto resyncCallback = mScheduler->makeResyncCallback([this] {
|
Mutex::Autolock lock(mStateLock);
|
return getVsyncPeriod();
|
});
|
|
const auto& handle =
|
vsyncSource == eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle;
|
|
return mScheduler->createDisplayEventConnection(handle, std::move(resyncCallback));
|
}
|
|
// ----------------------------------------------------------------------------
|
|
void SurfaceFlinger::waitForEvent() {
|
mEventQueue->waitMessage();
|
}
|
|
void SurfaceFlinger::signalTransaction() {
|
mScheduler->resetIdleTimer();
|
mEventQueue->invalidate();
|
}
|
|
void SurfaceFlinger::signalLayerUpdate() {
|
mScheduler->resetIdleTimer();
|
mEventQueue->invalidate();
|
}
|
|
void SurfaceFlinger::signalRefresh() {
|
mRefreshPending = true;
|
mEventQueue->refresh();
|
}
|
|
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
|
nsecs_t reltime, uint32_t /* flags */) {
|
return mEventQueue->postMessage(msg, reltime);
|
}
|
|
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
|
nsecs_t reltime, uint32_t /* flags */) {
|
status_t res = mEventQueue->postMessage(msg, reltime);
|
if (res == NO_ERROR) {
|
msg->wait();
|
}
|
return res;
|
}
|
|
void SurfaceFlinger::run() {
|
do {
|
waitForEvent();
|
} while (true);
|
}
|
|
nsecs_t SurfaceFlinger::getVsyncPeriod() const {
|
const auto displayId = getInternalDisplayIdLocked();
|
if (!displayId || !getHwComposer().isConnected(*displayId)) {
|
return 0;
|
}
|
|
const auto config = getHwComposer().getActiveConfig(*displayId);
|
return config ? config->getVsyncPeriod() : 0;
|
}
|
|
void SurfaceFlinger::onVsyncReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId,
|
int64_t timestamp) {
|
ATRACE_NAME("SF onVsync");
|
|
Mutex::Autolock lock(mStateLock);
|
// Ignore any vsyncs from a previous hardware composer.
|
if (sequenceId != getBE().mComposerSequenceId) {
|
return;
|
}
|
|
if (!getHwComposer().onVsync(hwcDisplayId, timestamp)) {
|
return;
|
}
|
|
if (hwcDisplayId != getHwComposer().getInternalHwcDisplayId()) {
|
// For now, we don't do anything with external display vsyncs.
|
return;
|
}
|
|
bool periodChanged = false;
|
mScheduler->addResyncSample(timestamp, &periodChanged);
|
if (periodChanged) {
|
mVsyncModulator.onRefreshRateChangeDetected();
|
}
|
}
|
|
void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
|
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
|
*compositorTiming = getBE().mCompositorTiming;
|
}
|
|
bool SurfaceFlinger::isDisplayConfigAllowed(int32_t configId) {
|
return mAllowedDisplayConfigs.empty() || mAllowedDisplayConfigs.count(configId);
|
}
|
|
void SurfaceFlinger::setRefreshRateTo(RefreshRateType refreshRate, Scheduler::ConfigEvent event) {
|
const auto display = getDefaultDisplayDeviceLocked();
|
if (!display || mBootStage != BootStage::FINISHED) {
|
return;
|
}
|
ATRACE_CALL();
|
|
// Don't do any updating if the current fps is the same as the new one.
|
const auto& refreshRateConfig = mRefreshRateConfigs.getRefreshRate(refreshRate);
|
if (!refreshRateConfig) {
|
ALOGV("Skipping refresh rate change request for unsupported rate.");
|
return;
|
}
|
|
const int desiredConfigId = refreshRateConfig->configId;
|
|
if (!isDisplayConfigAllowed(desiredConfigId)) {
|
ALOGV("Skipping config %d as it is not part of allowed configs", desiredConfigId);
|
return;
|
}
|
|
setDesiredActiveConfig({refreshRate, desiredConfigId, event});
|
}
|
|
void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId,
|
HWC2::Connection connection) {
|
ALOGV("%s(%d, %" PRIu64 ", %s)", __FUNCTION__, sequenceId, hwcDisplayId,
|
connection == HWC2::Connection::Connected ? "connected" : "disconnected");
|
|
// Ignore events that do not have the right sequenceId.
|
if (sequenceId != getBE().mComposerSequenceId) {
|
return;
|
}
|
|
// Only lock if we're not on the main thread. This function is normally
|
// called on a hwbinder thread, but for the primary display it's called on
|
// the main thread with the state lock already held, so don't attempt to
|
// acquire it here.
|
ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
|
|
mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection});
|
|
if (std::this_thread::get_id() == mMainThreadId) {
|
// Process all pending hot plug events immediately if we are on the main thread.
|
processDisplayHotplugEventsLocked();
|
}
|
|
setTransactionFlags(eDisplayTransactionNeeded);
|
}
|
|
void SurfaceFlinger::onRefreshReceived(int sequenceId, hwc2_display_t /*hwcDisplayId*/) {
|
Mutex::Autolock lock(mStateLock);
|
if (sequenceId != getBE().mComposerSequenceId) {
|
return;
|
}
|
repaintEverythingForHWC();
|
}
|
|
void SurfaceFlinger::setPrimaryVsyncEnabled(bool enabled) {
|
ATRACE_CALL();
|
Mutex::Autolock lock(mStateLock);
|
if (const auto displayId = getInternalDisplayIdLocked()) {
|
getHwComposer().setVsyncEnabled(*displayId,
|
enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable);
|
}
|
}
|
|
// Note: it is assumed the caller holds |mStateLock| when this is called
|
void SurfaceFlinger::resetDisplayState() {
|
mScheduler->disableHardwareVsync(true);
|
// Clear the drawing state so that the logic inside of
|
// handleTransactionLocked will fire. It will determine the delta between
|
// mCurrentState and mDrawingState and re-apply all changes when we make the
|
// transition.
|
mDrawingState.displays.clear();
|
mDisplays.clear();
|
}
|
|
void SurfaceFlinger::updateVrFlinger() {
|
ATRACE_CALL();
|
if (!mVrFlinger)
|
return;
|
bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay;
|
if (vrFlingerRequestsDisplay == getHwComposer().isUsingVrComposer()) {
|
return;
|
}
|
|
if (vrFlingerRequestsDisplay && !getHwComposer().getComposer()->isRemote()) {
|
ALOGE("Vr flinger is only supported for remote hardware composer"
|
" service connections. Ignoring request to transition to vr"
|
" flinger.");
|
mVrFlingerRequestsDisplay = false;
|
return;
|
}
|
|
Mutex::Autolock _l(mStateLock);
|
|
sp<DisplayDevice> display = getDefaultDisplayDeviceLocked();
|
LOG_ALWAYS_FATAL_IF(!display);
|
|
const int currentDisplayPowerMode = display->getPowerMode();
|
|
// Clear out all the output layers from the composition engine for all
|
// displays before destroying the hardware composer interface. This ensures
|
// any HWC layers are destroyed through that interface before it becomes
|
// invalid.
|
for (const auto& [token, displayDevice] : mDisplays) {
|
displayDevice->getCompositionDisplay()->setOutputLayersOrderedByZ(
|
compositionengine::Output::OutputLayers());
|
}
|
|
// This DisplayDevice will no longer be relevant once resetDisplayState() is
|
// called below. Clear the reference now so we don't accidentally use it
|
// later.
|
display.clear();
|
|
if (!vrFlingerRequestsDisplay) {
|
mVrFlinger->SeizeDisplayOwnership();
|
}
|
|
resetDisplayState();
|
// Delete the current instance before creating the new one
|
mCompositionEngine->setHwComposer(std::unique_ptr<HWComposer>());
|
mCompositionEngine->setHwComposer(getFactory().createHWComposer(
|
vrFlingerRequestsDisplay ? "vr" : getBE().mHwcServiceName));
|
getHwComposer().registerCallback(this, ++getBE().mComposerSequenceId);
|
|
LOG_ALWAYS_FATAL_IF(!getHwComposer().getComposer()->isRemote(),
|
"Switched to non-remote hardware composer");
|
|
if (vrFlingerRequestsDisplay) {
|
mVrFlinger->GrantDisplayOwnership();
|
}
|
|
mVisibleRegionsDirty = true;
|
invalidateHwcGeometry();
|
|
// Re-enable default display.
|
display = getDefaultDisplayDeviceLocked();
|
LOG_ALWAYS_FATAL_IF(!display);
|
setPowerModeInternal(display, currentDisplayPowerMode);
|
|
// Reset the timing values to account for the period of the swapped in HWC
|
const nsecs_t vsyncPeriod = getVsyncPeriod();
|
mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
|
|
// The present fences returned from vr_hwc are not an accurate
|
// representation of vsync times.
|
mScheduler->setIgnorePresentFences(getHwComposer().isUsingVrComposer() || !hasSyncFramework);
|
|
// Use phase of 0 since phase is not known.
|
// Use latency of 0, which will snap to the ideal latency.
|
DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
|
setCompositorTimingSnapped(stats, 0);
|
|
mScheduler->resyncToHardwareVsync(false, vsyncPeriod);
|
|
mRepaintEverything = true;
|
setTransactionFlags(eDisplayTransactionNeeded);
|
}
|
|
bool SurfaceFlinger::previousFrameMissed() NO_THREAD_SAFETY_ANALYSIS {
|
// We are storing the last 2 present fences. If sf's phase offset is to be
|
// woken up before the actual vsync but targeting the next vsync, we need to check
|
// fence N-2
|
const sp<Fence>& fence =
|
mVsyncModulator.getOffsets().sf < mPhaseOffsets->getOffsetThresholdForNextVsync()
|
? mPreviousPresentFences[0]
|
: mPreviousPresentFences[1];
|
|
return fence != Fence::NO_FENCE && (fence->getStatus() == Fence::Status::Unsignaled);
|
}
|
|
void SurfaceFlinger::onMessageReceived(int32_t what) NO_THREAD_SAFETY_ANALYSIS {
|
ATRACE_CALL();
|
switch (what) {
|
case MessageQueue::INVALIDATE: {
|
bool frameMissed = previousFrameMissed();
|
bool hwcFrameMissed = mHadDeviceComposition && frameMissed;
|
bool gpuFrameMissed = mHadClientComposition && frameMissed;
|
ATRACE_INT("FrameMissed", static_cast<int>(frameMissed));
|
ATRACE_INT("HwcFrameMissed", static_cast<int>(hwcFrameMissed));
|
ATRACE_INT("GpuFrameMissed", static_cast<int>(gpuFrameMissed));
|
if (frameMissed) {
|
mFrameMissedCount++;
|
mTimeStats->incrementMissedFrames();
|
}
|
|
if (hwcFrameMissed) {
|
mHwcFrameMissedCount++;
|
}
|
|
if (gpuFrameMissed) {
|
mGpuFrameMissedCount++;
|
}
|
|
if (mUseSmart90ForVideo) {
|
// This call is made each time SF wakes up and creates a new frame. It is part
|
// of video detection feature.
|
mScheduler->updateFpsBasedOnContent();
|
}
|
|
if (performSetActiveConfig()) {
|
break;
|
}
|
|
if (frameMissed && mPropagateBackpressure) {
|
if ((hwcFrameMissed && !gpuFrameMissed) ||
|
mPropagateBackpressureClientComposition) {
|
signalLayerUpdate();
|
break;
|
}
|
}
|
|
// Now that we're going to make it to the handleMessageTransaction()
|
// call below it's safe to call updateVrFlinger(), which will
|
// potentially trigger a display handoff.
|
updateVrFlinger();
|
|
bool refreshNeeded = handleMessageTransaction();
|
refreshNeeded |= handleMessageInvalidate();
|
|
updateCursorAsync();
|
updateInputFlinger();
|
|
refreshNeeded |= mRepaintEverything;
|
if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) {
|
// Signal a refresh if a transaction modified the window state,
|
// a new buffer was latched, or if HWC has requested a full
|
// repaint
|
signalRefresh();
|
}
|
break;
|
}
|
case MessageQueue::REFRESH: {
|
handleMessageRefresh();
|
break;
|
}
|
}
|
}
|
|
bool SurfaceFlinger::handleMessageTransaction() {
|
ATRACE_CALL();
|
uint32_t transactionFlags = peekTransactionFlags();
|
|
bool flushedATransaction = flushTransactionQueues();
|
|
bool runHandleTransaction = transactionFlags &&
|
((transactionFlags != eTransactionFlushNeeded) || flushedATransaction);
|
|
if (runHandleTransaction) {
|
handleTransaction(eTransactionMask);
|
} else {
|
getTransactionFlags(eTransactionFlushNeeded);
|
}
|
|
if (transactionFlushNeeded()) {
|
setTransactionFlags(eTransactionFlushNeeded);
|
}
|
|
return runHandleTransaction;
|
}
|
|
/*AW_code;check unnecessary composi when asynchronous display;jiangbin;200905*/
|
bool SurfaceFlinger::checkCompoNecessary(const sp<DisplayDevice>& displayDevice) {
|
bool hasQueuedFrames = false;
|
auto display = displayDevice->getCompositionDisplay();
|
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
hasQueuedFrames = std::find(mLayersWithQueuedFrames.cbegin(),
|
mLayersWithQueuedFrames.cend(),
|
layer) != mLayersWithQueuedFrames.cend();
|
if(hasQueuedFrames) {
|
return true;
|
}
|
}
|
|
if(!display->getDirtyRegion(false).isEmpty()) {
|
return true;
|
}
|
return false;
|
}
|
/*end*/
|
void SurfaceFlinger::handleMessageRefresh() {
|
ATRACE_CALL();
|
|
mRefreshPending = false;
|
|
const bool repaintEverything = mRepaintEverything.exchange(false);
|
preComposition();
|
rebuildLayerStacks();
|
calculateWorkingSet();
|
for (const auto& [token, display] : mDisplays) {
|
/*AW_code;add check to remove unnecessary composi(asynchronous display-T507),
|
*to reduce system-resource;jiangbin;2020905 */
|
if(!repaintEverything && !display->isPrimary() && !checkCompoNecessary(display)) {
|
continue;
|
}
|
/*end*/
|
|
beginFrame(display);
|
prepareFrame(display);
|
doDebugFlashRegions(display, repaintEverything);
|
doComposition(display, repaintEverything);
|
}
|
|
logLayerStats();
|
|
postFrame();
|
postComposition();
|
|
mHadClientComposition = false;
|
mHadDeviceComposition = false;
|
for (const auto& [token, displayDevice] : mDisplays) {
|
auto display = displayDevice->getCompositionDisplay();
|
const auto displayId = display->getId();
|
mHadClientComposition =
|
mHadClientComposition || getHwComposer().hasClientComposition(displayId);
|
mHadDeviceComposition =
|
mHadDeviceComposition || getHwComposer().hasDeviceComposition(displayId);
|
}
|
|
mVsyncModulator.onRefreshed(mHadClientComposition);
|
|
mLayersWithQueuedFrames.clear();
|
}
|
|
|
bool SurfaceFlinger::handleMessageInvalidate() {
|
ATRACE_CALL();
|
bool refreshNeeded = handlePageFlip();
|
|
if (mVisibleRegionsDirty) {
|
computeLayerBounds();
|
if (mTracingEnabled) {
|
mTracing.notify("visibleRegionsDirty");
|
}
|
}
|
|
for (auto& layer : mLayersPendingRefresh) {
|
Region visibleReg;
|
visibleReg.set(layer->getScreenBounds());
|
invalidateLayerStack(layer, visibleReg);
|
}
|
mLayersPendingRefresh.clear();
|
return refreshNeeded;
|
}
|
|
void SurfaceFlinger::calculateWorkingSet() {
|
ATRACE_CALL();
|
ALOGV(__FUNCTION__);
|
|
// build the h/w work list
|
if (CC_UNLIKELY(mGeometryInvalid)) {
|
mGeometryInvalid = false;
|
for (const auto& [token, displayDevice] : mDisplays) {
|
auto display = displayDevice->getCompositionDisplay();
|
|
uint32_t zOrder = 0;
|
|
for (auto& layer : display->getOutputLayersOrderedByZ()) {
|
auto& compositionState = layer->editState();
|
compositionState.forceClientComposition = false;
|
if (!compositionState.hwc || mDebugDisableHWC || mDebugRegion) {
|
compositionState.forceClientComposition = true;
|
}
|
|
// The output Z order is set here based on a simple counter.
|
compositionState.z = zOrder++;
|
|
// Update the display independent composition state. This goes
|
// to the general composition layer state structure.
|
// TODO: Do this once per compositionengine::CompositionLayer.
|
layer->getLayerFE().latchCompositionState(layer->getLayer().editState().frontEnd,
|
true);
|
|
// Recalculate the geometry state of the output layer.
|
layer->updateCompositionState(true);
|
|
// Write the updated geometry state to the HWC
|
layer->writeStateToHWC(true);
|
}
|
}
|
}
|
|
// Set the per-frame data
|
for (const auto& [token, displayDevice] : mDisplays) {
|
auto display = displayDevice->getCompositionDisplay();
|
const auto displayId = display->getId();
|
if (!displayId) {
|
continue;
|
}
|
auto* profile = display->getDisplayColorProfile();
|
|
if (mDrawingState.colorMatrixChanged) {
|
display->setColorTransform(mDrawingState.colorMatrix);
|
}
|
Dataspace targetDataspace = Dataspace::UNKNOWN;
|
if (useColorManagement) {
|
ColorMode colorMode;
|
RenderIntent renderIntent;
|
pickColorMode(displayDevice, &colorMode, &targetDataspace, &renderIntent);
|
display->setColorMode(colorMode, targetDataspace, renderIntent);
|
}
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
if (layer->isHdrY410()) {
|
layer->forceClientComposition(displayDevice);
|
} else if ((layer->getDataSpace() == Dataspace::BT2020_PQ ||
|
layer->getDataSpace() == Dataspace::BT2020_ITU_PQ) &&
|
!profile->hasHDR10Support()) {
|
layer->forceClientComposition(displayDevice);
|
} else if ((layer->getDataSpace() == Dataspace::BT2020_HLG ||
|
layer->getDataSpace() == Dataspace::BT2020_ITU_HLG) &&
|
!profile->hasHLGSupport()) {
|
layer->forceClientComposition(displayDevice);
|
}
|
|
if (layer->getRoundedCornerState().radius > 0.0f) {
|
layer->forceClientComposition(displayDevice);
|
}
|
|
if (layer->getForceClientComposition(displayDevice)) {
|
ALOGV("[%s] Requesting Client composition", layer->getName().string());
|
layer->setCompositionType(displayDevice,
|
Hwc2::IComposerClient::Composition::CLIENT);
|
continue;
|
}
|
|
const auto& displayState = display->getState();
|
layer->setPerFrameData(displayDevice, displayState.transform, displayState.viewport,
|
displayDevice->getSupportedPerFrameMetadata(),
|
isHdrColorMode(displayState.colorMode) ? Dataspace::UNKNOWN
|
: targetDataspace);
|
}
|
}
|
|
mDrawingState.colorMatrixChanged = false;
|
|
for (const auto& [token, displayDevice] : mDisplays) {
|
auto display = displayDevice->getCompositionDisplay();
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
auto& layerState = layer->getCompositionLayer()->editState().frontEnd;
|
layerState.compositionType = static_cast<Hwc2::IComposerClient::Composition>(
|
layer->getCompositionType(displayDevice));
|
}
|
}
|
}
|
|
void SurfaceFlinger::doDebugFlashRegions(const sp<DisplayDevice>& displayDevice,
|
bool repaintEverything) {
|
auto display = displayDevice->getCompositionDisplay();
|
const auto& displayState = display->getState();
|
|
// is debugging enabled
|
if (CC_LIKELY(!mDebugRegion))
|
return;
|
|
if (displayState.isEnabled) {
|
// transform the dirty region into this screen's coordinate space
|
const Region dirtyRegion = display->getDirtyRegion(repaintEverything);
|
if (!dirtyRegion.isEmpty()) {
|
base::unique_fd readyFence;
|
// redraw the whole screen
|
doComposeSurfaces(displayDevice, dirtyRegion, &readyFence);
|
|
display->getRenderSurface()->queueBuffer(std::move(readyFence));
|
}
|
}
|
|
postFramebuffer(displayDevice);
|
|
if (mDebugRegion > 1) {
|
usleep(mDebugRegion * 1000);
|
}
|
|
prepareFrame(displayDevice);
|
}
|
|
void SurfaceFlinger::logLayerStats() {
|
ATRACE_CALL();
|
if (CC_UNLIKELY(mLayerStats.isEnabled())) {
|
for (const auto& [token, display] : mDisplays) {
|
if (display->isPrimary()) {
|
mLayerStats.logLayerStats(dumpVisibleLayersProtoInfo(display));
|
return;
|
}
|
}
|
|
ALOGE("logLayerStats: no primary display");
|
}
|
}
|
|
void SurfaceFlinger::preComposition()
|
{
|
ATRACE_CALL();
|
ALOGV("preComposition");
|
|
mRefreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
bool needExtraInvalidate = false;
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
if (layer->onPreComposition(mRefreshStartTime)) {
|
needExtraInvalidate = true;
|
}
|
});
|
|
if (needExtraInvalidate) {
|
signalLayerUpdate();
|
}
|
}
|
|
void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime,
|
std::shared_ptr<FenceTime>& presentFenceTime) {
|
// Update queue of past composite+present times and determine the
|
// most recently known composite to present latency.
|
getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime});
|
nsecs_t compositeToPresentLatency = -1;
|
while (!getBE().mCompositePresentTimes.empty()) {
|
SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front();
|
// Cached values should have been updated before calling this method,
|
// which helps avoid duplicate syscalls.
|
nsecs_t displayTime = cpt.display->getCachedSignalTime();
|
if (displayTime == Fence::SIGNAL_TIME_PENDING) {
|
break;
|
}
|
compositeToPresentLatency = displayTime - cpt.composite;
|
getBE().mCompositePresentTimes.pop();
|
}
|
|
// Don't let mCompositePresentTimes grow unbounded, just in case.
|
while (getBE().mCompositePresentTimes.size() > 16) {
|
getBE().mCompositePresentTimes.pop();
|
}
|
|
setCompositorTimingSnapped(stats, compositeToPresentLatency);
|
}
|
|
void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats,
|
nsecs_t compositeToPresentLatency) {
|
// Integer division and modulo round toward 0 not -inf, so we need to
|
// treat negative and positive offsets differently.
|
nsecs_t idealLatency = (mPhaseOffsets->getCurrentSfOffset() > 0)
|
? (stats.vsyncPeriod - (mPhaseOffsets->getCurrentSfOffset() % stats.vsyncPeriod))
|
: ((-mPhaseOffsets->getCurrentSfOffset()) % stats.vsyncPeriod);
|
|
// Just in case mPhaseOffsets->getCurrentSfOffset() == -vsyncInterval.
|
if (idealLatency <= 0) {
|
idealLatency = stats.vsyncPeriod;
|
}
|
|
// Snap the latency to a value that removes scheduling jitter from the
|
// composition and present times, which often have >1ms of jitter.
|
// Reducing jitter is important if an app attempts to extrapolate
|
// something (such as user input) to an accurate diasplay time.
|
// Snapping also allows an app to precisely calculate mPhaseOffsets->getCurrentSfOffset()
|
// with (presentLatency % interval).
|
nsecs_t bias = stats.vsyncPeriod / 2;
|
int64_t extraVsyncs = (compositeToPresentLatency - idealLatency + bias) / stats.vsyncPeriod;
|
nsecs_t snappedCompositeToPresentLatency =
|
(extraVsyncs > 0) ? idealLatency + (extraVsyncs * stats.vsyncPeriod) : idealLatency;
|
|
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
|
getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency;
|
getBE().mCompositorTiming.interval = stats.vsyncPeriod;
|
getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
|
}
|
|
void SurfaceFlinger::postComposition()
|
{
|
ATRACE_CALL();
|
ALOGV("postComposition");
|
|
// Release any buffers which were replaced this frame
|
nsecs_t dequeueReadyTime = systemTime();
|
for (auto& layer : mLayersWithQueuedFrames) {
|
layer->releasePendingBuffer(dequeueReadyTime);
|
}
|
|
// |mStateLock| not needed as we are on the main thread
|
const auto displayDevice = getDefaultDisplayDeviceLocked();
|
|
getBE().mGlCompositionDoneTimeline.updateSignalTimes();
|
std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
|
if (displayDevice && getHwComposer().hasClientComposition(displayDevice->getId())) {
|
glCompositionDoneFenceTime =
|
std::make_shared<FenceTime>(displayDevice->getCompositionDisplay()
|
->getRenderSurface()
|
->getClientTargetAcquireFence());
|
getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
|
} else {
|
glCompositionDoneFenceTime = FenceTime::NO_FENCE;
|
}
|
|
getBE().mDisplayTimeline.updateSignalTimes();
|
mPreviousPresentFences[1] = mPreviousPresentFences[0];
|
mPreviousPresentFences[0] = displayDevice
|
? getHwComposer().getPresentFence(*displayDevice->getId())
|
: Fence::NO_FENCE;
|
auto presentFenceTime = std::make_shared<FenceTime>(mPreviousPresentFences[0]);
|
getBE().mDisplayTimeline.push(presentFenceTime);
|
|
DisplayStatInfo stats;
|
mScheduler->getDisplayStatInfo(&stats);
|
|
// We use the mRefreshStartTime which might be sampled a little later than
|
// when we started doing work for this frame, but that should be okay
|
// since updateCompositorTiming has snapping logic.
|
updateCompositorTiming(stats, mRefreshStartTime, presentFenceTime);
|
CompositorTiming compositorTiming;
|
{
|
std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
|
compositorTiming = getBE().mCompositorTiming;
|
}
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
bool frameLatched =
|
layer->onPostComposition(displayDevice->getId(), glCompositionDoneFenceTime,
|
presentFenceTime, compositorTiming);
|
if (frameLatched) {
|
recordBufferingStats(layer->getName().string(),
|
layer->getOccupancyHistory(false));
|
}
|
});
|
|
if (presentFenceTime->isValid()) {
|
mScheduler->addPresentFence(presentFenceTime);
|
}
|
|
if (!hasSyncFramework) {
|
if (displayDevice && getHwComposer().isConnected(*displayDevice->getId()) &&
|
displayDevice->isPoweredOn()) {
|
mScheduler->enableHardwareVsync();
|
}
|
}
|
|
if (mAnimCompositionPending) {
|
mAnimCompositionPending = false;
|
|
if (presentFenceTime->isValid()) {
|
mAnimFrameTracker.setActualPresentFence(
|
std::move(presentFenceTime));
|
} else if (displayDevice && getHwComposer().isConnected(*displayDevice->getId())) {
|
// The HWC doesn't support present fences, so use the refresh
|
// timestamp instead.
|
const nsecs_t presentTime =
|
getHwComposer().getRefreshTimestamp(*displayDevice->getId());
|
mAnimFrameTracker.setActualPresentTime(presentTime);
|
}
|
mAnimFrameTracker.advanceFrame();
|
}
|
|
mTimeStats->incrementTotalFrames();
|
if (mHadClientComposition) {
|
mTimeStats->incrementClientCompositionFrames();
|
}
|
|
mTimeStats->setPresentFenceGlobal(presentFenceTime);
|
|
if (displayDevice && getHwComposer().isConnected(*displayDevice->getId()) &&
|
!displayDevice->isPoweredOn()) {
|
return;
|
}
|
|
nsecs_t currentTime = systemTime();
|
if (mHasPoweredOff) {
|
mHasPoweredOff = false;
|
} else {
|
nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime;
|
size_t numPeriods = static_cast<size_t>(elapsedTime / stats.vsyncPeriod);
|
if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) {
|
getBE().mFrameBuckets[numPeriods] += elapsedTime;
|
} else {
|
getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime;
|
}
|
getBE().mTotalTime += elapsedTime;
|
}
|
getBE().mLastSwapTime = currentTime;
|
|
{
|
std::lock_guard lock(mTexturePoolMutex);
|
if (mTexturePool.size() < mTexturePoolSize) {
|
const size_t refillCount = mTexturePoolSize - mTexturePool.size();
|
const size_t offset = mTexturePool.size();
|
mTexturePool.resize(mTexturePoolSize);
|
getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset);
|
ATRACE_INT("TexturePoolSize", mTexturePool.size());
|
} else if (mTexturePool.size() > mTexturePoolSize) {
|
const size_t deleteCount = mTexturePool.size() - mTexturePoolSize;
|
const size_t offset = mTexturePoolSize;
|
getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset);
|
mTexturePool.resize(mTexturePoolSize);
|
ATRACE_INT("TexturePoolSize", mTexturePool.size());
|
}
|
}
|
|
mTransactionCompletedThread.addPresentFence(mPreviousPresentFences[0]);
|
|
// Lock the mStateLock in case SurfaceFlinger is in the middle of applying a transaction.
|
// If we do not lock here, a callback could be sent without all of its SurfaceControls and
|
// metrics.
|
{
|
Mutex::Autolock _l(mStateLock);
|
mTransactionCompletedThread.sendCallbacks();
|
}
|
|
if (mLumaSampling && mRegionSamplingThread) {
|
mRegionSamplingThread->notifyNewContent();
|
}
|
|
// Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the
|
// side-effect of getTotalSize(), so we check that again here
|
if (ATRACE_ENABLED()) {
|
ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize());
|
}
|
}
|
|
void SurfaceFlinger::computeLayerBounds() {
|
for (const auto& pair : mDisplays) {
|
const auto& displayDevice = pair.second;
|
const auto display = displayDevice->getCompositionDisplay();
|
for (const auto& layer : mDrawingState.layersSortedByZ) {
|
// only consider the layers on the given layer stack
|
if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
|
continue;
|
}
|
|
layer->computeBounds(displayDevice->getViewport().toFloatRect(), ui::Transform());
|
}
|
}
|
}
|
|
void SurfaceFlinger::rebuildLayerStacks() {
|
ATRACE_CALL();
|
ALOGV("rebuildLayerStacks");
|
|
// rebuild the visible layer list per screen
|
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
|
ATRACE_NAME("rebuildLayerStacks VR Dirty");
|
mVisibleRegionsDirty = false;
|
invalidateHwcGeometry();
|
|
for (const auto& pair : mDisplays) {
|
const auto& displayDevice = pair.second;
|
auto display = displayDevice->getCompositionDisplay();
|
const auto& displayState = display->getState();
|
Region opaqueRegion;
|
Region dirtyRegion;
|
compositionengine::Output::OutputLayers layersSortedByZ;
|
Vector<sp<Layer>> deprecated_layersSortedByZ;
|
Vector<sp<Layer>> layersNeedingFences;
|
const ui::Transform& tr = displayState.transform;
|
const Rect bounds = displayState.bounds;
|
if (displayState.isEnabled) {
|
computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion);
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
auto compositionLayer = layer->getCompositionLayer();
|
if (compositionLayer == nullptr) {
|
return;
|
}
|
|
const auto displayId = displayDevice->getId();
|
sp<compositionengine::LayerFE> layerFE = compositionLayer->getLayerFE();
|
LOG_ALWAYS_FATAL_IF(layerFE.get() == nullptr);
|
|
bool needsOutputLayer = false;
|
|
if (display->belongsInOutput(layer->getLayerStack(),
|
layer->getPrimaryDisplayOnly())) {
|
Region drawRegion(tr.transform(
|
layer->visibleNonTransparentRegion));
|
drawRegion.andSelf(bounds);
|
if (!drawRegion.isEmpty()) {
|
needsOutputLayer = true;
|
}
|
}
|
|
if (needsOutputLayer) {
|
layersSortedByZ.emplace_back(
|
display->getOrCreateOutputLayer(displayId, compositionLayer,
|
layerFE));
|
deprecated_layersSortedByZ.add(layer);
|
|
auto& outputLayerState = layersSortedByZ.back()->editState();
|
outputLayerState.visibleRegion =
|
tr.transform(layer->visibleRegion.intersect(displayState.viewport));
|
} else if (displayId) {
|
// For layers that are being removed from a HWC display,
|
// and that have queued frames, add them to a a list of
|
// released layers so we can properly set a fence.
|
bool hasExistingOutputLayer =
|
display->getOutputLayerForLayer(compositionLayer.get()) != nullptr;
|
bool hasQueuedFrames = std::find(mLayersWithQueuedFrames.cbegin(),
|
mLayersWithQueuedFrames.cend(),
|
layer) != mLayersWithQueuedFrames.cend();
|
|
if (hasExistingOutputLayer && hasQueuedFrames) {
|
layersNeedingFences.add(layer);
|
}
|
}
|
});
|
}
|
|
display->setOutputLayersOrderedByZ(std::move(layersSortedByZ));
|
|
displayDevice->setVisibleLayersSortedByZ(deprecated_layersSortedByZ);
|
displayDevice->setLayersNeedingFences(layersNeedingFences);
|
|
Region undefinedRegion{bounds};
|
undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
|
|
display->editState().undefinedRegion = undefinedRegion;
|
display->editState().dirtyRegion.orSelf(dirtyRegion);
|
}
|
}
|
}
|
|
// Returns a data space that fits all visible layers. The returned data space
|
// can only be one of
|
// - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
|
// - Dataspace::DISPLAY_P3
|
// - Dataspace::DISPLAY_BT2020
|
// The returned HDR data space is one of
|
// - Dataspace::UNKNOWN
|
// - Dataspace::BT2020_HLG
|
// - Dataspace::BT2020_PQ
|
Dataspace SurfaceFlinger::getBestDataspace(const sp<DisplayDevice>& display,
|
Dataspace* outHdrDataSpace,
|
bool* outIsHdrClientComposition) const {
|
Dataspace bestDataSpace = Dataspace::V0_SRGB;
|
*outHdrDataSpace = Dataspace::UNKNOWN;
|
|
for (const auto& layer : display->getVisibleLayersSortedByZ()) {
|
switch (layer->getDataSpace()) {
|
case Dataspace::V0_SCRGB:
|
case Dataspace::V0_SCRGB_LINEAR:
|
case Dataspace::BT2020:
|
case Dataspace::BT2020_ITU:
|
case Dataspace::BT2020_LINEAR:
|
case Dataspace::DISPLAY_BT2020:
|
bestDataSpace = Dataspace::DISPLAY_BT2020;
|
break;
|
case Dataspace::DISPLAY_P3:
|
bestDataSpace = Dataspace::DISPLAY_P3;
|
break;
|
case Dataspace::BT2020_PQ:
|
case Dataspace::BT2020_ITU_PQ:
|
bestDataSpace = Dataspace::DISPLAY_P3;
|
*outHdrDataSpace = Dataspace::BT2020_PQ;
|
*outIsHdrClientComposition = layer->getForceClientComposition(display);
|
break;
|
case Dataspace::BT2020_HLG:
|
case Dataspace::BT2020_ITU_HLG:
|
bestDataSpace = Dataspace::DISPLAY_P3;
|
// When there's mixed PQ content and HLG content, we set the HDR
|
// data space to be BT2020_PQ and convert HLG to PQ.
|
if (*outHdrDataSpace == Dataspace::UNKNOWN) {
|
*outHdrDataSpace = Dataspace::BT2020_HLG;
|
}
|
break;
|
default:
|
break;
|
}
|
}
|
|
return bestDataSpace;
|
}
|
|
// Pick the ColorMode / Dataspace for the display device.
|
void SurfaceFlinger::pickColorMode(const sp<DisplayDevice>& display, ColorMode* outMode,
|
Dataspace* outDataSpace, RenderIntent* outRenderIntent) const {
|
if (mDisplayColorSetting == DisplayColorSetting::UNMANAGED) {
|
*outMode = ColorMode::NATIVE;
|
*outDataSpace = Dataspace::UNKNOWN;
|
*outRenderIntent = RenderIntent::COLORIMETRIC;
|
return;
|
}
|
|
Dataspace hdrDataSpace;
|
bool isHdrClientComposition = false;
|
Dataspace bestDataSpace = getBestDataspace(display, &hdrDataSpace, &isHdrClientComposition);
|
|
auto* profile = display->getCompositionDisplay()->getDisplayColorProfile();
|
|
switch (mForceColorMode) {
|
case ColorMode::SRGB:
|
bestDataSpace = Dataspace::V0_SRGB;
|
break;
|
case ColorMode::DISPLAY_P3:
|
bestDataSpace = Dataspace::DISPLAY_P3;
|
break;
|
default:
|
break;
|
}
|
|
// respect hdrDataSpace only when there is no legacy HDR support
|
const bool isHdr = hdrDataSpace != Dataspace::UNKNOWN &&
|
!profile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
|
if (isHdr) {
|
bestDataSpace = hdrDataSpace;
|
}
|
|
RenderIntent intent;
|
switch (mDisplayColorSetting) {
|
case DisplayColorSetting::MANAGED:
|
case DisplayColorSetting::UNMANAGED:
|
intent = isHdr ? RenderIntent::TONE_MAP_COLORIMETRIC : RenderIntent::COLORIMETRIC;
|
break;
|
case DisplayColorSetting::ENHANCED:
|
intent = isHdr ? RenderIntent::TONE_MAP_ENHANCE : RenderIntent::ENHANCE;
|
break;
|
default: // vendor display color setting
|
intent = static_cast<RenderIntent>(mDisplayColorSetting);
|
break;
|
}
|
|
profile->getBestColorMode(bestDataSpace, intent, outDataSpace, outMode, outRenderIntent);
|
}
|
|
void SurfaceFlinger::beginFrame(const sp<DisplayDevice>& displayDevice) {
|
auto display = displayDevice->getCompositionDisplay();
|
const auto& displayState = display->getState();
|
|
bool dirty = !display->getDirtyRegion(false).isEmpty();
|
bool empty = displayDevice->getVisibleLayersSortedByZ().size() == 0;
|
bool wasEmpty = !displayState.lastCompositionHadVisibleLayers;
|
|
// If nothing has changed (!dirty), don't recompose.
|
// If something changed, but we don't currently have any visible layers,
|
// and didn't when we last did a composition, then skip it this time.
|
// The second rule does two things:
|
// - When all layers are removed from a display, we'll emit one black
|
// frame, then nothing more until we get new layers.
|
// - When a display is created with a private layer stack, we won't
|
// emit any black frames until a layer is added to the layer stack.
|
bool mustRecompose = dirty && !(empty && wasEmpty);
|
|
const char flagPrefix[] = {'-', '+'};
|
static_cast<void>(flagPrefix);
|
ALOGV_IF(displayDevice->isVirtual(), "%s: %s composition for %s (%cdirty %cempty %cwasEmpty)",
|
__FUNCTION__, mustRecompose ? "doing" : "skipping",
|
displayDevice->getDebugName().c_str(), flagPrefix[dirty], flagPrefix[empty],
|
flagPrefix[wasEmpty]);
|
|
display->getRenderSurface()->beginFrame(mustRecompose);
|
|
if (mustRecompose) {
|
display->editState().lastCompositionHadVisibleLayers = !empty;
|
}
|
}
|
|
void SurfaceFlinger::prepareFrame(const sp<DisplayDevice>& displayDevice) {
|
auto display = displayDevice->getCompositionDisplay();
|
const auto& displayState = display->getState();
|
|
if (!displayState.isEnabled) {
|
return;
|
}
|
|
status_t result = display->getRenderSurface()->prepareFrame();
|
ALOGE_IF(result != NO_ERROR, "prepareFrame failed for %s: %d (%s)",
|
displayDevice->getDebugName().c_str(), result, strerror(-result));
|
}
|
|
void SurfaceFlinger::doComposition(const sp<DisplayDevice>& displayDevice, bool repaintEverything) {
|
ATRACE_CALL();
|
ALOGV("doComposition");
|
|
auto display = displayDevice->getCompositionDisplay();
|
const auto& displayState = display->getState();
|
|
if (displayState.isEnabled) {
|
// transform the dirty region into this screen's coordinate space
|
const Region dirtyRegion = display->getDirtyRegion(repaintEverything);
|
|
// repaint the framebuffer (if needed)
|
doDisplayComposition(displayDevice, dirtyRegion);
|
|
display->editState().dirtyRegion.clear();
|
display->getRenderSurface()->flip();
|
}
|
postFramebuffer(displayDevice);
|
}
|
|
void SurfaceFlinger::postFrame()
|
{
|
// |mStateLock| not needed as we are on the main thread
|
const auto display = getDefaultDisplayDeviceLocked();
|
if (display && getHwComposer().isConnected(*display->getId())) {
|
uint32_t flipCount = display->getPageFlipCount();
|
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
|
logFrameStats();
|
}
|
}
|
}
|
|
void SurfaceFlinger::postFramebuffer(const sp<DisplayDevice>& displayDevice) {
|
ATRACE_CALL();
|
ALOGV("postFramebuffer");
|
|
auto display = displayDevice->getCompositionDisplay();
|
const auto& displayState = display->getState();
|
const auto displayId = display->getId();
|
|
if (displayState.isEnabled) {
|
if (displayId) {
|
getHwComposer().presentAndGetReleaseFences(*displayId);
|
}
|
display->getRenderSurface()->onPresentDisplayCompleted();
|
for (auto& layer : display->getOutputLayersOrderedByZ()) {
|
sp<Fence> releaseFence = Fence::NO_FENCE;
|
bool usedClientComposition = true;
|
|
// The layer buffer from the previous frame (if any) is released
|
// by HWC only when the release fence from this frame (if any) is
|
// signaled. Always get the release fence from HWC first.
|
if (layer->getState().hwc) {
|
const auto& hwcState = *layer->getState().hwc;
|
releaseFence =
|
getHwComposer().getLayerReleaseFence(*displayId, hwcState.hwcLayer.get());
|
usedClientComposition =
|
hwcState.hwcCompositionType == Hwc2::IComposerClient::Composition::CLIENT;
|
}
|
|
// If the layer was client composited in the previous frame, we
|
// need to merge with the previous client target acquire fence.
|
// Since we do not track that, always merge with the current
|
// client target acquire fence when it is available, even though
|
// this is suboptimal.
|
if (usedClientComposition) {
|
releaseFence =
|
Fence::merge("LayerRelease", releaseFence,
|
display->getRenderSurface()->getClientTargetAcquireFence());
|
}
|
|
layer->getLayerFE().onLayerDisplayed(releaseFence);
|
}
|
|
// We've got a list of layers needing fences, that are disjoint with
|
// display->getVisibleLayersSortedByZ. The best we can do is to
|
// supply them with the present fence.
|
if (!displayDevice->getLayersNeedingFences().isEmpty()) {
|
sp<Fence> presentFence =
|
displayId ? getHwComposer().getPresentFence(*displayId) : Fence::NO_FENCE;
|
for (auto& layer : displayDevice->getLayersNeedingFences()) {
|
layer->getCompositionLayer()->getLayerFE()->onLayerDisplayed(presentFence);
|
}
|
}
|
|
if (displayId) {
|
getHwComposer().clearReleaseFences(*displayId);
|
}
|
}
|
}
|
|
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
|
{
|
ATRACE_CALL();
|
|
// here we keep a copy of the drawing state (that is the state that's
|
// going to be overwritten by handleTransactionLocked()) outside of
|
// mStateLock so that the side-effects of the State assignment
|
// don't happen with mStateLock held (which can cause deadlocks).
|
State drawingState(mDrawingState);
|
|
Mutex::Autolock _l(mStateLock);
|
mDebugInTransaction = systemTime();
|
|
// Here we're guaranteed that some transaction flags are set
|
// so we can call handleTransactionLocked() unconditionally.
|
// We call getTransactionFlags(), which will also clear the flags,
|
// with mStateLock held to guarantee that mCurrentState won't change
|
// until the transaction is committed.
|
|
mVsyncModulator.onTransactionHandled();
|
transactionFlags = getTransactionFlags(eTransactionMask);
|
handleTransactionLocked(transactionFlags);
|
|
mDebugInTransaction = 0;
|
invalidateHwcGeometry();
|
// here the transaction has been committed
|
}
|
|
void SurfaceFlinger::processDisplayHotplugEventsLocked() {
|
for (const auto& event : mPendingHotplugEvents) {
|
const std::optional<DisplayIdentificationInfo> info =
|
getHwComposer().onHotplug(event.hwcDisplayId, event.connection);
|
|
if (!info) {
|
continue;
|
}
|
|
if (event.connection == HWC2::Connection::Connected) {
|
if (!mPhysicalDisplayTokens.count(info->id)) {
|
ALOGV("Creating display %s", to_string(info->id).c_str());
|
mPhysicalDisplayTokens[info->id] = new BBinder();
|
DisplayDeviceState state;
|
state.displayId = info->id;
|
state.isSecure = true; // All physical displays are currently considered secure.
|
state.displayName = info->name;
|
mCurrentState.displays.add(mPhysicalDisplayTokens[info->id], state);
|
mInterceptor->saveDisplayCreation(state);
|
}
|
} else {
|
ALOGV("Removing display %s", to_string(info->id).c_str());
|
|
ssize_t index = mCurrentState.displays.indexOfKey(mPhysicalDisplayTokens[info->id]);
|
if (index >= 0) {
|
const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
|
mInterceptor->saveDisplayDeletion(state.sequenceId);
|
mCurrentState.displays.removeItemsAt(index);
|
}
|
mPhysicalDisplayTokens.erase(info->id);
|
}
|
|
processDisplayChangesLocked();
|
}
|
|
mPendingHotplugEvents.clear();
|
}
|
|
void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) {
|
mScheduler->hotplugReceived(mAppConnectionHandle, displayId, connected);
|
mScheduler->hotplugReceived(mSfConnectionHandle, displayId, connected);
|
}
|
|
sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
|
const wp<IBinder>& displayToken, const std::optional<DisplayId>& displayId,
|
const DisplayDeviceState& state, const sp<compositionengine::DisplaySurface>& dispSurface,
|
const sp<IGraphicBufferProducer>& producer) {
|
DisplayDeviceCreationArgs creationArgs(this, displayToken, displayId);
|
creationArgs.sequenceId = state.sequenceId;
|
creationArgs.isVirtual = state.isVirtual();
|
creationArgs.isSecure = state.isSecure;
|
creationArgs.displaySurface = dispSurface;
|
creationArgs.hasWideColorGamut = false;
|
creationArgs.supportedPerFrameMetadata = 0;
|
|
const bool isInternalDisplay = displayId && displayId == getInternalDisplayIdLocked();
|
creationArgs.isPrimary = isInternalDisplay;
|
|
if (useColorManagement && displayId) {
|
std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
|
for (ColorMode colorMode : modes) {
|
if (isWideColorMode(colorMode)) {
|
creationArgs.hasWideColorGamut = true;
|
}
|
|
std::vector<RenderIntent> renderIntents =
|
getHwComposer().getRenderIntents(*displayId, colorMode);
|
creationArgs.hwcColorModes.emplace(colorMode, renderIntents);
|
}
|
}
|
|
if (displayId) {
|
getHwComposer().getHdrCapabilities(*displayId, &creationArgs.hdrCapabilities);
|
creationArgs.supportedPerFrameMetadata =
|
getHwComposer().getSupportedPerFrameMetadata(*displayId);
|
}
|
|
auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer);
|
auto nativeWindow = nativeWindowSurface->getNativeWindow();
|
creationArgs.nativeWindow = nativeWindow;
|
|
// Make sure that composition can never be stalled by a virtual display
|
// consumer that isn't processing buffers fast enough. We have to do this
|
// here, in case the display is composed entirely by HWC.
|
if (state.isVirtual()) {
|
nativeWindow->setSwapInterval(nativeWindow.get(), 0);
|
}
|
|
creationArgs.displayInstallOrientation =
|
isInternalDisplay ? primaryDisplayOrientation : DisplayState::eOrientationDefault;
|
|
// virtual displays are always considered enabled
|
creationArgs.initialPowerMode = state.isVirtual() ? HWC_POWER_MODE_NORMAL : HWC_POWER_MODE_OFF;
|
|
sp<DisplayDevice> display = getFactory().createDisplayDevice(std::move(creationArgs));
|
|
if (maxFrameBufferAcquiredBuffers >= 3) {
|
nativeWindowSurface->preallocateBuffers();
|
}
|
|
ColorMode defaultColorMode = ColorMode::NATIVE;
|
Dataspace defaultDataSpace = Dataspace::UNKNOWN;
|
if (display->hasWideColorGamut()) {
|
defaultColorMode = ColorMode::SRGB;
|
defaultDataSpace = Dataspace::V0_SRGB;
|
}
|
display->getCompositionDisplay()->setColorMode(defaultColorMode, defaultDataSpace,
|
RenderIntent::COLORIMETRIC);
|
if (!state.isVirtual()) {
|
LOG_ALWAYS_FATAL_IF(!displayId);
|
display->setActiveConfig(getHwComposer().getActiveConfigIndex(*displayId));
|
}
|
|
display->setLayerStack(state.layerStack);
|
display->setProjection(state.orientation, state.viewport, state.frame);
|
display->setDisplayName(state.displayName);
|
|
return display;
|
}
|
|
void SurfaceFlinger::processDisplayChangesLocked() {
|
// here we take advantage of Vector's copy-on-write semantics to
|
// improve performance by skipping the transaction entirely when
|
// know that the lists are identical
|
const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
|
const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
|
if (!curr.isIdenticalTo(draw)) {
|
mVisibleRegionsDirty = true;
|
const size_t cc = curr.size();
|
size_t dc = draw.size();
|
|
// find the displays that were removed
|
// (ie: in drawing state but not in current state)
|
// also handle displays that changed
|
// (ie: displays that are in both lists)
|
for (size_t i = 0; i < dc;) {
|
const ssize_t j = curr.indexOfKey(draw.keyAt(i));
|
if (j < 0) {
|
// in drawing state but not in current state
|
if (const auto display = getDisplayDeviceLocked(draw.keyAt(i))) {
|
// Save display ID before disconnecting.
|
const auto displayId = display->getId();
|
display->disconnect();
|
|
if (!display->isVirtual()) {
|
LOG_ALWAYS_FATAL_IF(!displayId);
|
dispatchDisplayHotplugEvent(displayId->value, false);
|
}
|
}
|
|
mDisplays.erase(draw.keyAt(i));
|
} else {
|
// this display is in both lists. see if something changed.
|
const DisplayDeviceState& state(curr[j]);
|
const wp<IBinder>& displayToken = curr.keyAt(j);
|
const sp<IBinder> state_binder = IInterface::asBinder(state.surface);
|
const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface);
|
if (state_binder != draw_binder) {
|
// changing the surface is like destroying and
|
// recreating the DisplayDevice, so we just remove it
|
// from the drawing state, so that it get re-added
|
// below.
|
if (const auto display = getDisplayDeviceLocked(displayToken)) {
|
display->disconnect();
|
}
|
mDisplays.erase(displayToken);
|
mDrawingState.displays.removeItemsAt(i);
|
dc--;
|
// at this point we must loop to the next item
|
continue;
|
}
|
|
if (const auto display = getDisplayDeviceLocked(displayToken)) {
|
if (state.layerStack != draw[i].layerStack) {
|
display->setLayerStack(state.layerStack);
|
}
|
if ((state.orientation != draw[i].orientation) ||
|
(state.viewport != draw[i].viewport) || (state.frame != draw[i].frame)) {
|
display->setProjection(state.orientation, state.viewport, state.frame);
|
}
|
if (state.width != draw[i].width || state.height != draw[i].height) {
|
display->setDisplaySize(state.width, state.height);
|
}
|
}
|
}
|
++i;
|
}
|
|
// find displays that were added
|
// (ie: in current state but not in drawing state)
|
for (size_t i = 0; i < cc; i++) {
|
if (draw.indexOfKey(curr.keyAt(i)) < 0) {
|
const DisplayDeviceState& state(curr[i]);
|
|
sp<compositionengine::DisplaySurface> dispSurface;
|
sp<IGraphicBufferProducer> producer;
|
sp<IGraphicBufferProducer> bqProducer;
|
sp<IGraphicBufferConsumer> bqConsumer;
|
getFactory().createBufferQueue(&bqProducer, &bqConsumer, false);
|
|
std::optional<DisplayId> displayId;
|
if (state.isVirtual()) {
|
// Virtual displays without a surface are dormant:
|
// they have external state (layer stack, projection,
|
// etc.) but no internal state (i.e. a DisplayDevice).
|
if (state.surface != nullptr) {
|
// Allow VR composer to use virtual displays.
|
if (mUseHwcVirtualDisplays || getHwComposer().isUsingVrComposer()) {
|
int width = 0;
|
int status = state.surface->query(NATIVE_WINDOW_WIDTH, &width);
|
ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
|
int height = 0;
|
status = state.surface->query(NATIVE_WINDOW_HEIGHT, &height);
|
ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
|
int intFormat = 0;
|
status = state.surface->query(NATIVE_WINDOW_FORMAT, &intFormat);
|
ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
|
auto format = static_cast<ui::PixelFormat>(intFormat);
|
|
displayId =
|
getHwComposer().allocateVirtualDisplay(width, height, &format);
|
}
|
|
// TODO: Plumb requested format back up to consumer
|
|
sp<VirtualDisplaySurface> vds =
|
new VirtualDisplaySurface(getHwComposer(), displayId, state.surface,
|
bqProducer, bqConsumer,
|
state.displayName);
|
|
dispSurface = vds;
|
producer = vds;
|
}
|
} else {
|
ALOGE_IF(state.surface != nullptr,
|
"adding a supported display, but rendering "
|
"surface is provided (%p), ignoring it",
|
state.surface.get());
|
|
displayId = state.displayId;
|
LOG_ALWAYS_FATAL_IF(!displayId);
|
dispSurface = new FramebufferSurface(getHwComposer(), *displayId, bqConsumer);
|
producer = bqProducer;
|
}
|
|
const wp<IBinder>& displayToken = curr.keyAt(i);
|
if (dispSurface != nullptr) {
|
mDisplays.emplace(displayToken,
|
setupNewDisplayDeviceInternal(displayToken, displayId, state,
|
dispSurface, producer));
|
if (!state.isVirtual()) {
|
LOG_ALWAYS_FATAL_IF(!displayId);
|
dispatchDisplayHotplugEvent(displayId->value, true);
|
}
|
}
|
}
|
}
|
}
|
|
mDrawingState.displays = mCurrentState.displays;
|
}
|
|
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
|
{
|
// Notify all layers of available frames
|
mCurrentState.traverseInZOrder([](Layer* layer) {
|
layer->notifyAvailableFrames();
|
});
|
|
/*
|
* Traversal of the children
|
* (perform the transaction for each of them if needed)
|
*/
|
|
if ((transactionFlags & eTraversalNeeded) || mTraversalNeededMainThread) {
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
|
if (!trFlags) return;
|
|
const uint32_t flags = layer->doTransaction(0);
|
if (flags & Layer::eVisibleRegion)
|
mVisibleRegionsDirty = true;
|
|
if (flags & Layer::eInputInfoChanged) {
|
mInputInfoChanged = true;
|
}
|
});
|
mTraversalNeededMainThread = false;
|
}
|
|
/*
|
* Perform display own transactions if needed
|
*/
|
|
if (transactionFlags & eDisplayTransactionNeeded) {
|
processDisplayChangesLocked();
|
processDisplayHotplugEventsLocked();
|
}
|
|
if (transactionFlags & (eDisplayLayerStackChanged|eDisplayTransactionNeeded)) {
|
// The transform hint might have changed for some layers
|
// (either because a display has changed, or because a layer
|
// as changed).
|
//
|
// Walk through all the layers in currentLayers,
|
// and update their transform hint.
|
//
|
// If a layer is visible only on a single display, then that
|
// display is used to calculate the hint, otherwise we use the
|
// default display.
|
//
|
// NOTE: we do this here, rather than in rebuildLayerStacks() so that
|
// the hint is set before we acquire a buffer from the surface texture.
|
//
|
// NOTE: layer transactions have taken place already, so we use their
|
// drawing state. However, SurfaceFlinger's own transaction has not
|
// happened yet, so we must use the current state layer list
|
// (soon to become the drawing state list).
|
//
|
sp<const DisplayDevice> hintDisplay;
|
uint32_t currentlayerStack = 0;
|
bool first = true;
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
// NOTE: we rely on the fact that layers are sorted by
|
// layerStack first (so we don't have to traverse the list
|
// of displays for every layer).
|
uint32_t layerStack = layer->getLayerStack();
|
if (first || currentlayerStack != layerStack) {
|
currentlayerStack = layerStack;
|
// figure out if this layerstack is mirrored
|
// (more than one display) if so, pick the default display,
|
// if not, pick the only display it's on.
|
hintDisplay = nullptr;
|
for (const auto& [token, display] : mDisplays) {
|
if (display->getCompositionDisplay()
|
->belongsInOutput(layer->getLayerStack(),
|
layer->getPrimaryDisplayOnly())) {
|
if (hintDisplay) {
|
hintDisplay = nullptr;
|
break;
|
} else {
|
hintDisplay = display;
|
}
|
}
|
}
|
}
|
|
if (!hintDisplay) {
|
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
|
// redraw after transform hint changes. See bug 8508397.
|
|
// could be null when this layer is using a layerStack
|
// that is not visible on any display. Also can occur at
|
// screen off/on times.
|
hintDisplay = getDefaultDisplayDeviceLocked();
|
}
|
|
// could be null if there is no display available at all to get
|
// the transform hint from.
|
if (hintDisplay) {
|
layer->updateTransformHint(hintDisplay);
|
}
|
|
first = false;
|
});
|
}
|
|
|
/*
|
* Perform our own transaction if needed
|
*/
|
|
if (mLayersAdded) {
|
mLayersAdded = false;
|
// Layers have been added.
|
mVisibleRegionsDirty = true;
|
}
|
|
// some layers might have been removed, so
|
// we need to update the regions they're exposing.
|
if (mLayersRemoved) {
|
mLayersRemoved = false;
|
mVisibleRegionsDirty = true;
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
if (mLayersPendingRemoval.indexOf(layer) >= 0) {
|
// this layer is not visible anymore
|
Region visibleReg;
|
visibleReg.set(layer->getScreenBounds());
|
invalidateLayerStack(layer, visibleReg);
|
}
|
});
|
}
|
|
commitInputWindowCommands();
|
commitTransaction();
|
}
|
|
void SurfaceFlinger::updateInputFlinger() {
|
ATRACE_CALL();
|
if (!mInputFlinger) {
|
return;
|
}
|
|
if (mVisibleRegionsDirty || mInputInfoChanged) {
|
mInputInfoChanged = false;
|
updateInputWindowInfo();
|
} else if (mInputWindowCommands.syncInputWindows) {
|
// If the caller requested to sync input windows, but there are no
|
// changes to input windows, notify immediately.
|
setInputWindowsFinished();
|
}
|
|
executeInputWindowCommands();
|
}
|
|
void SurfaceFlinger::updateInputWindowInfo() {
|
std::vector<InputWindowInfo> inputHandles;
|
|
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
|
if (layer->hasInput()) {
|
// When calculating the screen bounds we ignore the transparent region since it may
|
// result in an unwanted offset.
|
inputHandles.push_back(layer->fillInputInfo());
|
}
|
});
|
|
mInputFlinger->setInputWindows(inputHandles,
|
mInputWindowCommands.syncInputWindows ? mSetInputWindowsListener
|
: nullptr);
|
}
|
|
void SurfaceFlinger::commitInputWindowCommands() {
|
mInputWindowCommands = mPendingInputWindowCommands;
|
mPendingInputWindowCommands.clear();
|
}
|
|
void SurfaceFlinger::executeInputWindowCommands() {
|
for (const auto& transferTouchFocusCommand : mInputWindowCommands.transferTouchFocusCommands) {
|
if (transferTouchFocusCommand.fromToken != nullptr &&
|
transferTouchFocusCommand.toToken != nullptr &&
|
transferTouchFocusCommand.fromToken != transferTouchFocusCommand.toToken) {
|
mInputFlinger->transferTouchFocus(transferTouchFocusCommand.fromToken,
|
transferTouchFocusCommand.toToken);
|
}
|
}
|
|
mInputWindowCommands.clear();
|
}
|
|
void SurfaceFlinger::updateCursorAsync()
|
{
|
for (const auto& [token, display] : mDisplays) {
|
if (!display->getId()) {
|
continue;
|
}
|
|
for (auto& layer : display->getVisibleLayersSortedByZ()) {
|
layer->updateCursorPosition(display);
|
}
|
}
|
}
|
|
void SurfaceFlinger::latchAndReleaseBuffer(const sp<Layer>& layer) {
|
if (layer->hasReadyFrame()) {
|
bool ignored = false;
|
layer->latchBuffer(ignored, systemTime());
|
}
|
layer->releasePendingBuffer(systemTime());
|
}
|
|
void SurfaceFlinger::commitTransaction()
|
{
|
if (!mLayersPendingRemoval.isEmpty()) {
|
// Notify removed layers now that they can't be drawn from
|
for (const auto& l : mLayersPendingRemoval) {
|
recordBufferingStats(l->getName().string(),
|
l->getOccupancyHistory(true));
|
|
// Ensure any buffers set to display on any children are released.
|
if (l->isRemovedFromCurrentState()) {
|
latchAndReleaseBuffer(l);
|
}
|
|
// If the layer has been removed and has no parent, then it will not be reachable
|
// when traversing layers on screen. Add the layer to the offscreenLayers set to
|
// ensure we can copy its current to drawing state.
|
if (!l->getParent()) {
|
mOffscreenLayers.emplace(l.get());
|
}
|
}
|
mLayersPendingRemoval.clear();
|
}
|
|
// If this transaction is part of a window animation then the next frame
|
// we composite should be considered an animation as well.
|
mAnimCompositionPending = mAnimTransactionPending;
|
|
withTracingLock([&]() {
|
mDrawingState = mCurrentState;
|
// clear the "changed" flags in current state
|
mCurrentState.colorMatrixChanged = false;
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
layer->commitChildList();
|
|
// If the layer can be reached when traversing mDrawingState, then the layer is no
|
// longer offscreen. Remove the layer from the offscreenLayer set.
|
if (mOffscreenLayers.count(layer)) {
|
mOffscreenLayers.erase(layer);
|
}
|
});
|
|
commitOffscreenLayers();
|
});
|
|
mTransactionPending = false;
|
mAnimTransactionPending = false;
|
mTransactionCV.broadcast();
|
}
|
|
void SurfaceFlinger::withTracingLock(std::function<void()> lockedOperation) {
|
if (mTracingEnabledChanged) {
|
mTracingEnabled = mTracing.isEnabled();
|
mTracingEnabledChanged = false;
|
}
|
|
// Synchronize with Tracing thread
|
std::unique_lock<std::mutex> lock;
|
if (mTracingEnabled) {
|
lock = std::unique_lock<std::mutex>(mDrawingStateLock);
|
}
|
|
lockedOperation();
|
|
// Synchronize with Tracing thread
|
if (mTracingEnabled) {
|
lock.unlock();
|
}
|
}
|
|
void SurfaceFlinger::commitOffscreenLayers() {
|
for (Layer* offscreenLayer : mOffscreenLayers) {
|
offscreenLayer->traverseInZOrder(LayerVector::StateSet::Drawing, [](Layer* layer) {
|
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
|
if (!trFlags) return;
|
|
layer->doTransaction(0);
|
layer->commitChildList();
|
});
|
}
|
}
|
|
void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice,
|
Region& outDirtyRegion, Region& outOpaqueRegion) {
|
ATRACE_CALL();
|
ALOGV("computeVisibleRegions");
|
|
auto display = displayDevice->getCompositionDisplay();
|
|
Region aboveOpaqueLayers;
|
Region aboveCoveredLayers;
|
Region dirty;
|
|
outDirtyRegion.clear();
|
|
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
|
// start with the whole surface at its current location
|
const Layer::State& s(layer->getDrawingState());
|
|
// only consider the layers on the given layer stack
|
if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
|
return;
|
}
|
|
/*
|
* opaqueRegion: area of a surface that is fully opaque.
|
*/
|
Region opaqueRegion;
|
|
/*
|
* visibleRegion: area of a surface that is visible on screen
|
* and not fully transparent. This is essentially the layer's
|
* footprint minus the opaque regions above it.
|
* Areas covered by a translucent surface are considered visible.
|
*/
|
Region visibleRegion;
|
|
/*
|
* coveredRegion: area of a surface that is covered by all
|
* visible regions above it (which includes the translucent areas).
|
*/
|
Region coveredRegion;
|
|
/*
|
* transparentRegion: area of a surface that is hinted to be completely
|
* transparent. This is only used to tell when the layer has no visible
|
* non-transparent regions and can be removed from the layer list. It
|
* does not affect the visibleRegion of this layer or any layers
|
* beneath it. The hint may not be correct if apps don't respect the
|
* SurfaceView restrictions (which, sadly, some don't).
|
*/
|
Region transparentRegion;
|
|
|
// handle hidden surfaces by setting the visible region to empty
|
if (CC_LIKELY(layer->isVisible())) {
|
const bool translucent = !layer->isOpaque(s);
|
Rect bounds(layer->getScreenBounds());
|
|
visibleRegion.set(bounds);
|
ui::Transform tr = layer->getTransform();
|
if (!visibleRegion.isEmpty()) {
|
// Remove the transparent area from the visible region
|
if (translucent) {
|
if (tr.preserveRects()) {
|
// transform the transparent region
|
transparentRegion = tr.transform(layer->getActiveTransparentRegion(s));
|
} else {
|
// transformation too complex, can't do the
|
// transparent region optimization.
|
transparentRegion.clear();
|
}
|
}
|
|
// compute the opaque region
|
const int32_t layerOrientation = tr.getOrientation();
|
if (layer->getAlpha() == 1.0f && !translucent &&
|
layer->getRoundedCornerState().radius == 0.0f &&
|
((layerOrientation & ui::Transform::ROT_INVALID) == false)) {
|
// the opaque region is the layer's footprint
|
opaqueRegion = visibleRegion;
|
}
|
}
|
}
|
|
if (visibleRegion.isEmpty()) {
|
layer->clearVisibilityRegions();
|
return;
|
}
|
|
// Clip the covered region to the visible region
|
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
|
|
// Update aboveCoveredLayers for next (lower) layer
|
aboveCoveredLayers.orSelf(visibleRegion);
|
|
// subtract the opaque region covered by the layers above us
|
visibleRegion.subtractSelf(aboveOpaqueLayers);
|
|
|
// compute this layer's dirty region
|
if (layer->contentDirty) {
|
// we need to invalidate the whole region
|
dirty = visibleRegion;
|
// as well, as the old visible region
|
dirty.orSelf(layer->visibleRegion);
|
layer->contentDirty = false;
|
} else {
|
/* compute the exposed region:
|
* the exposed region consists of two components:
|
* 1) what's VISIBLE now and was COVERED before
|
* 2) what's EXPOSED now less what was EXPOSED before
|
*
|
* note that (1) is conservative, we start with the whole
|
* visible region but only keep what used to be covered by
|
* something -- which mean it may have been exposed.
|
*
|
* (2) handles areas that were not covered by anything but got
|
* exposed because of a resize.
|
*/
|
const Region newExposed = visibleRegion - coveredRegion;
|
const Region oldVisibleRegion = layer->visibleRegion;
|
const Region oldCoveredRegion = layer->coveredRegion;
|
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
|
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
|
}
|
dirty.subtractSelf(aboveOpaqueLayers);
|
|
// accumulate to the screen dirty region
|
outDirtyRegion.orSelf(dirty);
|
|
// Update aboveOpaqueLayers for next (lower) layer
|
aboveOpaqueLayers.orSelf(opaqueRegion);
|
|
// Store the visible region in screen space
|
layer->setVisibleRegion(visibleRegion);
|
layer->setCoveredRegion(coveredRegion);
|
layer->setVisibleNonTransparentRegion(
|
visibleRegion.subtract(transparentRegion));
|
});
|
|
outOpaqueRegion = aboveOpaqueLayers;
|
}
|
|
void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
|
for (const auto& [token, displayDevice] : mDisplays) {
|
auto display = displayDevice->getCompositionDisplay();
|
if (display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
|
display->editState().dirtyRegion.orSelf(dirty);
|
}
|
}
|
}
|
|
bool SurfaceFlinger::handlePageFlip()
|
{
|
ATRACE_CALL();
|
ALOGV("handlePageFlip");
|
|
nsecs_t latchTime = systemTime();
|
|
bool visibleRegions = false;
|
bool frameQueued = false;
|
bool newDataLatched = false;
|
|
// Store the set of layers that need updates. This set must not change as
|
// buffers are being latched, as this could result in a deadlock.
|
// Example: Two producers share the same command stream and:
|
// 1.) Layer 0 is latched
|
// 2.) Layer 0 gets a new frame
|
// 2.) Layer 1 gets a new frame
|
// 3.) Layer 1 is latched.
|
// Display is now waiting on Layer 1's frame, which is behind layer 0's
|
// second frame. But layer 0's second frame could be waiting on display.
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
if (layer->hasReadyFrame()) {
|
frameQueued = true;
|
nsecs_t expectedPresentTime;
|
expectedPresentTime = mScheduler->expectedPresentTime();
|
if (layer->shouldPresentNow(expectedPresentTime)) {
|
mLayersWithQueuedFrames.push_back(layer);
|
} else {
|
ATRACE_NAME("!layer->shouldPresentNow()");
|
layer->useEmptyDamage();
|
}
|
} else {
|
layer->useEmptyDamage();
|
}
|
});
|
|
if (!mLayersWithQueuedFrames.empty()) {
|
// mStateLock is needed for latchBuffer as LayerRejecter::reject()
|
// writes to Layer current state. See also b/119481871
|
Mutex::Autolock lock(mStateLock);
|
|
for (auto& layer : mLayersWithQueuedFrames) {
|
if (layer->latchBuffer(visibleRegions, latchTime)) {
|
mLayersPendingRefresh.push_back(layer);
|
}
|
layer->useSurfaceDamage();
|
if (layer->isBufferLatched()) {
|
newDataLatched = true;
|
}
|
}
|
}
|
|
mVisibleRegionsDirty |= visibleRegions;
|
|
// If we will need to wake up at some time in the future to deal with a
|
// queued frame that shouldn't be displayed during this vsync period, wake
|
// up during the next vsync period to check again.
|
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
|
signalLayerUpdate();
|
}
|
|
// enter boot animation on first buffer latch
|
if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
|
ALOGI("Enter boot animation");
|
mBootStage = BootStage::BOOTANIMATION;
|
}
|
|
// Only continue with the refresh if there is actually new work to do
|
return !mLayersWithQueuedFrames.empty() && newDataLatched;
|
}
|
|
void SurfaceFlinger::invalidateHwcGeometry()
|
{
|
mGeometryInvalid = true;
|
}
|
|
void SurfaceFlinger::doDisplayComposition(const sp<DisplayDevice>& displayDevice,
|
const Region& inDirtyRegion) {
|
auto display = displayDevice->getCompositionDisplay();
|
// We only need to actually compose the display if:
|
// 1) It is being handled by hardware composer, which may need this to
|
// keep its virtual display state machine in sync, or
|
// 2) There is work to be done (the dirty region isn't empty)
|
if (!displayDevice->getId() && inDirtyRegion.isEmpty()) {
|
ALOGV("Skipping display composition");
|
return;
|
}
|
|
ALOGV("doDisplayComposition");
|
base::unique_fd readyFence;
|
if (!doComposeSurfaces(displayDevice, Region::INVALID_REGION, &readyFence)) return;
|
|
// swap buffers (presentation)
|
display->getRenderSurface()->queueBuffer(std::move(readyFence));
|
}
|
|
bool SurfaceFlinger::doComposeSurfaces(const sp<DisplayDevice>& displayDevice,
|
const Region& debugRegion, base::unique_fd* readyFence) {
|
ATRACE_CALL();
|
ALOGV("doComposeSurfaces");
|
|
auto display = displayDevice->getCompositionDisplay();
|
const auto& displayState = display->getState();
|
const auto displayId = display->getId();
|
auto& renderEngine = getRenderEngine();
|
const bool supportProtectedContent = renderEngine.supportsProtectedContent();
|
|
const Region bounds(displayState.bounds);
|
const DisplayRenderArea renderArea(displayDevice);
|
const bool hasClientComposition = getHwComposer().hasClientComposition(displayId);
|
ATRACE_INT("hasClientComposition", hasClientComposition);
|
|
bool applyColorMatrix = false;
|
|
renderengine::DisplaySettings clientCompositionDisplay;
|
std::vector<renderengine::LayerSettings> clientCompositionLayers;
|
sp<GraphicBuffer> buf;
|
base::unique_fd fd;
|
|
if (hasClientComposition) {
|
ALOGV("hasClientComposition");
|
|
if (displayDevice->isPrimary() && supportProtectedContent) {
|
bool needsProtected = false;
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
// If the layer is a protected layer, mark protected context is needed.
|
if (layer->isProtected()) {
|
needsProtected = true;
|
break;
|
}
|
}
|
if (needsProtected != renderEngine.isProtected()) {
|
renderEngine.useProtectedContext(needsProtected);
|
}
|
if (needsProtected != display->getRenderSurface()->isProtected() &&
|
needsProtected == renderEngine.isProtected()) {
|
display->getRenderSurface()->setProtected(needsProtected);
|
}
|
}
|
|
buf = display->getRenderSurface()->dequeueBuffer(&fd);
|
|
if (buf == nullptr) {
|
ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
|
"client composition for this frame",
|
displayDevice->getDisplayName().c_str());
|
return false;
|
}
|
|
clientCompositionDisplay.physicalDisplay = displayState.scissor;
|
clientCompositionDisplay.clip = displayState.scissor;
|
const ui::Transform& displayTransform = displayState.transform;
|
clientCompositionDisplay.globalTransform = displayTransform.asMatrix4();
|
clientCompositionDisplay.orientation = displayState.transform.getOrientation();
|
|
const auto* profile = display->getDisplayColorProfile();
|
Dataspace outputDataspace = Dataspace::UNKNOWN;
|
if (profile->hasWideColorGamut()) {
|
outputDataspace = displayState.dataspace;
|
}
|
clientCompositionDisplay.outputDataspace = outputDataspace;
|
clientCompositionDisplay.maxLuminance =
|
profile->getHdrCapabilities().getDesiredMaxLuminance();
|
|
const bool hasDeviceComposition = getHwComposer().hasDeviceComposition(displayId);
|
const bool skipClientColorTransform =
|
getHwComposer()
|
.hasDisplayCapability(displayId,
|
HWC2::DisplayCapability::SkipClientColorTransform);
|
|
// Compute the global color transform matrix.
|
applyColorMatrix = !hasDeviceComposition && !skipClientColorTransform;
|
if (applyColorMatrix) {
|
clientCompositionDisplay.colorTransform = displayState.colorTransformMat;
|
}
|
}
|
|
/*
|
* and then, render the layers targeted at the framebuffer
|
*/
|
|
ALOGV("Rendering client layers");
|
bool firstLayer = true;
|
Region clearRegion = Region::INVALID_REGION;
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
const Region viewportRegion(displayState.viewport);
|
const Region clip(viewportRegion.intersect(layer->visibleRegion));
|
ALOGV("Layer: %s", layer->getName().string());
|
ALOGV(" Composition type: %s", toString(layer->getCompositionType(displayDevice)).c_str());
|
if (!clip.isEmpty()) {
|
switch (layer->getCompositionType(displayDevice)) {
|
case Hwc2::IComposerClient::Composition::CURSOR:
|
case Hwc2::IComposerClient::Composition::DEVICE:
|
case Hwc2::IComposerClient::Composition::SIDEBAND:
|
case Hwc2::IComposerClient::Composition::SOLID_COLOR: {
|
LOG_ALWAYS_FATAL_IF(!displayId);
|
const Layer::State& state(layer->getDrawingState());
|
if (layer->getClearClientTarget(displayDevice) && !firstLayer &&
|
layer->isOpaque(state) && (layer->getAlpha() == 1.0f) &&
|
layer->getRoundedCornerState().radius == 0.0f && hasClientComposition) {
|
// never clear the very first layer since we're
|
// guaranteed the FB is already cleared
|
renderengine::LayerSettings layerSettings;
|
Region dummyRegion;
|
bool prepared =
|
layer->prepareClientLayer(renderArea, clip, dummyRegion,
|
supportProtectedContent, layerSettings);
|
|
if (prepared) {
|
layerSettings.source.buffer.buffer = nullptr;
|
layerSettings.source.solidColor = half3(0.0, 0.0, 0.0);
|
layerSettings.alpha = half(0.0);
|
layerSettings.disableBlending = true;
|
clientCompositionLayers.push_back(layerSettings);
|
}
|
}
|
break;
|
}
|
case Hwc2::IComposerClient::Composition::CLIENT: {
|
renderengine::LayerSettings layerSettings;
|
bool prepared =
|
layer->prepareClientLayer(renderArea, clip, clearRegion,
|
supportProtectedContent, layerSettings);
|
if (prepared) {
|
clientCompositionLayers.push_back(layerSettings);
|
}
|
break;
|
}
|
default:
|
break;
|
}
|
} else {
|
ALOGV(" Skipping for empty clip");
|
}
|
firstLayer = false;
|
}
|
|
// Perform some cleanup steps if we used client composition.
|
if (hasClientComposition) {
|
clientCompositionDisplay.clearRegion = clearRegion;
|
|
// We boost GPU frequency here because there will be color spaces conversion
|
// and it's expensive. We boost the GPU frequency so that GPU composition can
|
// finish in time. We must reset GPU frequency afterwards, because high frequency
|
// consumes extra battery.
|
const bool expensiveRenderingExpected =
|
clientCompositionDisplay.outputDataspace == Dataspace::DISPLAY_P3;
|
if (expensiveRenderingExpected && displayId) {
|
mPowerAdvisor.setExpensiveRenderingExpected(*displayId, true);
|
}
|
if (!debugRegion.isEmpty()) {
|
Region::const_iterator it = debugRegion.begin();
|
Region::const_iterator end = debugRegion.end();
|
while (it != end) {
|
const Rect& rect = *it++;
|
renderengine::LayerSettings layerSettings;
|
layerSettings.source.buffer.buffer = nullptr;
|
layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
|
layerSettings.geometry.boundaries = rect.toFloatRect();
|
layerSettings.alpha = half(1.0);
|
clientCompositionLayers.push_back(layerSettings);
|
}
|
}
|
renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayers,
|
buf->getNativeBuffer(), /*useFramebufferCache=*/true, std::move(fd),
|
readyFence);
|
} else if (displayId) {
|
mPowerAdvisor.setExpensiveRenderingExpected(*displayId, false);
|
}
|
return true;
|
}
|
|
void SurfaceFlinger::drawWormhole(const Region& region) const {
|
auto& engine(getRenderEngine());
|
engine.fillRegionWithColor(region, 0, 0, 0, 0);
|
}
|
|
status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, const sp<IBinder>& handle,
|
const sp<IGraphicBufferProducer>& gbc, const sp<Layer>& lbc,
|
const sp<IBinder>& parentHandle,
|
const sp<Layer>& parentLayer, bool addToCurrentState) {
|
// add this layer to the current state list
|
{
|
Mutex::Autolock _l(mStateLock);
|
sp<Layer> parent;
|
if (parentHandle != nullptr) {
|
parent = fromHandle(parentHandle);
|
if (parent == nullptr) {
|
return NAME_NOT_FOUND;
|
}
|
} else {
|
parent = parentLayer;
|
}
|
|
if (mNumLayers >= MAX_LAYERS) {
|
ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers,
|
MAX_LAYERS);
|
return NO_MEMORY;
|
}
|
|
mLayersByLocalBinderToken.emplace(handle->localBinder(), lbc);
|
|
if (parent == nullptr && addToCurrentState) {
|
mCurrentState.layersSortedByZ.add(lbc);
|
} else if (parent == nullptr) {
|
lbc->onRemovedFromCurrentState();
|
} else if (parent->isRemovedFromCurrentState()) {
|
parent->addChild(lbc);
|
lbc->onRemovedFromCurrentState();
|
} else {
|
parent->addChild(lbc);
|
}
|
|
if (gbc != nullptr) {
|
mGraphicBufferProducerList.insert(IInterface::asBinder(gbc).get());
|
LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() >
|
mMaxGraphicBufferProducerListSize,
|
"Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers",
|
mGraphicBufferProducerList.size(),
|
mMaxGraphicBufferProducerListSize, mNumLayers);
|
}
|
mLayersAdded = true;
|
}
|
|
// attach this layer to the client
|
client->attachLayer(handle, lbc);
|
|
return NO_ERROR;
|
}
|
|
uint32_t SurfaceFlinger::peekTransactionFlags() {
|
return mTransactionFlags;
|
}
|
|
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
|
return mTransactionFlags.fetch_and(~flags) & flags;
|
}
|
|
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
|
return setTransactionFlags(flags, Scheduler::TransactionStart::NORMAL);
|
}
|
|
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags,
|
Scheduler::TransactionStart transactionStart) {
|
uint32_t old = mTransactionFlags.fetch_or(flags);
|
mVsyncModulator.setTransactionStart(transactionStart);
|
if ((old & flags)==0) { // wake the server up
|
signalTransaction();
|
}
|
return old;
|
}
|
|
bool SurfaceFlinger::flushTransactionQueues() {
|
// to prevent onHandleDestroyed from being called while the lock is held,
|
// we must keep a copy of the transactions (specifically the composer
|
// states) around outside the scope of the lock
|
std::vector<const TransactionState> transactions;
|
bool flushedATransaction = false;
|
{
|
Mutex::Autolock _l(mStateLock);
|
|
auto it = mTransactionQueues.begin();
|
while (it != mTransactionQueues.end()) {
|
auto& [applyToken, transactionQueue] = *it;
|
|
while (!transactionQueue.empty()) {
|
const auto& transaction = transactionQueue.front();
|
if (!transactionIsReadyToBeApplied(transaction.desiredPresentTime,
|
transaction.states)) {
|
setTransactionFlags(eTransactionFlushNeeded);
|
break;
|
}
|
transactions.push_back(transaction);
|
applyTransactionState(transaction.states, transaction.displays, transaction.flags,
|
mPendingInputWindowCommands, transaction.desiredPresentTime,
|
transaction.buffer, transaction.callback,
|
transaction.postTime, transaction.privileged,
|
/*isMainThread*/ true);
|
transactionQueue.pop();
|
flushedATransaction = true;
|
}
|
|
if (transactionQueue.empty()) {
|
it = mTransactionQueues.erase(it);
|
mTransactionCV.broadcast();
|
} else {
|
it = std::next(it, 1);
|
}
|
}
|
}
|
return flushedATransaction;
|
}
|
|
bool SurfaceFlinger::transactionFlushNeeded() {
|
return !mTransactionQueues.empty();
|
}
|
|
bool SurfaceFlinger::containsAnyInvalidClientState(const Vector<ComposerState>& states) {
|
for (const ComposerState& state : states) {
|
// Here we need to check that the interface we're given is indeed
|
// one of our own. A malicious client could give us a nullptr
|
// IInterface, or one of its own or even one of our own but a
|
// different type. All these situations would cause us to crash.
|
if (state.client == nullptr) {
|
return true;
|
}
|
|
sp<IBinder> binder = IInterface::asBinder(state.client);
|
if (binder == nullptr) {
|
return true;
|
}
|
|
if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) == nullptr) {
|
return true;
|
}
|
}
|
return false;
|
}
|
|
bool SurfaceFlinger::transactionIsReadyToBeApplied(int64_t desiredPresentTime,
|
const Vector<ComposerState>& states) {
|
nsecs_t expectedPresentTime = mScheduler->expectedPresentTime();
|
// Do not present if the desiredPresentTime has not passed unless it is more than one second
|
// in the future. We ignore timestamps more than 1 second in the future for stability reasons.
|
if (desiredPresentTime >= 0 && desiredPresentTime >= expectedPresentTime &&
|
desiredPresentTime < expectedPresentTime + s2ns(1)) {
|
return false;
|
}
|
|
for (const ComposerState& state : states) {
|
const layer_state_t& s = state.state;
|
if (!(s.what & layer_state_t::eAcquireFenceChanged)) {
|
continue;
|
}
|
if (s.acquireFence && s.acquireFence->getStatus() == Fence::Status::Unsignaled) {
|
return false;
|
}
|
}
|
return true;
|
}
|
|
void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& states,
|
const Vector<DisplayState>& displays, uint32_t flags,
|
const sp<IBinder>& applyToken,
|
const InputWindowCommands& inputWindowCommands,
|
int64_t desiredPresentTime,
|
const client_cache_t& uncacheBuffer,
|
const std::vector<ListenerCallbacks>& listenerCallbacks) {
|
ATRACE_CALL();
|
|
const int64_t postTime = systemTime();
|
|
bool privileged = callingThreadHasUnscopedSurfaceFlingerAccess();
|
|
Mutex::Autolock _l(mStateLock);
|
|
if (containsAnyInvalidClientState(states)) {
|
return;
|
}
|
|
// If its TransactionQueue already has a pending TransactionState or if it is pending
|
auto itr = mTransactionQueues.find(applyToken);
|
// if this is an animation frame, wait until prior animation frame has
|
// been applied by SF
|
if (flags & eAnimation) {
|
while (itr != mTransactionQueues.end()) {
|
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
|
if (CC_UNLIKELY(err != NO_ERROR)) {
|
ALOGW_IF(err == TIMED_OUT,
|
"setTransactionState timed out "
|
"waiting for animation frame to apply");
|
break;
|
}
|
itr = mTransactionQueues.find(applyToken);
|
}
|
}
|
if (itr != mTransactionQueues.end() ||
|
!transactionIsReadyToBeApplied(desiredPresentTime, states)) {
|
mTransactionQueues[applyToken].emplace(states, displays, flags, desiredPresentTime,
|
uncacheBuffer, listenerCallbacks, postTime,
|
privileged);
|
setTransactionFlags(eTransactionFlushNeeded);
|
return;
|
}
|
|
applyTransactionState(states, displays, flags, inputWindowCommands, desiredPresentTime,
|
uncacheBuffer, listenerCallbacks, postTime, privileged);
|
}
|
|
void SurfaceFlinger::applyTransactionState(const Vector<ComposerState>& states,
|
const Vector<DisplayState>& displays, uint32_t flags,
|
const InputWindowCommands& inputWindowCommands,
|
const int64_t desiredPresentTime,
|
const client_cache_t& uncacheBuffer,
|
const std::vector<ListenerCallbacks>& listenerCallbacks,
|
const int64_t postTime, bool privileged,
|
bool isMainThread) {
|
uint32_t transactionFlags = 0;
|
|
if (flags & eAnimation) {
|
// For window updates that are part of an animation we must wait for
|
// previous animation "frames" to be handled.
|
while (!isMainThread && mAnimTransactionPending) {
|
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
|
if (CC_UNLIKELY(err != NO_ERROR)) {
|
// just in case something goes wrong in SF, return to the
|
// caller after a few seconds.
|
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
|
"waiting for previous animation frame");
|
mAnimTransactionPending = false;
|
break;
|
}
|
}
|
}
|
|
for (const DisplayState& display : displays) {
|
transactionFlags |= setDisplayStateLocked(display);
|
}
|
|
// In case the client has sent a Transaction that should receive callbacks but without any
|
// SurfaceControls that should be included in the callback, send the listener and callbackIds
|
// to the callback thread so it can send an empty callback
|
if (!listenerCallbacks.empty()) {
|
mTransactionCompletedThread.run();
|
}
|
for (const auto& [listener, callbackIds] : listenerCallbacks) {
|
mTransactionCompletedThread.addCallback(listener, callbackIds);
|
}
|
|
uint32_t clientStateFlags = 0;
|
for (const ComposerState& state : states) {
|
clientStateFlags |= setClientStateLocked(state, desiredPresentTime, listenerCallbacks,
|
postTime, privileged);
|
}
|
|
// If the state doesn't require a traversal and there are callbacks, send them now
|
if (!(clientStateFlags & eTraversalNeeded) && !listenerCallbacks.empty()) {
|
mTransactionCompletedThread.sendCallbacks();
|
}
|
transactionFlags |= clientStateFlags;
|
|
transactionFlags |= addInputWindowCommands(inputWindowCommands);
|
|
if (uncacheBuffer.isValid()) {
|
ClientCache::getInstance().erase(uncacheBuffer);
|
}
|
|
// If a synchronous transaction is explicitly requested without any changes, force a transaction
|
// anyway. This can be used as a flush mechanism for previous async transactions.
|
// Empty animation transaction can be used to simulate back-pressure, so also force a
|
// transaction for empty animation transactions.
|
if (transactionFlags == 0 &&
|
((flags & eSynchronous) || (flags & eAnimation))) {
|
transactionFlags = eTransactionNeeded;
|
}
|
|
// If we are on the main thread, we are about to preform a traversal. Clear the traversal bit
|
// so we don't have to wake up again next frame to preform an uneeded traversal.
|
if (isMainThread && (transactionFlags & eTraversalNeeded)) {
|
transactionFlags = transactionFlags & (~eTraversalNeeded);
|
mTraversalNeededMainThread = true;
|
}
|
|
if (transactionFlags) {
|
if (mInterceptor->isEnabled()) {
|
mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags);
|
}
|
|
// this triggers the transaction
|
const auto start = (flags & eEarlyWakeup) ? Scheduler::TransactionStart::EARLY
|
: Scheduler::TransactionStart::NORMAL;
|
setTransactionFlags(transactionFlags, start);
|
|
// if this is a synchronous transaction, wait for it to take effect
|
// before returning.
|
if (flags & eSynchronous) {
|
mTransactionPending = true;
|
}
|
if (flags & eAnimation) {
|
mAnimTransactionPending = true;
|
}
|
if (mPendingInputWindowCommands.syncInputWindows) {
|
mPendingSyncInputWindows = true;
|
}
|
|
// applyTransactionState can be called by either the main SF thread or by
|
// another process through setTransactionState. While a given process may wish
|
// to wait on synchronous transactions, the main SF thread should never
|
// be blocked. Therefore, we only wait if isMainThread is false.
|
while (!isMainThread && (mTransactionPending || mPendingSyncInputWindows)) {
|
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
|
if (CC_UNLIKELY(err != NO_ERROR)) {
|
// just in case something goes wrong in SF, return to the
|
// called after a few seconds.
|
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
|
mTransactionPending = false;
|
mPendingSyncInputWindows = false;
|
break;
|
}
|
}
|
}
|
}
|
|
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) {
|
const ssize_t index = mCurrentState.displays.indexOfKey(s.token);
|
if (index < 0) return 0;
|
|
uint32_t flags = 0;
|
DisplayDeviceState& state = mCurrentState.displays.editValueAt(index);
|
|
const uint32_t what = s.what;
|
if (what & DisplayState::eSurfaceChanged) {
|
if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) {
|
state.surface = s.surface;
|
flags |= eDisplayTransactionNeeded;
|
}
|
}
|
if (what & DisplayState::eLayerStackChanged) {
|
if (state.layerStack != s.layerStack) {
|
state.layerStack = s.layerStack;
|
flags |= eDisplayTransactionNeeded;
|
}
|
}
|
if (what & DisplayState::eDisplayProjectionChanged) {
|
if (state.orientation != s.orientation) {
|
state.orientation = s.orientation;
|
flags |= eDisplayTransactionNeeded;
|
}
|
if (state.frame != s.frame) {
|
state.frame = s.frame;
|
flags |= eDisplayTransactionNeeded;
|
}
|
if (state.viewport != s.viewport) {
|
state.viewport = s.viewport;
|
flags |= eDisplayTransactionNeeded;
|
}
|
}
|
if (what & DisplayState::eDisplaySizeChanged) {
|
if (state.width != s.width) {
|
state.width = s.width;
|
flags |= eDisplayTransactionNeeded;
|
}
|
if (state.height != s.height) {
|
state.height = s.height;
|
flags |= eDisplayTransactionNeeded;
|
}
|
}
|
|
return flags;
|
}
|
|
bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess() {
|
IPCThreadState* ipc = IPCThreadState::self();
|
const int pid = ipc->getCallingPid();
|
const int uid = ipc->getCallingUid();
|
if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
|
!PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
|
return false;
|
}
|
return true;
|
}
|
|
uint32_t SurfaceFlinger::setClientStateLocked(
|
const ComposerState& composerState, int64_t desiredPresentTime,
|
const std::vector<ListenerCallbacks>& listenerCallbacks, int64_t postTime,
|
bool privileged) {
|
const layer_state_t& s = composerState.state;
|
sp<Client> client(static_cast<Client*>(composerState.client.get()));
|
|
sp<Layer> layer(client->getLayerUser(s.surface));
|
if (layer == nullptr) {
|
return 0;
|
}
|
|
uint32_t flags = 0;
|
|
const uint64_t what = s.what;
|
bool geometryAppliesWithResize =
|
what & layer_state_t::eGeometryAppliesWithResize;
|
|
// If we are deferring transaction, make sure to push the pending state, as otherwise the
|
// pending state will also be deferred.
|
if (what & layer_state_t::eDeferTransaction_legacy) {
|
layer->pushPendingState();
|
}
|
|
if (what & layer_state_t::ePositionChanged) {
|
if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) {
|
flags |= eTraversalNeeded;
|
}
|
}
|
if (what & layer_state_t::eLayerChanged) {
|
// NOTE: index needs to be calculated before we update the state
|
const auto& p = layer->getParent();
|
if (p == nullptr) {
|
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
|
if (layer->setLayer(s.z) && idx >= 0) {
|
mCurrentState.layersSortedByZ.removeAt(idx);
|
mCurrentState.layersSortedByZ.add(layer);
|
// we need traversal (state changed)
|
// AND transaction (list changed)
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
}
|
} else {
|
if (p->setChildLayer(layer, s.z)) {
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
}
|
}
|
}
|
if (what & layer_state_t::eRelativeLayerChanged) {
|
// NOTE: index needs to be calculated before we update the state
|
const auto& p = layer->getParent();
|
if (p == nullptr) {
|
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
|
if (layer->setRelativeLayer(s.relativeLayerHandle, s.z) && idx >= 0) {
|
mCurrentState.layersSortedByZ.removeAt(idx);
|
mCurrentState.layersSortedByZ.add(layer);
|
// we need traversal (state changed)
|
// AND transaction (list changed)
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
}
|
} else {
|
if (p->setChildRelativeLayer(layer, s.relativeLayerHandle, s.z)) {
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
}
|
}
|
}
|
if (what & layer_state_t::eSizeChanged) {
|
if (layer->setSize(s.w, s.h)) {
|
flags |= eTraversalNeeded;
|
}
|
}
|
if (what & layer_state_t::eAlphaChanged) {
|
if (layer->setAlpha(s.alpha))
|
flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eColorChanged) {
|
if (layer->setColor(s.color))
|
flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eColorTransformChanged) {
|
if (layer->setColorTransform(s.colorTransform)) {
|
flags |= eTraversalNeeded;
|
}
|
}
|
if (what & layer_state_t::eBackgroundColorChanged) {
|
if (layer->setBackgroundColor(s.color, s.bgColorAlpha, s.bgColorDataspace)) {
|
flags |= eTraversalNeeded;
|
}
|
}
|
if (what & layer_state_t::eMatrixChanged) {
|
// TODO: b/109894387
|
//
|
// SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary
|
// rotation. To see the problem observe that if we have a square parent, and a child
|
// of the same size, then we rotate the child 45 degrees around it's center, the child
|
// must now be cropped to a non rectangular 8 sided region.
|
//
|
// Of course we can fix this in the future. For now, we are lucky, SurfaceControl is
|
// private API, and the WindowManager only uses rotation in one case, which is on a top
|
// level layer in which cropping is not an issue.
|
//
|
// However given that abuse of rotation matrices could lead to surfaces extending outside
|
// of cropped areas, we need to prevent non-root clients without permission ACCESS_SURFACE_FLINGER
|
// (a.k.a. everyone except WindowManager and tests) from setting non rectangle preserving
|
// transformations.
|
if (layer->setMatrix(s.matrix, privileged))
|
flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eTransparentRegionChanged) {
|
if (layer->setTransparentRegionHint(s.transparentRegion))
|
flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eFlagsChanged) {
|
if (layer->setFlags(s.flags, s.mask))
|
flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eCropChanged_legacy) {
|
if (layer->setCrop_legacy(s.crop_legacy, !geometryAppliesWithResize))
|
flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eCornerRadiusChanged) {
|
if (layer->setCornerRadius(s.cornerRadius))
|
flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eLayerStackChanged) {
|
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
|
// We only allow setting layer stacks for top level layers,
|
// everything else inherits layer stack from its parent.
|
if (layer->hasParent()) {
|
ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
|
layer->getName().string());
|
} else if (idx < 0) {
|
ALOGE("Attempt to set layer stack on layer without parent (%s) that "
|
"that also does not appear in the top level layer list. Something"
|
" has gone wrong.", layer->getName().string());
|
} else if (layer->setLayerStack(s.layerStack)) {
|
mCurrentState.layersSortedByZ.removeAt(idx);
|
mCurrentState.layersSortedByZ.add(layer);
|
// we need traversal (state changed)
|
// AND transaction (list changed)
|
flags |= eTransactionNeeded|eTraversalNeeded|eDisplayLayerStackChanged;
|
}
|
}
|
if (what & layer_state_t::eDeferTransaction_legacy) {
|
if (s.barrierHandle_legacy != nullptr) {
|
layer->deferTransactionUntil_legacy(s.barrierHandle_legacy, s.frameNumber_legacy);
|
} else if (s.barrierGbp_legacy != nullptr) {
|
const sp<IGraphicBufferProducer>& gbp = s.barrierGbp_legacy;
|
if (authenticateSurfaceTextureLocked(gbp)) {
|
const auto& otherLayer =
|
(static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
|
layer->deferTransactionUntil_legacy(otherLayer, s.frameNumber_legacy);
|
} else {
|
ALOGE("Attempt to defer transaction to to an"
|
" unrecognized GraphicBufferProducer");
|
}
|
}
|
// We don't trigger a traversal here because if no other state is
|
// changed, we don't want this to cause any more work
|
}
|
if (what & layer_state_t::eReparent) {
|
bool hadParent = layer->hasParent();
|
if (layer->reparent(s.parentHandleForChild)) {
|
if (!hadParent) {
|
mCurrentState.layersSortedByZ.remove(layer);
|
}
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
}
|
}
|
if (what & layer_state_t::eReparentChildren) {
|
if (layer->reparentChildren(s.reparentHandle)) {
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
}
|
}
|
if (what & layer_state_t::eDetachChildren) {
|
layer->detachChildren();
|
}
|
if (what & layer_state_t::eOverrideScalingModeChanged) {
|
layer->setOverrideScalingMode(s.overrideScalingMode);
|
// We don't trigger a traversal here because if no other state is
|
// changed, we don't want this to cause any more work
|
}
|
if (what & layer_state_t::eTransformChanged) {
|
if (layer->setTransform(s.transform)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eTransformToDisplayInverseChanged) {
|
if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse))
|
flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eCropChanged) {
|
if (layer->setCrop(s.crop)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eFrameChanged) {
|
if (layer->setFrame(s.frame)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eAcquireFenceChanged) {
|
if (layer->setAcquireFence(s.acquireFence)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eDataspaceChanged) {
|
if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eHdrMetadataChanged) {
|
if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eSurfaceDamageRegionChanged) {
|
if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eApiChanged) {
|
if (layer->setApi(s.api)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eSidebandStreamChanged) {
|
if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eInputInfoChanged) {
|
if (privileged) {
|
layer->setInputInfo(s.inputInfo);
|
flags |= eTraversalNeeded;
|
} else {
|
ALOGE("Attempt to update InputWindowInfo without permission ACCESS_SURFACE_FLINGER");
|
}
|
}
|
if (what & layer_state_t::eMetadataChanged) {
|
if (layer->setMetadata(s.metadata)) flags |= eTraversalNeeded;
|
}
|
if (what & layer_state_t::eColorSpaceAgnosticChanged) {
|
if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) {
|
flags |= eTraversalNeeded;
|
}
|
}
|
std::vector<sp<CallbackHandle>> callbackHandles;
|
if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!listenerCallbacks.empty())) {
|
for (const auto& [listener, callbackIds] : listenerCallbacks) {
|
callbackHandles.emplace_back(new CallbackHandle(listener, callbackIds, s.surface));
|
}
|
}
|
bool bufferChanged = what & layer_state_t::eBufferChanged;
|
bool cacheIdChanged = what & layer_state_t::eCachedBufferChanged;
|
sp<GraphicBuffer> buffer;
|
if (bufferChanged && cacheIdChanged) {
|
ClientCache::getInstance().add(s.cachedBuffer, s.buffer);
|
buffer = s.buffer;
|
} else if (cacheIdChanged) {
|
buffer = ClientCache::getInstance().get(s.cachedBuffer);
|
} else if (bufferChanged) {
|
buffer = s.buffer;
|
}
|
if (buffer) {
|
if (layer->setBuffer(buffer, postTime, desiredPresentTime, s.cachedBuffer)) {
|
flags |= eTraversalNeeded;
|
}
|
}
|
if (layer->setTransactionCompletedListeners(callbackHandles)) flags |= eTraversalNeeded;
|
// Do not put anything that updates layer state or modifies flags after
|
// setTransactionCompletedListener
|
return flags;
|
}
|
|
uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) {
|
uint32_t flags = 0;
|
if (!inputWindowCommands.transferTouchFocusCommands.empty()) {
|
flags |= eTraversalNeeded;
|
}
|
|
if (inputWindowCommands.syncInputWindows) {
|
flags |= eTraversalNeeded;
|
}
|
|
mPendingInputWindowCommands.merge(inputWindowCommands);
|
return flags;
|
}
|
|
status_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
|
uint32_t h, PixelFormat format, uint32_t flags,
|
LayerMetadata metadata, sp<IBinder>* handle,
|
sp<IGraphicBufferProducer>* gbp,
|
const sp<IBinder>& parentHandle,
|
const sp<Layer>& parentLayer) {
|
if (int32_t(w|h) < 0) {
|
ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
|
int(w), int(h));
|
return BAD_VALUE;
|
}
|
|
ALOG_ASSERT(parentLayer == nullptr || parentHandle == nullptr,
|
"Expected only one of parentLayer or parentHandle to be non-null. "
|
"Programmer error?");
|
|
status_t result = NO_ERROR;
|
|
sp<Layer> layer;
|
|
String8 uniqueName = getUniqueLayerName(name);
|
|
bool primaryDisplayOnly = false;
|
|
// window type is WINDOW_TYPE_DONT_SCREENSHOT from SurfaceControl.java
|
// TODO b/64227542
|
if (metadata.has(METADATA_WINDOW_TYPE)) {
|
int32_t windowType = metadata.getInt32(METADATA_WINDOW_TYPE, 0);
|
if (windowType == 441731) {
|
metadata.setInt32(METADATA_WINDOW_TYPE, InputWindowInfo::TYPE_NAVIGATION_BAR_PANEL);
|
primaryDisplayOnly = true;
|
}
|
}
|
|
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
|
case ISurfaceComposerClient::eFXSurfaceBufferQueue:
|
result = createBufferQueueLayer(client, uniqueName, w, h, flags, std::move(metadata),
|
format, handle, gbp, &layer);
|
|
break;
|
case ISurfaceComposerClient::eFXSurfaceBufferState:
|
result = createBufferStateLayer(client, uniqueName, w, h, flags, std::move(metadata),
|
handle, &layer);
|
break;
|
case ISurfaceComposerClient::eFXSurfaceColor:
|
// check if buffer size is set for color layer.
|
if (w > 0 || h > 0) {
|
ALOGE("createLayer() failed, w or h cannot be set for color layer (w=%d, h=%d)",
|
int(w), int(h));
|
return BAD_VALUE;
|
}
|
|
result = createColorLayer(client, uniqueName, w, h, flags, std::move(metadata), handle,
|
&layer);
|
break;
|
case ISurfaceComposerClient::eFXSurfaceContainer:
|
// check if buffer size is set for container layer.
|
if (w > 0 || h > 0) {
|
ALOGE("createLayer() failed, w or h cannot be set for container layer (w=%d, h=%d)",
|
int(w), int(h));
|
return BAD_VALUE;
|
}
|
result = createContainerLayer(client, uniqueName, w, h, flags, std::move(metadata),
|
handle, &layer);
|
break;
|
default:
|
result = BAD_VALUE;
|
break;
|
}
|
|
if (result != NO_ERROR) {
|
return result;
|
}
|
|
if (primaryDisplayOnly) {
|
layer->setPrimaryDisplayOnly();
|
}
|
|
bool addToCurrentState = callingThreadHasUnscopedSurfaceFlingerAccess();
|
result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer,
|
addToCurrentState);
|
if (result != NO_ERROR) {
|
return result;
|
}
|
mInterceptor->saveSurfaceCreation(layer);
|
|
setTransactionFlags(eTransactionNeeded);
|
return result;
|
}
|
|
String8 SurfaceFlinger::getUniqueLayerName(const String8& name)
|
{
|
bool matchFound = true;
|
uint32_t dupeCounter = 0;
|
|
// Tack on our counter whether there is a hit or not, so everyone gets a tag
|
String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str());
|
|
// Grab the state lock since we're accessing mCurrentState
|
Mutex::Autolock lock(mStateLock);
|
|
// Loop over layers until we're sure there is no matching name
|
while (matchFound) {
|
matchFound = false;
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
if (layer->getName() == uniqueName) {
|
matchFound = true;
|
uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str());
|
}
|
});
|
}
|
|
ALOGV_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(),
|
uniqueName.c_str());
|
|
return uniqueName;
|
}
|
|
status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, const String8& name,
|
uint32_t w, uint32_t h, uint32_t flags,
|
LayerMetadata metadata, PixelFormat& format,
|
sp<IBinder>* handle,
|
sp<IGraphicBufferProducer>* gbp,
|
sp<Layer>* outLayer) {
|
// initialize the surfaces
|
switch (format) {
|
case PIXEL_FORMAT_TRANSPARENT:
|
case PIXEL_FORMAT_TRANSLUCENT:
|
format = PIXEL_FORMAT_RGBA_8888;
|
break;
|
case PIXEL_FORMAT_OPAQUE:
|
format = PIXEL_FORMAT_RGBX_8888;
|
break;
|
}
|
|
sp<BufferQueueLayer> layer = getFactory().createBufferQueueLayer(
|
LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
|
status_t err = layer->setDefaultBufferProperties(w, h, format);
|
if (err == NO_ERROR) {
|
*handle = layer->getHandle();
|
*gbp = layer->getProducer();
|
*outLayer = layer;
|
}
|
|
ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err));
|
return err;
|
}
|
|
status_t SurfaceFlinger::createBufferStateLayer(const sp<Client>& client, const String8& name,
|
uint32_t w, uint32_t h, uint32_t flags,
|
LayerMetadata metadata, sp<IBinder>* handle,
|
sp<Layer>* outLayer) {
|
sp<BufferStateLayer> layer = getFactory().createBufferStateLayer(
|
LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
|
*handle = layer->getHandle();
|
*outLayer = layer;
|
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::createColorLayer(const sp<Client>& client, const String8& name, uint32_t w,
|
uint32_t h, uint32_t flags, LayerMetadata metadata,
|
sp<IBinder>* handle, sp<Layer>* outLayer) {
|
*outLayer = getFactory().createColorLayer(
|
LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
|
*handle = (*outLayer)->getHandle();
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::createContainerLayer(const sp<Client>& client, const String8& name,
|
uint32_t w, uint32_t h, uint32_t flags,
|
LayerMetadata metadata, sp<IBinder>* handle,
|
sp<Layer>* outLayer) {
|
*outLayer = getFactory().createContainerLayer(
|
LayerCreationArgs(this, client, name, w, h, flags, std::move(metadata)));
|
*handle = (*outLayer)->getHandle();
|
return NO_ERROR;
|
}
|
|
|
void SurfaceFlinger::markLayerPendingRemovalLocked(const sp<Layer>& layer) {
|
mLayersPendingRemoval.add(layer);
|
mLayersRemoved = true;
|
setTransactionFlags(eTransactionNeeded);
|
}
|
|
void SurfaceFlinger::onHandleDestroyed(sp<Layer>& layer)
|
{
|
Mutex::Autolock lock(mStateLock);
|
// If a layer has a parent, we allow it to out-live it's handle
|
// with the idea that the parent holds a reference and will eventually
|
// be cleaned up. However no one cleans up the top-level so we do so
|
// here.
|
if (layer->getParent() == nullptr) {
|
mCurrentState.layersSortedByZ.remove(layer);
|
}
|
markLayerPendingRemovalLocked(layer);
|
|
auto it = mLayersByLocalBinderToken.begin();
|
while (it != mLayersByLocalBinderToken.end()) {
|
if (it->second == layer) {
|
it = mLayersByLocalBinderToken.erase(it);
|
} else {
|
it++;
|
}
|
}
|
|
layer.clear();
|
}
|
|
// ---------------------------------------------------------------------------
|
|
void SurfaceFlinger::onInitializeDisplays() {
|
const auto display = getDefaultDisplayDeviceLocked();
|
int32_t user_rotation = property_get_int32("ro.primary_display.user_rotation", int32_t(0));
|
if (!display) return;
|
|
const sp<IBinder> token = display->getDisplayToken().promote();
|
LOG_ALWAYS_FATAL_IF(token == nullptr);
|
|
// reset screen orientation and use primary layer stack
|
Vector<ComposerState> state;
|
Vector<DisplayState> displays;
|
DisplayState d;
|
d.what = DisplayState::eDisplayProjectionChanged |
|
DisplayState::eLayerStackChanged;
|
d.token = token;
|
d.layerStack = 0;
|
switch (user_rotation) {
|
case 90:
|
d.orientation = DisplayState::eOrientation90;
|
break;
|
case 180:
|
d.orientation = DisplayState::eOrientation180;
|
break;
|
case 270:
|
d.orientation = DisplayState::eOrientation270;
|
break;
|
default:
|
d.orientation = DisplayState::eOrientationDefault;
|
break;
|
}
|
d.frame.makeInvalid();
|
d.viewport.makeInvalid();
|
d.width = 0;
|
d.height = 0;
|
displays.add(d);
|
setTransactionState(state, displays, 0, nullptr, mPendingInputWindowCommands, -1, {}, {});
|
|
setPowerModeInternal(display, HWC_POWER_MODE_NORMAL);
|
|
const nsecs_t vsyncPeriod = getVsyncPeriod();
|
mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
|
|
// Use phase of 0 since phase is not known.
|
// Use latency of 0, which will snap to the ideal latency.
|
DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
|
setCompositorTimingSnapped(stats, 0);
|
}
|
|
void SurfaceFlinger::initializeDisplays() {
|
// Async since we may be called from the main thread.
|
postMessageAsync(
|
new LambdaMessage([this]() NO_THREAD_SAFETY_ANALYSIS { onInitializeDisplays(); }));
|
}
|
|
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, int mode) {
|
if (display->isVirtual()) {
|
ALOGE("%s: Invalid operation on virtual display", __FUNCTION__);
|
return;
|
}
|
|
const auto displayId = display->getId();
|
LOG_ALWAYS_FATAL_IF(!displayId);
|
|
ALOGD("Setting power mode %d on display %s", mode, to_string(*displayId).c_str());
|
|
int currentMode = display->getPowerMode();
|
if (mode == currentMode) {
|
return;
|
}
|
|
display->setPowerMode(mode);
|
|
if (mInterceptor->isEnabled()) {
|
mInterceptor->savePowerModeUpdate(display->getSequenceId(), mode);
|
}
|
|
if (currentMode == HWC_POWER_MODE_OFF) {
|
// Turn on the display
|
getHwComposer().setPowerMode(*displayId, mode);
|
if (display->isPrimary() && mode != HWC_POWER_MODE_DOZE_SUSPEND) {
|
mScheduler->onScreenAcquired(mAppConnectionHandle);
|
mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
|
}
|
|
mVisibleRegionsDirty = true;
|
mHasPoweredOff = true;
|
repaintEverything();
|
|
struct sched_param param = {0};
|
param.sched_priority = 1;
|
if (sched_setscheduler(0, SCHED_FIFO, ¶m) != 0) {
|
ALOGW("Couldn't set SCHED_FIFO on display on");
|
}
|
} else if (mode == HWC_POWER_MODE_OFF) {
|
// Turn off the display
|
struct sched_param param = {0};
|
if (sched_setscheduler(0, SCHED_OTHER, ¶m) != 0) {
|
ALOGW("Couldn't set SCHED_OTHER on display off");
|
}
|
|
if (display->isPrimary() && currentMode != HWC_POWER_MODE_DOZE_SUSPEND) {
|
mScheduler->disableHardwareVsync(true);
|
mScheduler->onScreenReleased(mAppConnectionHandle);
|
}
|
|
getHwComposer().setPowerMode(*displayId, mode);
|
mVisibleRegionsDirty = true;
|
// from this point on, SF will stop drawing on this display
|
} else if (mode == HWC_POWER_MODE_DOZE ||
|
mode == HWC_POWER_MODE_NORMAL) {
|
// Update display while dozing
|
getHwComposer().setPowerMode(*displayId, mode);
|
if (display->isPrimary() && currentMode == HWC_POWER_MODE_DOZE_SUSPEND) {
|
mScheduler->onScreenAcquired(mAppConnectionHandle);
|
mScheduler->resyncToHardwareVsync(true, getVsyncPeriod());
|
}
|
} else if (mode == HWC_POWER_MODE_DOZE_SUSPEND) {
|
// Leave display going to doze
|
if (display->isPrimary()) {
|
mScheduler->disableHardwareVsync(true);
|
mScheduler->onScreenReleased(mAppConnectionHandle);
|
}
|
getHwComposer().setPowerMode(*displayId, mode);
|
} else {
|
ALOGE("Attempting to set unknown power mode: %d\n", mode);
|
getHwComposer().setPowerMode(*displayId, mode);
|
}
|
|
if (display->isPrimary()) {
|
mTimeStats->setPowerMode(mode);
|
mRefreshRateStats.setPowerMode(mode);
|
}
|
|
ALOGD("Finished setting power mode %d on display %s", mode, to_string(*displayId).c_str());
|
}
|
|
void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) {
|
postMessageSync(new LambdaMessage([&]() NO_THREAD_SAFETY_ANALYSIS {
|
const auto display = getDisplayDevice(displayToken);
|
if (!display) {
|
ALOGE("Attempt to set power mode %d for invalid display token %p", mode,
|
displayToken.get());
|
} else if (display->isVirtual()) {
|
ALOGW("Attempt to set power mode %d for virtual display", mode);
|
} else {
|
setPowerModeInternal(display, mode);
|
}
|
}));
|
}
|
|
// ---------------------------------------------------------------------------
|
|
status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args,
|
bool asProto) NO_THREAD_SAFETY_ANALYSIS {
|
std::string result;
|
|
IPCThreadState* ipc = IPCThreadState::self();
|
const int pid = ipc->getCallingPid();
|
const int uid = ipc->getCallingUid();
|
|
if ((uid != AID_SHELL) &&
|
!PermissionCache::checkPermission(sDump, pid, uid)) {
|
StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n",
|
pid, uid);
|
} else {
|
// Try to get the main lock, but give up after one second
|
// (this would indicate SF is stuck, but we want to be able to
|
// print something in dumpsys).
|
status_t err = mStateLock.timedLock(s2ns(1));
|
bool locked = (err == NO_ERROR);
|
if (!locked) {
|
StringAppendF(&result,
|
"SurfaceFlinger appears to be unresponsive (%s [%d]), dumping anyways "
|
"(no locks held)\n",
|
strerror(-err), err);
|
}
|
|
using namespace std::string_literals;
|
|
static const std::unordered_map<std::string, Dumper> dumpers = {
|
{"--clear-layer-stats"s, dumper([this](std::string&) { mLayerStats.clear(); })},
|
{"--disable-layer-stats"s, dumper([this](std::string&) { mLayerStats.disable(); })},
|
{"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)},
|
{"--dispsync"s, dumper([this](std::string& s) {
|
mScheduler->dumpPrimaryDispSync(s);
|
})},
|
{"--dump-layer-stats"s, dumper([this](std::string& s) { mLayerStats.dump(s); })},
|
{"--enable-layer-stats"s, dumper([this](std::string&) { mLayerStats.enable(); })},
|
{"--frame-events"s, dumper(&SurfaceFlinger::dumpFrameEventsLocked)},
|
{"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)},
|
{"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)},
|
{"--list"s, dumper(&SurfaceFlinger::listLayersLocked)},
|
{"--static-screen"s, dumper(&SurfaceFlinger::dumpStaticScreenStats)},
|
{"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)},
|
{"--vsync"s, dumper(&SurfaceFlinger::dumpVSync)},
|
{"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)},
|
};
|
|
const auto flag = args.empty() ? ""s : std::string(String8(args[0]));
|
|
if (const auto it = dumpers.find(flag); it != dumpers.end()) {
|
(it->second)(args, asProto, result);
|
} else {
|
if (asProto) {
|
LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current);
|
result.append(layersProto.SerializeAsString().c_str(), layersProto.ByteSize());
|
} else {
|
dumpAllLocked(args, result);
|
}
|
}
|
|
if (locked) {
|
mStateLock.unlock();
|
}
|
}
|
write(fd, result.c_str(), result.size());
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) {
|
if (asProto && mTracing.isEnabled()) {
|
mTracing.writeToFileAsync();
|
}
|
|
return doDump(fd, DumpArgs(), asProto);
|
}
|
|
void SurfaceFlinger::listLayersLocked(std::string& result) const {
|
mCurrentState.traverseInZOrder(
|
[&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getName().string()); });
|
}
|
|
void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const {
|
StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriod());
|
|
if (args.size() > 1) {
|
const auto name = String8(args[1]);
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
if (name == layer->getName()) {
|
layer->dumpFrameStats(result);
|
}
|
});
|
} else {
|
mAnimFrameTracker.dumpStats(result);
|
}
|
}
|
|
void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) {
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
if (args.size() < 2 || String8(args[1]) == layer->getName()) {
|
layer->clearFrameStats();
|
}
|
});
|
|
mAnimFrameTracker.clearStats();
|
}
|
|
void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const {
|
mTimeStats->parseArgs(asProto, args, result);
|
}
|
|
// This should only be called from the main thread. Otherwise it would need
|
// the lock and should use mCurrentState rather than mDrawingState.
|
void SurfaceFlinger::logFrameStats() {
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
layer->logFrameStats();
|
});
|
|
mAnimFrameTracker.logAndResetStats(String8("<win-anim>"));
|
}
|
|
void SurfaceFlinger::appendSfConfigString(std::string& result) const {
|
result.append(" [sf");
|
|
if (isLayerTripleBufferingDisabled())
|
result.append(" DISABLE_TRIPLE_BUFFERING");
|
|
StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset);
|
StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
|
StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize);
|
StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
|
StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
|
maxFrameBufferAcquiredBuffers);
|
result.append("]");
|
}
|
|
void SurfaceFlinger::dumpVSync(std::string& result) const {
|
mPhaseOffsets->dump(result);
|
StringAppendF(&result,
|
" present offset: %9" PRId64 " ns\t VSYNC period: %9" PRId64 " ns\n\n",
|
dispSyncPresentTimeOffset, getVsyncPeriod());
|
|
StringAppendF(&result, "Scheduler enabled.");
|
StringAppendF(&result, "+ Smart 90 for video detection: %s\n\n",
|
mUseSmart90ForVideo ? "on" : "off");
|
mScheduler->dump(mAppConnectionHandle, result);
|
}
|
|
void SurfaceFlinger::dumpStaticScreenStats(std::string& result) const {
|
result.append("Static screen stats:\n");
|
for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) {
|
float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9;
|
float percent = 100.0f *
|
static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime;
|
StringAppendF(&result, " < %zd frames: %.3f s (%.1f%%)\n", b + 1, bucketTimeSec, percent);
|
}
|
float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9;
|
float percent = 100.0f *
|
static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime;
|
StringAppendF(&result, " %zd+ frames: %.3f s (%.1f%%)\n", SurfaceFlingerBE::NUM_BUCKETS - 1,
|
bucketTimeSec, percent);
|
}
|
|
void SurfaceFlinger::recordBufferingStats(const char* layerName,
|
std::vector<OccupancyTracker::Segment>&& history) {
|
Mutex::Autolock lock(getBE().mBufferingStatsMutex);
|
auto& stats = getBE().mBufferingStats[layerName];
|
for (const auto& segment : history) {
|
if (!segment.usedThirdBuffer) {
|
stats.twoBufferTime += segment.totalTime;
|
}
|
if (segment.occupancyAverage < 1.0f) {
|
stats.doubleBufferedTime += segment.totalTime;
|
} else if (segment.occupancyAverage < 2.0f) {
|
stats.tripleBufferedTime += segment.totalTime;
|
}
|
++stats.numSegments;
|
stats.totalTime += segment.totalTime;
|
}
|
}
|
|
void SurfaceFlinger::dumpFrameEventsLocked(std::string& result) {
|
result.append("Layer frame timestamps:\n");
|
|
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
|
const size_t count = currentLayers.size();
|
for (size_t i=0 ; i<count ; i++) {
|
currentLayers[i]->dumpFrameEvents(result);
|
}
|
}
|
|
void SurfaceFlinger::dumpBufferingStats(std::string& result) const {
|
result.append("Buffering stats:\n");
|
result.append(" [Layer name] <Active time> <Two buffer> "
|
"<Double buffered> <Triple buffered>\n");
|
Mutex::Autolock lock(getBE().mBufferingStatsMutex);
|
typedef std::tuple<std::string, float, float, float> BufferTuple;
|
std::map<float, BufferTuple, std::greater<float>> sorted;
|
for (const auto& statsPair : getBE().mBufferingStats) {
|
const char* name = statsPair.first.c_str();
|
const SurfaceFlingerBE::BufferingStats& stats = statsPair.second;
|
if (stats.numSegments == 0) {
|
continue;
|
}
|
float activeTime = ns2ms(stats.totalTime) / 1000.0f;
|
float twoBufferRatio = static_cast<float>(stats.twoBufferTime) /
|
stats.totalTime;
|
float doubleBufferRatio = static_cast<float>(
|
stats.doubleBufferedTime) / stats.totalTime;
|
float tripleBufferRatio = static_cast<float>(
|
stats.tripleBufferedTime) / stats.totalTime;
|
sorted.insert({activeTime, {name, twoBufferRatio,
|
doubleBufferRatio, tripleBufferRatio}});
|
}
|
for (const auto& sortedPair : sorted) {
|
float activeTime = sortedPair.first;
|
const BufferTuple& values = sortedPair.second;
|
StringAppendF(&result, " [%s] %.2f %.3f %.3f %.3f\n", std::get<0>(values).c_str(),
|
activeTime, std::get<1>(values), std::get<2>(values), std::get<3>(values));
|
}
|
result.append("\n");
|
}
|
|
void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const {
|
for (const auto& [token, display] : mDisplays) {
|
const auto displayId = display->getId();
|
if (!displayId) {
|
continue;
|
}
|
const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId);
|
if (!hwcDisplayId) {
|
continue;
|
}
|
|
StringAppendF(&result,
|
"Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(),
|
*hwcDisplayId);
|
uint8_t port;
|
DisplayIdentificationData data;
|
if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) {
|
result.append("no identification data\n");
|
continue;
|
}
|
|
if (!isEdid(data)) {
|
result.append("unknown identification data: ");
|
for (uint8_t byte : data) {
|
StringAppendF(&result, "%x ", byte);
|
}
|
result.append("\n");
|
continue;
|
}
|
|
const auto edid = parseEdid(data);
|
if (!edid) {
|
result.append("invalid EDID: ");
|
for (uint8_t byte : data) {
|
StringAppendF(&result, "%x ", byte);
|
}
|
result.append("\n");
|
continue;
|
}
|
|
StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data());
|
result.append(edid->displayName.data(), edid->displayName.length());
|
result.append("\"\n");
|
}
|
}
|
|
void SurfaceFlinger::dumpWideColorInfo(std::string& result) const {
|
StringAppendF(&result, "Device has wide color built-in display: %d\n", hasWideColorDisplay);
|
StringAppendF(&result, "Device uses color management: %d\n", useColorManagement);
|
StringAppendF(&result, "DisplayColorSetting: %s\n",
|
decodeDisplayColorSetting(mDisplayColorSetting).c_str());
|
|
// TODO: print out if wide-color mode is active or not
|
|
for (const auto& [token, display] : mDisplays) {
|
const auto displayId = display->getId();
|
if (!displayId) {
|
continue;
|
}
|
|
StringAppendF(&result, "Display %s color modes:\n", to_string(*displayId).c_str());
|
std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
|
for (auto&& mode : modes) {
|
StringAppendF(&result, " %s (%d)\n", decodeColorMode(mode).c_str(), mode);
|
}
|
|
ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode;
|
StringAppendF(&result, " Current color mode: %s (%d)\n",
|
decodeColorMode(currentMode).c_str(), currentMode);
|
}
|
result.append("\n");
|
}
|
|
LayersProto SurfaceFlinger::dumpProtoInfo(LayerVector::StateSet stateSet,
|
uint32_t traceFlags) const {
|
LayersProto layersProto;
|
const bool useDrawing = stateSet == LayerVector::StateSet::Drawing;
|
const State& state = useDrawing ? mDrawingState : mCurrentState;
|
state.traverseInZOrder([&](Layer* layer) {
|
LayerProto* layerProto = layersProto.add_layers();
|
layer->writeToProto(layerProto, stateSet, traceFlags);
|
});
|
|
return layersProto;
|
}
|
|
LayersProto SurfaceFlinger::dumpVisibleLayersProtoInfo(
|
const sp<DisplayDevice>& displayDevice) const {
|
LayersProto layersProto;
|
|
SizeProto* resolution = layersProto.mutable_resolution();
|
resolution->set_w(displayDevice->getWidth());
|
resolution->set_h(displayDevice->getHeight());
|
|
auto display = displayDevice->getCompositionDisplay();
|
const auto& displayState = display->getState();
|
|
layersProto.set_color_mode(decodeColorMode(displayState.colorMode));
|
layersProto.set_color_transform(decodeColorTransform(displayState.colorTransform));
|
layersProto.set_global_transform(displayState.orientation);
|
|
const auto displayId = displayDevice->getId();
|
LOG_ALWAYS_FATAL_IF(!displayId);
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
if (!layer->visibleRegion.isEmpty() && !display->getOutputLayersOrderedByZ().empty()) {
|
LayerProto* layerProto = layersProto.add_layers();
|
layer->writeToProto(layerProto, displayDevice);
|
}
|
});
|
|
return layersProto;
|
}
|
|
void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, std::string& result) const {
|
const bool colorize = !args.empty() && args[0] == String16("--color");
|
Colorizer colorizer(colorize);
|
|
// figure out if we're stuck somewhere
|
const nsecs_t now = systemTime();
|
const nsecs_t inTransaction(mDebugInTransaction);
|
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
|
|
/*
|
* Dump library configuration.
|
*/
|
|
colorizer.bold(result);
|
result.append("Build configuration:");
|
colorizer.reset(result);
|
appendSfConfigString(result);
|
appendUiConfigString(result);
|
appendGuiConfigString(result);
|
result.append("\n");
|
|
result.append("\nDisplay identification data:\n");
|
dumpDisplayIdentificationData(result);
|
|
result.append("\nWide-Color information:\n");
|
dumpWideColorInfo(result);
|
|
colorizer.bold(result);
|
result.append("Sync configuration: ");
|
colorizer.reset(result);
|
result.append(SyncFeatures::getInstance().toString());
|
result.append("\n\n");
|
|
colorizer.bold(result);
|
result.append("VSYNC configuration:\n");
|
colorizer.reset(result);
|
dumpVSync(result);
|
result.append("\n");
|
|
dumpStaticScreenStats(result);
|
result.append("\n");
|
|
StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load());
|
StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load());
|
StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load());
|
|
dumpBufferingStats(result);
|
|
/*
|
* Dump the visible layer list
|
*/
|
colorizer.bold(result);
|
StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers);
|
StringAppendF(&result, "GraphicBufferProducers: %zu, max %zu\n",
|
mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize);
|
colorizer.reset(result);
|
|
{
|
LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current);
|
auto layerTree = LayerProtoParser::generateLayerTree(layersProto);
|
result.append(LayerProtoParser::layerTreeToString(layerTree));
|
result.append("\n");
|
}
|
|
{
|
StringAppendF(&result, "Composition layers\n");
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
auto compositionLayer = layer->getCompositionLayer();
|
if (compositionLayer) compositionLayer->dump(result);
|
});
|
}
|
|
/*
|
* Dump Display state
|
*/
|
|
colorizer.bold(result);
|
StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size());
|
colorizer.reset(result);
|
for (const auto& [token, display] : mDisplays) {
|
display->dump(result);
|
}
|
result.append("\n");
|
|
/*
|
* Dump SurfaceFlinger global state
|
*/
|
|
colorizer.bold(result);
|
result.append("SurfaceFlinger global state:\n");
|
colorizer.reset(result);
|
|
getRenderEngine().dump(result);
|
|
if (const auto display = getDefaultDisplayDeviceLocked()) {
|
display->getCompositionDisplay()->getState().undefinedRegion.dump(result,
|
"undefinedRegion");
|
StringAppendF(&result, " orientation=%d, isPoweredOn=%d\n", display->getOrientation(),
|
display->isPoweredOn());
|
}
|
StringAppendF(&result,
|
" transaction-flags : %08x\n"
|
" gpu_to_cpu_unsupported : %d\n",
|
mTransactionFlags.load(), !mGpuToCpuSupported);
|
|
if (const auto displayId = getInternalDisplayIdLocked();
|
displayId && getHwComposer().isConnected(*displayId)) {
|
const auto activeConfig = getHwComposer().getActiveConfig(*displayId);
|
StringAppendF(&result,
|
" refresh-rate : %f fps\n"
|
" x-dpi : %f\n"
|
" y-dpi : %f\n",
|
1e9 / activeConfig->getVsyncPeriod(), activeConfig->getDpiX(),
|
activeConfig->getDpiY());
|
}
|
|
StringAppendF(&result, " transaction time: %f us\n", inTransactionDuration / 1000.0);
|
|
/*
|
* Tracing state
|
*/
|
mTracing.dump(result);
|
result.append("\n");
|
|
/*
|
* HWC layer minidump
|
*/
|
for (const auto& [token, display] : mDisplays) {
|
const auto displayId = display->getId();
|
if (!displayId) {
|
continue;
|
}
|
|
StringAppendF(&result, "Display %s HWC layers:\n", to_string(*displayId).c_str());
|
Layer::miniDumpHeader(result);
|
const sp<DisplayDevice> displayDevice = display;
|
mCurrentState.traverseInZOrder(
|
[&](Layer* layer) { layer->miniDump(result, displayDevice); });
|
result.append("\n");
|
}
|
|
/*
|
* Dump HWComposer state
|
*/
|
colorizer.bold(result);
|
result.append("h/w composer state:\n");
|
colorizer.reset(result);
|
bool hwcDisabled = mDebugDisableHWC || mDebugRegion;
|
StringAppendF(&result, " h/w composer %s\n", hwcDisabled ? "disabled" : "enabled");
|
getHwComposer().dump(result);
|
|
/*
|
* Dump gralloc state
|
*/
|
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
|
alloc.dump(result);
|
|
/*
|
* Dump VrFlinger state if in use.
|
*/
|
if (mVrFlingerRequestsDisplay && mVrFlinger) {
|
result.append("VrFlinger state:\n");
|
result.append(mVrFlinger->Dump());
|
result.append("\n");
|
}
|
|
/**
|
* Scheduler dump state.
|
*/
|
result.append("\nScheduler state:\n");
|
result.append(mScheduler->doDump() + "\n");
|
StringAppendF(&result, "+ Smart video mode: %s\n\n", mUseSmart90ForVideo ? "on" : "off");
|
result.append(mRefreshRateStats.doDump() + "\n");
|
|
result.append(mTimeStats->miniDump());
|
result.append("\n");
|
}
|
|
const Vector<sp<Layer>>& SurfaceFlinger::getLayerSortedByZForHwcDisplay(DisplayId displayId) {
|
// Note: mStateLock is held here
|
for (const auto& [token, display] : mDisplays) {
|
if (display->getId() == displayId) {
|
return getDisplayDeviceLocked(token)->getVisibleLayersSortedByZ();
|
}
|
}
|
|
ALOGE("%s: Invalid display %s", __FUNCTION__, to_string(displayId).c_str());
|
static const Vector<sp<Layer>> empty;
|
return empty;
|
}
|
|
void SurfaceFlinger::updateColorMatrixLocked() {
|
mat4 colorMatrix;
|
if (mGlobalSaturationFactor != 1.0f) {
|
// Rec.709 luma coefficients
|
float3 luminance{0.213f, 0.715f, 0.072f};
|
luminance *= 1.0f - mGlobalSaturationFactor;
|
mat4 saturationMatrix = mat4(
|
vec4{luminance.r + mGlobalSaturationFactor, luminance.r, luminance.r, 0.0f},
|
vec4{luminance.g, luminance.g + mGlobalSaturationFactor, luminance.g, 0.0f},
|
vec4{luminance.b, luminance.b, luminance.b + mGlobalSaturationFactor, 0.0f},
|
vec4{0.0f, 0.0f, 0.0f, 1.0f}
|
);
|
colorMatrix = mClientColorMatrix * saturationMatrix * mDaltonizer();
|
} else {
|
colorMatrix = mClientColorMatrix * mDaltonizer();
|
}
|
|
if (mCurrentState.colorMatrix != colorMatrix) {
|
mCurrentState.colorMatrix = colorMatrix;
|
mCurrentState.colorMatrixChanged = true;
|
setTransactionFlags(eTransactionNeeded);
|
}
|
}
|
|
status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
|
#pragma clang diagnostic push
|
#pragma clang diagnostic error "-Wswitch-enum"
|
switch (static_cast<ISurfaceComposerTag>(code)) {
|
// These methods should at minimum make sure that the client requested
|
// access to SF.
|
case BOOT_FINISHED:
|
case CLEAR_ANIMATION_FRAME_STATS:
|
case CREATE_DISPLAY:
|
case DESTROY_DISPLAY:
|
case ENABLE_VSYNC_INJECTIONS:
|
case GET_ANIMATION_FRAME_STATS:
|
case GET_HDR_CAPABILITIES:
|
case SET_ACTIVE_CONFIG:
|
case SET_ALLOWED_DISPLAY_CONFIGS:
|
case GET_ALLOWED_DISPLAY_CONFIGS:
|
case SET_ACTIVE_COLOR_MODE:
|
case INJECT_VSYNC:
|
case SET_POWER_MODE:
|
case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES:
|
case SET_DISPLAY_CONTENT_SAMPLING_ENABLED:
|
case GET_DISPLAYED_CONTENT_SAMPLE:
|
case NOTIFY_POWER_HINT: {
|
if (!callingThreadHasUnscopedSurfaceFlingerAccess()) {
|
IPCThreadState* ipc = IPCThreadState::self();
|
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d",
|
ipc->getCallingPid(), ipc->getCallingUid());
|
return PERMISSION_DENIED;
|
}
|
return OK;
|
}
|
case GET_LAYER_DEBUG_INFO: {
|
IPCThreadState* ipc = IPCThreadState::self();
|
const int pid = ipc->getCallingPid();
|
const int uid = ipc->getCallingUid();
|
if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) {
|
ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
|
return PERMISSION_DENIED;
|
}
|
return OK;
|
}
|
// Used by apps to hook Choreographer to SurfaceFlinger.
|
case CREATE_DISPLAY_EVENT_CONNECTION:
|
// The following calls are currently used by clients that do not
|
// request necessary permissions. However, they do not expose any secret
|
// information, so it is OK to pass them.
|
case AUTHENTICATE_SURFACE:
|
case GET_ACTIVE_COLOR_MODE:
|
case GET_ACTIVE_CONFIG:
|
case GET_PHYSICAL_DISPLAY_IDS:
|
case GET_PHYSICAL_DISPLAY_TOKEN:
|
case GET_DISPLAY_COLOR_MODES:
|
case GET_DISPLAY_NATIVE_PRIMARIES:
|
case GET_DISPLAY_CONFIGS:
|
case GET_DISPLAY_STATS:
|
case GET_SUPPORTED_FRAME_TIMESTAMPS:
|
// Calling setTransactionState is safe, because you need to have been
|
// granted a reference to Client* and Handle* to do anything with it.
|
case SET_TRANSACTION_STATE:
|
case CREATE_CONNECTION:
|
case GET_COLOR_MANAGEMENT:
|
case GET_COMPOSITION_PREFERENCE:
|
case GET_PROTECTED_CONTENT_SUPPORT:
|
case IS_WIDE_COLOR_DISPLAY:
|
case GET_DISPLAY_BRIGHTNESS_SUPPORT:
|
case SET_DISPLAY_BRIGHTNESS: {
|
return OK;
|
}
|
case CAPTURE_LAYERS:
|
case CAPTURE_SCREEN:
|
case ADD_REGION_SAMPLING_LISTENER:
|
case REMOVE_REGION_SAMPLING_LISTENER: {
|
// codes that require permission check
|
IPCThreadState* ipc = IPCThreadState::self();
|
const int pid = ipc->getCallingPid();
|
const int uid = ipc->getCallingUid();
|
if ((uid != AID_GRAPHICS) &&
|
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
|
ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
|
return PERMISSION_DENIED;
|
}
|
return OK;
|
}
|
// The following codes are deprecated and should never be allowed to access SF.
|
case CONNECT_DISPLAY_UNUSED:
|
case CREATE_GRAPHIC_BUFFER_ALLOC_UNUSED: {
|
ALOGE("Attempting to access SurfaceFlinger with unused code: %u", code);
|
return PERMISSION_DENIED;
|
}
|
case CAPTURE_SCREEN_BY_ID: {
|
IPCThreadState* ipc = IPCThreadState::self();
|
const int uid = ipc->getCallingUid();
|
if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) {
|
return OK;
|
}
|
return PERMISSION_DENIED;
|
}
|
}
|
|
// These codes are used for the IBinder protocol to either interrogate the recipient
|
// side of the transaction for its canonical interface descriptor or to dump its state.
|
// We let them pass by default.
|
if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION ||
|
code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION ||
|
code == IBinder::SYSPROPS_TRANSACTION) {
|
return OK;
|
}
|
// Numbers from 1000 to 1034 are currently used for backdoors. The code
|
// in onTransact verifies that the user is root, and has access to use SF.
|
if (code >= 1000 && code <= 1037/*AW_CODE:extend max-code to 1037 by jiangbin;190926*/) {
|
ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code);
|
return OK;
|
}
|
ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code);
|
return PERMISSION_DENIED;
|
#pragma clang diagnostic pop
|
}
|
|
status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply,
|
uint32_t flags) {
|
status_t credentialCheck = CheckTransactCodeCredentials(code);
|
if (credentialCheck != OK) {
|
return credentialCheck;
|
}
|
|
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
|
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
|
CHECK_INTERFACE(ISurfaceComposer, data, reply);
|
IPCThreadState* ipc = IPCThreadState::self();
|
const int uid = ipc->getCallingUid();
|
if (CC_UNLIKELY(uid != AID_SYSTEM
|
&& !PermissionCache::checkCallingPermission(sHardwareTest))) {
|
const int pid = ipc->getCallingPid();
|
ALOGE("Permission Denial: "
|
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
|
return PERMISSION_DENIED;
|
}
|
int n;
|
switch (code) {
|
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
|
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
|
return NO_ERROR;
|
case 1002: // SHOW_UPDATES
|
n = data.readInt32();
|
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
|
invalidateHwcGeometry();
|
repaintEverything();
|
return NO_ERROR;
|
case 1004:{ // repaint everything
|
repaintEverything();
|
return NO_ERROR;
|
}
|
case 1005:{ // force transaction
|
Mutex::Autolock _l(mStateLock);
|
setTransactionFlags(
|
eTransactionNeeded|
|
eDisplayTransactionNeeded|
|
eTraversalNeeded);
|
return NO_ERROR;
|
}
|
case 1006:{ // send empty update
|
signalRefresh();
|
return NO_ERROR;
|
}
|
case 1008: // toggle use of hw composer
|
n = data.readInt32();
|
mDebugDisableHWC = n != 0;
|
invalidateHwcGeometry();
|
repaintEverything();
|
return NO_ERROR;
|
case 1009: // toggle use of transform hint
|
n = data.readInt32();
|
mDebugDisableTransformHint = n != 0;
|
invalidateHwcGeometry();
|
repaintEverything();
|
return NO_ERROR;
|
case 1010: // interrogate.
|
reply->writeInt32(0);
|
reply->writeInt32(0);
|
reply->writeInt32(mDebugRegion);
|
reply->writeInt32(0);
|
reply->writeInt32(mDebugDisableHWC);
|
return NO_ERROR;
|
case 1013: {
|
const auto display = getDefaultDisplayDevice();
|
if (!display) {
|
return NAME_NOT_FOUND;
|
}
|
|
reply->writeInt32(display->getPageFlipCount());
|
return NO_ERROR;
|
}
|
case 1014: {
|
Mutex::Autolock _l(mStateLock);
|
// daltonize
|
n = data.readInt32();
|
switch (n % 10) {
|
case 1:
|
mDaltonizer.setType(ColorBlindnessType::Protanomaly);
|
break;
|
case 2:
|
mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
|
break;
|
case 3:
|
mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
|
break;
|
default:
|
mDaltonizer.setType(ColorBlindnessType::None);
|
break;
|
}
|
if (n >= 10) {
|
mDaltonizer.setMode(ColorBlindnessMode::Correction);
|
} else {
|
mDaltonizer.setMode(ColorBlindnessMode::Simulation);
|
}
|
|
updateColorMatrixLocked();
|
return NO_ERROR;
|
}
|
case 1015: {
|
Mutex::Autolock _l(mStateLock);
|
// apply a color matrix
|
n = data.readInt32();
|
if (n) {
|
// color matrix is sent as a column-major mat4 matrix
|
for (size_t i = 0 ; i < 4; i++) {
|
for (size_t j = 0; j < 4; j++) {
|
mClientColorMatrix[i][j] = data.readFloat();
|
}
|
}
|
} else {
|
mClientColorMatrix = mat4();
|
}
|
|
// Check that supplied matrix's last row is {0,0,0,1} so we can avoid
|
// the division by w in the fragment shader
|
float4 lastRow(transpose(mClientColorMatrix)[3]);
|
if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
|
ALOGE("The color transform's last row must be (0, 0, 0, 1)");
|
}
|
|
updateColorMatrixLocked();
|
return NO_ERROR;
|
}
|
// This is an experimental interface
|
// Needs to be shifted to proper binder interface when we productize
|
case 1016: {
|
n = data.readInt32();
|
// TODO(b/113612090): Evaluate if this can be removed.
|
mScheduler->setRefreshSkipCount(n);
|
return NO_ERROR;
|
}
|
case 1017: {
|
n = data.readInt32();
|
mForceFullDamage = n != 0;
|
return NO_ERROR;
|
}
|
case 1018: { // Modify Choreographer's phase offset
|
n = data.readInt32();
|
mScheduler->setPhaseOffset(mAppConnectionHandle, static_cast<nsecs_t>(n));
|
return NO_ERROR;
|
}
|
case 1019: { // Modify SurfaceFlinger's phase offset
|
n = data.readInt32();
|
mScheduler->setPhaseOffset(mSfConnectionHandle, static_cast<nsecs_t>(n));
|
return NO_ERROR;
|
}
|
case 1020: { // Layer updates interceptor
|
n = data.readInt32();
|
if (n) {
|
ALOGV("Interceptor enabled");
|
mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
|
}
|
else{
|
ALOGV("Interceptor disabled");
|
mInterceptor->disable();
|
}
|
return NO_ERROR;
|
}
|
case 1021: { // Disable HWC virtual displays
|
n = data.readInt32();
|
mUseHwcVirtualDisplays = !n;
|
return NO_ERROR;
|
}
|
case 1022: { // Set saturation boost
|
Mutex::Autolock _l(mStateLock);
|
mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f));
|
|
updateColorMatrixLocked();
|
return NO_ERROR;
|
}
|
case 1023: { // Set native mode
|
mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32());
|
invalidateHwcGeometry();
|
repaintEverything();
|
return NO_ERROR;
|
}
|
// Deprecate, use 1030 to check whether the device is color managed.
|
case 1024: {
|
return NAME_NOT_FOUND;
|
}
|
case 1025: { // Set layer tracing
|
n = data.readInt32();
|
if (n) {
|
ALOGD("LayerTracing enabled");
|
Mutex::Autolock lock(mStateLock);
|
mTracingEnabledChanged = true;
|
mTracing.enable();
|
reply->writeInt32(NO_ERROR);
|
} else {
|
ALOGD("LayerTracing disabled");
|
bool writeFile = false;
|
{
|
Mutex::Autolock lock(mStateLock);
|
mTracingEnabledChanged = true;
|
writeFile = mTracing.disable();
|
}
|
|
if (writeFile) {
|
reply->writeInt32(mTracing.writeToFile());
|
} else {
|
reply->writeInt32(NO_ERROR);
|
}
|
}
|
return NO_ERROR;
|
}
|
case 1026: { // Get layer tracing status
|
reply->writeBool(mTracing.isEnabled());
|
return NO_ERROR;
|
}
|
// Is a DisplayColorSetting supported?
|
case 1027: {
|
const auto display = getDefaultDisplayDevice();
|
if (!display) {
|
return NAME_NOT_FOUND;
|
}
|
|
DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32());
|
switch (setting) {
|
case DisplayColorSetting::MANAGED:
|
reply->writeBool(useColorManagement);
|
break;
|
case DisplayColorSetting::UNMANAGED:
|
reply->writeBool(true);
|
break;
|
case DisplayColorSetting::ENHANCED:
|
reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE));
|
break;
|
default: // vendor display color setting
|
reply->writeBool(
|
display->hasRenderIntent(static_cast<RenderIntent>(setting)));
|
break;
|
}
|
return NO_ERROR;
|
}
|
// Is VrFlinger active?
|
case 1028: {
|
Mutex::Autolock _l(mStateLock);
|
reply->writeBool(getHwComposer().isUsingVrComposer());
|
return NO_ERROR;
|
}
|
// Set buffer size for SF tracing (value in KB)
|
case 1029: {
|
n = data.readInt32();
|
if (n <= 0 || n > MAX_TRACING_MEMORY) {
|
ALOGW("Invalid buffer size: %d KB", n);
|
reply->writeInt32(BAD_VALUE);
|
return BAD_VALUE;
|
}
|
|
ALOGD("Updating trace buffer to %d KB", n);
|
mTracing.setBufferSize(n * 1024);
|
reply->writeInt32(NO_ERROR);
|
return NO_ERROR;
|
}
|
// Is device color managed?
|
case 1030: {
|
reply->writeBool(useColorManagement);
|
return NO_ERROR;
|
}
|
// Override default composition data space
|
// adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \
|
// && adb shell stop zygote && adb shell start zygote
|
// to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \
|
// adb shell stop zygote && adb shell start zygote
|
case 1031: {
|
Mutex::Autolock _l(mStateLock);
|
n = data.readInt32();
|
if (n) {
|
n = data.readInt32();
|
if (n) {
|
Dataspace dataspace = static_cast<Dataspace>(n);
|
if (!validateCompositionDataspace(dataspace)) {
|
return BAD_VALUE;
|
}
|
mDefaultCompositionDataspace = dataspace;
|
}
|
n = data.readInt32();
|
if (n) {
|
Dataspace dataspace = static_cast<Dataspace>(n);
|
if (!validateCompositionDataspace(dataspace)) {
|
return BAD_VALUE;
|
}
|
mWideColorGamutCompositionDataspace = dataspace;
|
}
|
} else {
|
// restore composition data space.
|
mDefaultCompositionDataspace = defaultCompositionDataspace;
|
mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace;
|
}
|
return NO_ERROR;
|
}
|
// Set trace flags
|
case 1033: {
|
n = data.readUint32();
|
ALOGD("Updating trace flags to 0x%x", n);
|
mTracing.setTraceFlags(n);
|
reply->writeInt32(NO_ERROR);
|
return NO_ERROR;
|
}
|
case 1034: {
|
// TODO(b/129297325): expose this via developer menu option
|
n = data.readInt32();
|
if (n && !mRefreshRateOverlay) {
|
RefreshRateType type;
|
{
|
std::lock_guard<std::mutex> lock(mActiveConfigLock);
|
type = mDesiredActiveConfig.type;
|
}
|
mRefreshRateOverlay = std::make_unique<RefreshRateOverlay>(*this);
|
mRefreshRateOverlay->changeRefreshRate(type);
|
} else if (!n) {
|
mRefreshRateOverlay.reset();
|
}
|
return NO_ERROR;
|
}
|
case 1035: {
|
n = data.readInt32();
|
mDebugDisplayConfigSetByBackdoor = false;
|
if (n >= 0) {
|
const auto displayToken = getInternalDisplayToken();
|
status_t result = setAllowedDisplayConfigs(displayToken, {n});
|
if (result != NO_ERROR) {
|
return result;
|
}
|
mDebugDisplayConfigSetByBackdoor = true;
|
}
|
return NO_ERROR;
|
}
|
|
/*AW_code:add skip animation-frame for app-start performance;jiangbin 190417*/
|
case 1036: {
|
float scale = data.readFloat();
|
// ALOGD("setRefreshSkipCountExtend %f", scale );
|
mScheduler->setRefreshSkipCountExtend(scale );
|
return NO_ERROR;
|
}
|
}
|
}
|
return err;
|
}
|
|
void SurfaceFlinger::repaintEverything() {
|
mRepaintEverything = true;
|
signalTransaction();
|
}
|
|
void SurfaceFlinger::repaintEverythingForHWC() {
|
mRepaintEverything = true;
|
mEventQueue->invalidate();
|
}
|
|
// A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
|
class WindowDisconnector {
|
public:
|
WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
|
~WindowDisconnector() {
|
native_window_api_disconnect(mWindow, mApi);
|
}
|
|
private:
|
ANativeWindow* mWindow;
|
const int mApi;
|
};
|
|
status_t SurfaceFlinger::captureScreen(const sp<IBinder>& displayToken,
|
sp<GraphicBuffer>* outBuffer, bool& outCapturedSecureLayers,
|
const Dataspace reqDataspace,
|
const ui::PixelFormat reqPixelFormat, Rect sourceCrop,
|
uint32_t reqWidth, uint32_t reqHeight,
|
bool useIdentityTransform,
|
ISurfaceComposer::Rotation rotation,
|
bool captureSecureLayers) {
|
ATRACE_CALL();
|
|
if (!displayToken) return BAD_VALUE;
|
|
auto renderAreaRotation = fromSurfaceComposerRotation(rotation);
|
|
sp<DisplayDevice> display;
|
{
|
Mutex::Autolock _l(mStateLock);
|
|
display = getDisplayDeviceLocked(displayToken);
|
if (!display) return BAD_VALUE;
|
|
// set the requested width/height to the logical display viewport size
|
// by default
|
if (reqWidth == 0 || reqHeight == 0) {
|
reqWidth = uint32_t(display->getViewport().width());
|
reqHeight = uint32_t(display->getViewport().height());
|
}
|
}
|
|
DisplayRenderArea renderArea(display, sourceCrop, reqWidth, reqHeight, reqDataspace,
|
renderAreaRotation, captureSecureLayers);
|
|
auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display,
|
std::placeholders::_1);
|
return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat,
|
useIdentityTransform, outCapturedSecureLayers);
|
}
|
|
static Dataspace pickDataspaceFromColorMode(const ColorMode colorMode) {
|
switch (colorMode) {
|
case ColorMode::DISPLAY_P3:
|
case ColorMode::BT2100_PQ:
|
case ColorMode::BT2100_HLG:
|
case ColorMode::DISPLAY_BT2020:
|
return Dataspace::DISPLAY_P3;
|
default:
|
return Dataspace::V0_SRGB;
|
}
|
}
|
|
const sp<DisplayDevice> SurfaceFlinger::getDisplayByIdOrLayerStack(uint64_t displayOrLayerStack) {
|
const sp<IBinder> displayToken = getPhysicalDisplayTokenLocked(DisplayId{displayOrLayerStack});
|
if (displayToken) {
|
return getDisplayDeviceLocked(displayToken);
|
}
|
// Couldn't find display by displayId. Try to get display by layerStack since virtual displays
|
// may not have a displayId.
|
for (const auto& [token, display] : mDisplays) {
|
if (display->getLayerStack() == displayOrLayerStack) {
|
return display;
|
}
|
}
|
return nullptr;
|
}
|
|
status_t SurfaceFlinger::captureScreen(uint64_t displayOrLayerStack, Dataspace* outDataspace,
|
sp<GraphicBuffer>* outBuffer) {
|
sp<DisplayDevice> display;
|
uint32_t width;
|
uint32_t height;
|
ui::Transform::orientation_flags captureOrientation;
|
{
|
Mutex::Autolock _l(mStateLock);
|
display = getDisplayByIdOrLayerStack(displayOrLayerStack);
|
if (!display) {
|
return BAD_VALUE;
|
}
|
|
width = uint32_t(display->getViewport().width());
|
height = uint32_t(display->getViewport().height());
|
|
captureOrientation = fromSurfaceComposerRotation(
|
static_cast<ISurfaceComposer::Rotation>(display->getOrientation()));
|
if (captureOrientation == ui::Transform::orientation_flags::ROT_90) {
|
captureOrientation = ui::Transform::orientation_flags::ROT_270;
|
} else if (captureOrientation == ui::Transform::orientation_flags::ROT_270) {
|
captureOrientation = ui::Transform::orientation_flags::ROT_90;
|
}
|
*outDataspace =
|
pickDataspaceFromColorMode(display->getCompositionDisplay()->getState().colorMode);
|
}
|
|
DisplayRenderArea renderArea(display, Rect(), width, height, *outDataspace, captureOrientation,
|
false /* captureSecureLayers */);
|
|
auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display,
|
std::placeholders::_1);
|
bool ignored = false;
|
return captureScreenCommon(renderArea, traverseLayers, outBuffer, ui::PixelFormat::RGBA_8888,
|
false /* useIdentityTransform */,
|
ignored /* outCapturedSecureLayers */);
|
}
|
|
status_t SurfaceFlinger::captureLayers(
|
const sp<IBinder>& layerHandleBinder, sp<GraphicBuffer>* outBuffer,
|
const Dataspace reqDataspace, const ui::PixelFormat reqPixelFormat, const Rect& sourceCrop,
|
const std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>>& excludeHandles,
|
float frameScale, bool childrenOnly) {
|
ATRACE_CALL();
|
|
class LayerRenderArea : public RenderArea {
|
public:
|
LayerRenderArea(SurfaceFlinger* flinger, const sp<Layer>& layer, const Rect crop,
|
int32_t reqWidth, int32_t reqHeight, Dataspace reqDataSpace,
|
bool childrenOnly)
|
: RenderArea(reqWidth, reqHeight, CaptureFill::CLEAR, reqDataSpace),
|
mLayer(layer),
|
mCrop(crop),
|
mNeedsFiltering(false),
|
mFlinger(flinger),
|
mChildrenOnly(childrenOnly) {}
|
const ui::Transform& getTransform() const override { return mTransform; }
|
Rect getBounds() const override {
|
const Layer::State& layerState(mLayer->getDrawingState());
|
return mLayer->getBufferSize(layerState);
|
}
|
int getHeight() const override {
|
return mLayer->getBufferSize(mLayer->getDrawingState()).getHeight();
|
}
|
int getWidth() const override {
|
return mLayer->getBufferSize(mLayer->getDrawingState()).getWidth();
|
}
|
bool isSecure() const override { return false; }
|
bool needsFiltering() const override { return mNeedsFiltering; }
|
const sp<const DisplayDevice> getDisplayDevice() const override { return nullptr; }
|
Rect getSourceCrop() const override {
|
if (mCrop.isEmpty()) {
|
return getBounds();
|
} else {
|
return mCrop;
|
}
|
}
|
class ReparentForDrawing {
|
public:
|
const sp<Layer>& oldParent;
|
const sp<Layer>& newParent;
|
|
ReparentForDrawing(const sp<Layer>& oldParent, const sp<Layer>& newParent,
|
const Rect& drawingBounds)
|
: oldParent(oldParent), newParent(newParent) {
|
// Compute and cache the bounds for the new parent layer.
|
newParent->computeBounds(drawingBounds.toFloatRect(), ui::Transform());
|
oldParent->setChildrenDrawingParent(newParent);
|
}
|
~ReparentForDrawing() { oldParent->setChildrenDrawingParent(oldParent); }
|
};
|
|
void render(std::function<void()> drawLayers) override {
|
const Rect sourceCrop = getSourceCrop();
|
// no need to check rotation because there is none
|
mNeedsFiltering = sourceCrop.width() != getReqWidth() ||
|
sourceCrop.height() != getReqHeight();
|
|
if (!mChildrenOnly) {
|
mTransform = mLayer->getTransform().inverse();
|
drawLayers();
|
} else {
|
Rect bounds = getBounds();
|
screenshotParentLayer = mFlinger->getFactory().createContainerLayer(
|
LayerCreationArgs(mFlinger, nullptr, String8("Screenshot Parent"),
|
bounds.getWidth(), bounds.getHeight(), 0,
|
LayerMetadata()));
|
|
ReparentForDrawing reparent(mLayer, screenshotParentLayer, sourceCrop);
|
drawLayers();
|
}
|
}
|
|
private:
|
const sp<Layer> mLayer;
|
const Rect mCrop;
|
|
// In the "childrenOnly" case we reparent the children to a screenshot
|
// layer which has no properties set and which does not draw.
|
sp<ContainerLayer> screenshotParentLayer;
|
ui::Transform mTransform;
|
bool mNeedsFiltering;
|
|
SurfaceFlinger* mFlinger;
|
const bool mChildrenOnly;
|
};
|
|
int reqWidth = 0;
|
int reqHeight = 0;
|
sp<Layer> parent;
|
Rect crop(sourceCrop);
|
std::unordered_set<sp<Layer>, ISurfaceComposer::SpHash<Layer>> excludeLayers;
|
|
{
|
Mutex::Autolock _l(mStateLock);
|
|
parent = fromHandle(layerHandleBinder);
|
if (parent == nullptr || parent->isRemovedFromCurrentState()) {
|
ALOGE("captureLayers called with an invalid or removed parent");
|
return NAME_NOT_FOUND;
|
}
|
|
const int uid = IPCThreadState::self()->getCallingUid();
|
const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
|
if (!forSystem && parent->getCurrentState().flags & layer_state_t::eLayerSecure) {
|
ALOGW("Attempting to capture secure layer: PERMISSION_DENIED");
|
return PERMISSION_DENIED;
|
}
|
|
if (sourceCrop.width() <= 0) {
|
crop.left = 0;
|
crop.right = parent->getBufferSize(parent->getCurrentState()).getWidth();
|
}
|
|
if (sourceCrop.height() <= 0) {
|
crop.top = 0;
|
crop.bottom = parent->getBufferSize(parent->getCurrentState()).getHeight();
|
}
|
reqWidth = crop.width() * frameScale;
|
reqHeight = crop.height() * frameScale;
|
|
for (const auto& handle : excludeHandles) {
|
sp<Layer> excludeLayer = fromHandle(handle);
|
if (excludeLayer != nullptr) {
|
excludeLayers.emplace(excludeLayer);
|
} else {
|
ALOGW("Invalid layer handle passed as excludeLayer to captureLayers");
|
return NAME_NOT_FOUND;
|
}
|
}
|
} // mStateLock
|
|
// really small crop or frameScale
|
if (reqWidth <= 0) {
|
reqWidth = 1;
|
}
|
if (reqHeight <= 0) {
|
reqHeight = 1;
|
}
|
|
LayerRenderArea renderArea(this, parent, crop, reqWidth, reqHeight, reqDataspace, childrenOnly);
|
auto traverseLayers = [parent, childrenOnly,
|
&excludeLayers](const LayerVector::Visitor& visitor) {
|
parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
|
if (!layer->isVisible()) {
|
return;
|
} else if (childrenOnly && layer == parent.get()) {
|
return;
|
}
|
|
sp<Layer> p = layer;
|
while (p != nullptr) {
|
if (excludeLayers.count(p) != 0) {
|
return;
|
}
|
p = p->getParent();
|
}
|
|
visitor(layer);
|
});
|
};
|
|
bool outCapturedSecureLayers = false;
|
return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat, false,
|
outCapturedSecureLayers);
|
}
|
|
status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea,
|
TraverseLayersFunction traverseLayers,
|
sp<GraphicBuffer>* outBuffer,
|
const ui::PixelFormat reqPixelFormat,
|
bool useIdentityTransform,
|
bool& outCapturedSecureLayers) {
|
ATRACE_CALL();
|
|
// TODO(b/116112787) Make buffer usage a parameter.
|
const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
|
GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
|
*outBuffer =
|
getFactory().createGraphicBuffer(renderArea.getReqWidth(), renderArea.getReqHeight(),
|
static_cast<android_pixel_format>(reqPixelFormat), 1,
|
usage, "screenshot");
|
|
return captureScreenCommon(renderArea, traverseLayers, *outBuffer, useIdentityTransform,
|
outCapturedSecureLayers);
|
}
|
|
status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea,
|
TraverseLayersFunction traverseLayers,
|
const sp<GraphicBuffer>& buffer,
|
bool useIdentityTransform,
|
bool& outCapturedSecureLayers) {
|
// This mutex protects syncFd and captureResult for communication of the return values from the
|
// main thread back to this Binder thread
|
std::mutex captureMutex;
|
std::condition_variable captureCondition;
|
std::unique_lock<std::mutex> captureLock(captureMutex);
|
int syncFd = -1;
|
std::optional<status_t> captureResult;
|
|
const int uid = IPCThreadState::self()->getCallingUid();
|
const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
|
|
sp<LambdaMessage> message = new LambdaMessage([&] {
|
// If there is a refresh pending, bug out early and tell the binder thread to try again
|
// after the refresh.
|
if (mRefreshPending) {
|
ATRACE_NAME("Skipping screenshot for now");
|
std::unique_lock<std::mutex> captureLock(captureMutex);
|
captureResult = std::make_optional<status_t>(EAGAIN);
|
captureCondition.notify_one();
|
return;
|
}
|
|
status_t result = NO_ERROR;
|
int fd = -1;
|
{
|
Mutex::Autolock _l(mStateLock);
|
renderArea.render([&] {
|
result = captureScreenImplLocked(renderArea, traverseLayers, buffer.get(),
|
useIdentityTransform, forSystem, &fd,
|
outCapturedSecureLayers);
|
});
|
}
|
|
{
|
std::unique_lock<std::mutex> captureLock(captureMutex);
|
syncFd = fd;
|
captureResult = std::make_optional<status_t>(result);
|
captureCondition.notify_one();
|
}
|
});
|
|
status_t result = postMessageAsync(message);
|
if (result == NO_ERROR) {
|
captureCondition.wait(captureLock, [&] { return captureResult; });
|
while (*captureResult == EAGAIN) {
|
captureResult.reset();
|
result = postMessageAsync(message);
|
if (result != NO_ERROR) {
|
return result;
|
}
|
captureCondition.wait(captureLock, [&] { return captureResult; });
|
}
|
result = *captureResult;
|
}
|
|
if (result == NO_ERROR) {
|
sync_wait(syncFd, -1);
|
close(syncFd);
|
}
|
|
return result;
|
}
|
|
void SurfaceFlinger::renderScreenImplLocked(const RenderArea& renderArea,
|
TraverseLayersFunction traverseLayers,
|
ANativeWindowBuffer* buffer, bool useIdentityTransform,
|
int* outSyncFd) {
|
ATRACE_CALL();
|
|
const auto reqWidth = renderArea.getReqWidth();
|
const auto reqHeight = renderArea.getReqHeight();
|
const auto rotation = renderArea.getRotationFlags();
|
const auto transform = renderArea.getTransform();
|
const auto sourceCrop = renderArea.getSourceCrop();
|
|
renderengine::DisplaySettings clientCompositionDisplay;
|
std::vector<renderengine::LayerSettings> clientCompositionLayers;
|
|
// assume that bounds are never offset, and that they are the same as the
|
// buffer bounds.
|
clientCompositionDisplay.physicalDisplay = Rect(reqWidth, reqHeight);
|
clientCompositionDisplay.clip = sourceCrop;
|
clientCompositionDisplay.globalTransform = transform.asMatrix4();
|
|
// Now take into account the rotation flag. We append a transform that
|
// rotates the layer stack about the origin, then translate by buffer
|
// boundaries to be in the right quadrant.
|
mat4 rotMatrix;
|
int displacementX = 0;
|
int displacementY = 0;
|
float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f;
|
switch (rotation) {
|
case ui::Transform::ROT_90:
|
rotMatrix = mat4::rotate(rot90InRadians, vec3(0, 0, 1));
|
displacementX = renderArea.getBounds().getHeight();
|
break;
|
case ui::Transform::ROT_180:
|
rotMatrix = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1));
|
displacementY = renderArea.getBounds().getWidth();
|
displacementX = renderArea.getBounds().getHeight();
|
break;
|
case ui::Transform::ROT_270:
|
rotMatrix = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1));
|
displacementY = renderArea.getBounds().getWidth();
|
break;
|
default:
|
break;
|
}
|
|
// We need to transform the clipping window into the right spot.
|
// First, rotate the clipping rectangle by the rotation hint to get the
|
// right orientation
|
const vec4 clipTL = vec4(sourceCrop.left, sourceCrop.top, 0, 1);
|
const vec4 clipBR = vec4(sourceCrop.right, sourceCrop.bottom, 0, 1);
|
const vec4 rotClipTL = rotMatrix * clipTL;
|
const vec4 rotClipBR = rotMatrix * clipBR;
|
const int newClipLeft = std::min(rotClipTL[0], rotClipBR[0]);
|
const int newClipTop = std::min(rotClipTL[1], rotClipBR[1]);
|
const int newClipRight = std::max(rotClipTL[0], rotClipBR[0]);
|
const int newClipBottom = std::max(rotClipTL[1], rotClipBR[1]);
|
|
// Now reposition the clipping rectangle with the displacement vector
|
// computed above.
|
const mat4 displacementMat = mat4::translate(vec4(displacementX, displacementY, 0, 1));
|
clientCompositionDisplay.clip =
|
Rect(newClipLeft + displacementX, newClipTop + displacementY,
|
newClipRight + displacementX, newClipBottom + displacementY);
|
|
mat4 clipTransform = displacementMat * rotMatrix;
|
clientCompositionDisplay.globalTransform =
|
clipTransform * clientCompositionDisplay.globalTransform;
|
|
clientCompositionDisplay.outputDataspace = renderArea.getReqDataSpace();
|
clientCompositionDisplay.maxLuminance = DisplayDevice::sDefaultMaxLumiance;
|
|
const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill());
|
|
renderengine::LayerSettings fillLayer;
|
fillLayer.source.buffer.buffer = nullptr;
|
fillLayer.source.solidColor = half3(0.0, 0.0, 0.0);
|
fillLayer.geometry.boundaries = FloatRect(0.0, 0.0, 1.0, 1.0);
|
fillLayer.alpha = half(alpha);
|
clientCompositionLayers.push_back(fillLayer);
|
|
Region clearRegion = Region::INVALID_REGION;
|
traverseLayers([&](Layer* layer) {
|
renderengine::LayerSettings layerSettings;
|
bool prepared = layer->prepareClientLayer(renderArea, useIdentityTransform, clearRegion,
|
false, layerSettings);
|
if (prepared) {
|
clientCompositionLayers.push_back(layerSettings);
|
}
|
});
|
|
clientCompositionDisplay.clearRegion = clearRegion;
|
// Use an empty fence for the buffer fence, since we just created the buffer so
|
// there is no need for synchronization with the GPU.
|
base::unique_fd bufferFence;
|
base::unique_fd drawFence;
|
getRenderEngine().useProtectedContext(false);
|
getRenderEngine().drawLayers(clientCompositionDisplay, clientCompositionLayers, buffer,
|
/*useFramebufferCache=*/false, std::move(bufferFence), &drawFence);
|
|
*outSyncFd = drawFence.release();
|
}
|
|
status_t SurfaceFlinger::captureScreenImplLocked(const RenderArea& renderArea,
|
TraverseLayersFunction traverseLayers,
|
ANativeWindowBuffer* buffer,
|
bool useIdentityTransform, bool forSystem,
|
int* outSyncFd, bool& outCapturedSecureLayers) {
|
ATRACE_CALL();
|
|
traverseLayers([&](Layer* layer) {
|
outCapturedSecureLayers =
|
outCapturedSecureLayers || (layer->isVisible() && layer->isSecure());
|
});
|
|
// We allow the system server to take screenshots of secure layers for
|
// use in situations like the Screen-rotation animation and place
|
// the impetus on WindowManager to not persist them.
|
if (outCapturedSecureLayers && !forSystem) {
|
ALOGW("FB is protected: PERMISSION_DENIED");
|
return PERMISSION_DENIED;
|
}
|
renderScreenImplLocked(renderArea, traverseLayers, buffer, useIdentityTransform, outSyncFd);
|
return NO_ERROR;
|
}
|
|
void SurfaceFlinger::setInputWindowsFinished() {
|
Mutex::Autolock _l(mStateLock);
|
|
mPendingSyncInputWindows = false;
|
mTransactionCV.broadcast();
|
}
|
|
// ---------------------------------------------------------------------------
|
|
void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
|
layersSortedByZ.traverseInZOrder(stateSet, visitor);
|
}
|
|
void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
|
layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
|
}
|
|
void SurfaceFlinger::traverseLayersInDisplay(const sp<const DisplayDevice>& display,
|
const LayerVector::Visitor& visitor) {
|
// We loop through the first level of layers without traversing,
|
// as we need to determine which layers belong to the requested display.
|
for (const auto& layer : mDrawingState.layersSortedByZ) {
|
if (!layer->belongsToDisplay(display->getLayerStack(), false)) {
|
continue;
|
}
|
// relative layers are traversed in Layer::traverseInZOrder
|
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
|
if (!layer->belongsToDisplay(display->getLayerStack(), false)) {
|
return;
|
}
|
if (!layer->isVisible()) {
|
return;
|
}
|
visitor(layer);
|
});
|
}
|
}
|
|
void SurfaceFlinger::setAllowedDisplayConfigsInternal(const sp<DisplayDevice>& display,
|
const std::vector<int32_t>& allowedConfigs) {
|
if (!display->isPrimary()) {
|
return;
|
}
|
|
ALOGV("Updating allowed configs");
|
mAllowedDisplayConfigs = DisplayConfigs(allowedConfigs.begin(), allowedConfigs.end());
|
|
// Set the highest allowed config by iterating backwards on available refresh rates
|
const auto& refreshRates = mRefreshRateConfigs.getRefreshRates();
|
for (auto iter = refreshRates.crbegin(); iter != refreshRates.crend(); ++iter) {
|
if (iter->second && isDisplayConfigAllowed(iter->second->configId)) {
|
ALOGV("switching to config %d", iter->second->configId);
|
setDesiredActiveConfig(
|
{iter->first, iter->second->configId, Scheduler::ConfigEvent::Changed});
|
break;
|
}
|
}
|
}
|
|
status_t SurfaceFlinger::setAllowedDisplayConfigs(const sp<IBinder>& displayToken,
|
const std::vector<int32_t>& allowedConfigs) {
|
ATRACE_CALL();
|
|
if (!displayToken || allowedConfigs.empty()) {
|
return BAD_VALUE;
|
}
|
|
if (mDebugDisplayConfigSetByBackdoor) {
|
// ignore this request as config is overridden by backdoor
|
return NO_ERROR;
|
}
|
|
postMessageSync(new LambdaMessage([&]() NO_THREAD_SAFETY_ANALYSIS {
|
const auto display = getDisplayDeviceLocked(displayToken);
|
if (!display) {
|
ALOGE("Attempt to set allowed display configs for invalid display token %p",
|
displayToken.get());
|
} else if (display->isVirtual()) {
|
ALOGW("Attempt to set allowed display configs for virtual display");
|
} else {
|
setAllowedDisplayConfigsInternal(display, allowedConfigs);
|
}
|
}));
|
|
return NO_ERROR;
|
}
|
|
status_t SurfaceFlinger::getAllowedDisplayConfigs(const sp<IBinder>& displayToken,
|
std::vector<int32_t>* outAllowedConfigs) {
|
ATRACE_CALL();
|
|
if (!displayToken || !outAllowedConfigs) {
|
return BAD_VALUE;
|
}
|
|
Mutex::Autolock lock(mStateLock);
|
|
const auto display = getDisplayDeviceLocked(displayToken);
|
if (!display) {
|
return NAME_NOT_FOUND;
|
}
|
|
if (display->isPrimary()) {
|
outAllowedConfigs->assign(mAllowedDisplayConfigs.begin(), mAllowedDisplayConfigs.end());
|
}
|
|
return NO_ERROR;
|
}
|
|
void SurfaceFlinger::SetInputWindowsListener::onSetInputWindowsFinished() {
|
mFlinger->setInputWindowsFinished();
|
}
|
|
sp<Layer> SurfaceFlinger::fromHandle(const sp<IBinder>& handle) {
|
BBinder *b = handle->localBinder();
|
if (b == nullptr) {
|
return nullptr;
|
}
|
auto it = mLayersByLocalBinderToken.find(b);
|
if (it != mLayersByLocalBinderToken.end()) {
|
return it->second.promote();
|
}
|
return nullptr;
|
}
|
|
} // namespace android
|
|
#if defined(__gl_h_)
|
#error "don't include gl/gl.h in this file"
|
#endif
|
|
#if defined(__gl2_h_)
|
#error "don't include gl2/gl2.h in this file"
|
#endif
|