/*
|
* Copyright (C) 2007 The Android Open Source Project
|
*
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
* you may not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* http://www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#ifndef ANDROID_LAYER_H
|
#define ANDROID_LAYER_H
|
|
#include <sys/types.h>
|
|
#include <compositionengine/LayerFE.h>
|
#include <gui/BufferQueue.h>
|
#include <gui/ISurfaceComposerClient.h>
|
#include <gui/LayerState.h>
|
#include <input/InputWindow.h>
|
#include <layerproto/LayerProtoHeader.h>
|
#include <math/vec4.h>
|
#include <renderengine/Mesh.h>
|
#include <renderengine/Texture.h>
|
#include <ui/FloatRect.h>
|
#include <ui/FrameStats.h>
|
#include <ui/GraphicBuffer.h>
|
#include <ui/PixelFormat.h>
|
#include <ui/Region.h>
|
#include <ui/Transform.h>
|
#include <utils/RefBase.h>
|
#include <utils/String8.h>
|
#include <utils/Timers.h>
|
|
#include <cstdint>
|
#include <list>
|
#include <optional>
|
#include <vector>
|
|
#include "Client.h"
|
#include "FrameTracker.h"
|
#include "LayerVector.h"
|
#include "MonitoredProducer.h"
|
#include "SurfaceFlinger.h"
|
#include "TransactionCompletedThread.h"
|
|
#include "DisplayHardware/ComposerHal.h"
|
#include "DisplayHardware/HWComposer.h"
|
#include "RenderArea.h"
|
|
using namespace android::surfaceflinger;
|
|
namespace android {
|
|
// ---------------------------------------------------------------------------
|
|
class Client;
|
class Colorizer;
|
class DisplayDevice;
|
class GraphicBuffer;
|
class SurfaceFlinger;
|
class LayerDebugInfo;
|
|
namespace compositionengine {
|
class Layer;
|
class OutputLayer;
|
struct LayerFECompositionState;
|
}
|
|
namespace impl {
|
class SurfaceInterceptor;
|
}
|
|
// ---------------------------------------------------------------------------
|
|
struct LayerCreationArgs {
|
LayerCreationArgs(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name,
|
uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata)
|
: flinger(flinger), client(client), name(name), w(w), h(h), flags(flags),
|
metadata(std::move(metadata)) {}
|
|
SurfaceFlinger* flinger;
|
const sp<Client>& client;
|
const String8& name;
|
uint32_t w;
|
uint32_t h;
|
uint32_t flags;
|
LayerMetadata metadata;
|
};
|
|
class Layer : public virtual compositionengine::LayerFE {
|
static std::atomic<int32_t> sSequence;
|
|
public:
|
mutable bool contentDirty{false};
|
// regions below are in window-manager space
|
Region visibleRegion;
|
Region coveredRegion;
|
Region visibleNonTransparentRegion;
|
Region surfaceDamageRegion;
|
|
// Layer serial number. This gives layers an explicit ordering, so we
|
// have a stable sort order when their layer stack and Z-order are
|
// the same.
|
int32_t sequence{sSequence++};
|
|
enum { // flags for doTransaction()
|
eDontUpdateGeometryState = 0x00000001,
|
eVisibleRegion = 0x00000002,
|
eInputInfoChanged = 0x00000004
|
};
|
|
struct Geometry {
|
uint32_t w;
|
uint32_t h;
|
ui::Transform transform;
|
|
inline bool operator==(const Geometry& rhs) const {
|
return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) &&
|
(transform.ty() == rhs.transform.ty());
|
}
|
inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); }
|
};
|
|
struct RoundedCornerState {
|
RoundedCornerState() = default;
|
RoundedCornerState(FloatRect cropRect, float radius)
|
: cropRect(cropRect), radius(radius) {}
|
|
// Rounded rectangle in local layer coordinate space.
|
FloatRect cropRect = FloatRect();
|
// Radius of the rounded rectangle.
|
float radius = 0.0f;
|
};
|
|
struct State {
|
Geometry active_legacy;
|
Geometry requested_legacy;
|
int32_t z;
|
|
// The identifier of the layer stack this layer belongs to. A layer can
|
// only be associated to a single layer stack. A layer stack is a
|
// z-ordered group of layers which can be associated to one or more
|
// displays. Using the same layer stack on different displays is a way
|
// to achieve mirroring.
|
uint32_t layerStack;
|
|
uint8_t flags;
|
uint8_t reserved[2];
|
int32_t sequence; // changes when visible regions can change
|
bool modified;
|
|
// Crop is expressed in layer space coordinate.
|
Rect crop_legacy;
|
Rect requestedCrop_legacy;
|
|
// If set, defers this state update until the identified Layer
|
// receives a frame with the given frameNumber
|
wp<Layer> barrierLayer_legacy;
|
uint64_t frameNumber_legacy;
|
|
// the transparentRegion hint is a bit special, it's latched only
|
// when we receive a buffer -- this is because it's "content"
|
// dependent.
|
Region activeTransparentRegion_legacy;
|
Region requestedTransparentRegion_legacy;
|
|
LayerMetadata metadata;
|
|
// If non-null, a Surface this Surface's Z-order is interpreted relative to.
|
wp<Layer> zOrderRelativeOf;
|
|
// A list of surfaces whose Z-order is interpreted relative to ours.
|
SortedVector<wp<Layer>> zOrderRelatives;
|
|
half4 color;
|
float cornerRadius;
|
|
bool inputInfoChanged;
|
InputWindowInfo inputInfo;
|
wp<Layer> touchableRegionCrop;
|
|
// dataspace is only used by BufferStateLayer and ColorLayer
|
ui::Dataspace dataspace;
|
|
// The fields below this point are only used by BufferStateLayer
|
Geometry active;
|
|
uint32_t transform;
|
bool transformToDisplayInverse;
|
|
Rect crop;
|
Region transparentRegionHint;
|
|
sp<GraphicBuffer> buffer;
|
client_cache_t clientCacheId;
|
sp<Fence> acquireFence;
|
HdrMetadata hdrMetadata;
|
Region surfaceDamageRegion;
|
int32_t api;
|
|
sp<NativeHandle> sidebandStream;
|
mat4 colorTransform;
|
bool hasColorTransform;
|
|
// pointer to background color layer that, if set, appears below the buffer state layer
|
// and the buffer state layer's children. Z order will be set to
|
// INT_MIN
|
sp<Layer> bgColorLayer;
|
|
// The deque of callback handles for this frame. The back of the deque contains the most
|
// recent callback handle.
|
std::deque<sp<CallbackHandle>> callbackHandles;
|
bool colorSpaceAgnostic;
|
};
|
|
explicit Layer(const LayerCreationArgs& args);
|
virtual ~Layer();
|
|
void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; }
|
bool getPrimaryDisplayOnly() const { return mPrimaryDisplayOnly; }
|
|
// ------------------------------------------------------------------------
|
// Geometry setting functions.
|
//
|
// The following group of functions are used to specify the layers
|
// bounds, and the mapping of the texture on to those bounds. According
|
// to various settings changes to them may apply immediately, or be delayed until
|
// a pending resize is completed by the producer submitting a buffer. For example
|
// if we were to change the buffer size, and update the matrix ahead of the
|
// new buffer arriving, then we would be stretching the buffer to a different
|
// aspect before and after the buffer arriving, which probably isn't what we wanted.
|
//
|
// The first set of geometry functions are controlled by the scaling mode, described
|
// in window.h. The scaling mode may be set by the client, as it submits buffers.
|
// This value may be overriden through SurfaceControl, with setOverrideScalingMode.
|
//
|
// Put simply, if our scaling mode is SCALING_MODE_FREEZE, then
|
// matrix updates will not be applied while a resize is pending
|
// and the size and transform will remain in their previous state
|
// until a new buffer is submitted. If the scaling mode is another value
|
// then the old-buffer will immediately be scaled to the pending size
|
// and the new matrix will be immediately applied following this scaling
|
// transformation.
|
|
// Set the default buffer size for the assosciated Producer, in pixels. This is
|
// also the rendered size of the layer prior to any transformations. Parent
|
// or local matrix transformations will not affect the size of the buffer,
|
// but may affect it's on-screen size or clipping.
|
virtual bool setSize(uint32_t w, uint32_t h);
|
// Set a 2x2 transformation matrix on the layer. This transform
|
// will be applied after parent transforms, but before any final
|
// producer specified transform.
|
virtual bool setMatrix(const layer_state_t::matrix22_t& matrix,
|
bool allowNonRectPreservingTransforms);
|
|
// This second set of geometry attributes are controlled by
|
// setGeometryAppliesWithResize, and their default mode is to be
|
// immediate. If setGeometryAppliesWithResize is specified
|
// while a resize is pending, then update of these attributes will
|
// be delayed until the resize completes.
|
|
// setPosition operates in parent buffer space (pre parent-transform) or display
|
// space for top-level layers.
|
virtual bool setPosition(float x, float y, bool immediate);
|
// Buffer space
|
virtual bool setCrop_legacy(const Rect& crop, bool immediate);
|
|
// TODO(b/38182121): Could we eliminate the various latching modes by
|
// using the layer hierarchy?
|
// -----------------------------------------------------------------------
|
virtual bool setLayer(int32_t z);
|
virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ);
|
|
virtual bool setAlpha(float alpha);
|
virtual bool setColor(const half3& /*color*/) { return false; };
|
|
// Set rounded corner radius for this layer and its children.
|
//
|
// We only support 1 radius per layer in the hierarchy, where parent layers have precedence.
|
// The shape of the rounded corner rectangle is specified by the crop rectangle of the layer
|
// from which we inferred the rounded corner radius.
|
virtual bool setCornerRadius(float cornerRadius);
|
virtual bool setTransparentRegionHint(const Region& transparent);
|
virtual bool setFlags(uint8_t flags, uint8_t mask);
|
virtual bool setLayerStack(uint32_t layerStack);
|
virtual uint32_t getLayerStack() const;
|
virtual void deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle,
|
uint64_t frameNumber);
|
virtual void deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber);
|
virtual bool setOverrideScalingMode(int32_t overrideScalingMode);
|
virtual bool setMetadata(const LayerMetadata& data);
|
virtual bool reparentChildren(const sp<IBinder>& layer);
|
virtual void setChildrenDrawingParent(const sp<Layer>& layer);
|
virtual bool reparent(const sp<IBinder>& newParentHandle);
|
virtual bool detachChildren();
|
bool attachChildren();
|
bool isLayerDetached() const { return mLayerDetached; }
|
virtual bool setColorTransform(const mat4& matrix);
|
virtual mat4 getColorTransform() const;
|
virtual bool hasColorTransform() const;
|
virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; }
|
|
// Used only to set BufferStateLayer state
|
virtual bool setTransform(uint32_t /*transform*/) { return false; };
|
virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; };
|
virtual bool setCrop(const Rect& /*crop*/) { return false; };
|
virtual bool setFrame(const Rect& /*frame*/) { return false; };
|
virtual bool setBuffer(const sp<GraphicBuffer>& /*buffer*/, nsecs_t /*postTime*/,
|
nsecs_t /*desiredPresentTime*/,
|
const client_cache_t& /*clientCacheId*/) {
|
return false;
|
};
|
virtual bool setAcquireFence(const sp<Fence>& /*fence*/) { return false; };
|
virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; };
|
virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; };
|
virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; };
|
virtual bool setApi(int32_t /*api*/) { return false; };
|
virtual bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/) { return false; };
|
virtual bool setTransactionCompletedListeners(
|
const std::vector<sp<CallbackHandle>>& /*handles*/) {
|
return false;
|
};
|
virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace);
|
virtual bool setColorSpaceAgnostic(const bool agnostic);
|
|
ui::Dataspace getDataSpace() const { return mCurrentDataSpace; }
|
|
// Before color management is introduced, contents on Android have to be
|
// desaturated in order to match what they appears like visually.
|
// With color management, these contents will appear desaturated, thus
|
// needed to be saturated so that they match what they are designed for
|
// visually.
|
bool isLegacyDataSpace() const;
|
|
virtual std::shared_ptr<compositionengine::Layer> getCompositionLayer() const;
|
|
// If we have received a new buffer this frame, we will pass its surface
|
// damage down to hardware composer. Otherwise, we must send a region with
|
// one empty rect.
|
virtual void useSurfaceDamage() {}
|
virtual void useEmptyDamage() {}
|
|
uint32_t getTransactionFlags() const { return mTransactionFlags; }
|
uint32_t getTransactionFlags(uint32_t flags);
|
uint32_t setTransactionFlags(uint32_t flags);
|
|
// Deprecated, please use compositionengine::Output::belongsInOutput()
|
// instead.
|
// TODO(lpique): Move the remaining callers (screencap) to the new function.
|
bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const {
|
return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay);
|
}
|
|
void computeGeometry(const RenderArea& renderArea, renderengine::Mesh& mesh,
|
bool useIdentityTransform) const;
|
FloatRect getBounds(const Region& activeTransparentRegion) const;
|
FloatRect getBounds() const;
|
|
// Compute bounds for the layer and cache the results.
|
void computeBounds(FloatRect parentBounds, ui::Transform parentTransform);
|
|
// Returns the buffer scale transform if a scaling mode is set.
|
ui::Transform getBufferScaleTransform() const;
|
|
// Get effective layer transform, taking into account all its parent transform with any
|
// scaling if the parent scaling more is not NATIVE_WINDOW_SCALING_MODE_FREEZE.
|
ui::Transform getTransformWithScale(const ui::Transform& bufferScaleTransform) const;
|
|
// Returns the bounds of the layer without any buffer scaling.
|
FloatRect getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const;
|
|
int32_t getSequence() const { return sequence; }
|
|
// -----------------------------------------------------------------------
|
// Virtuals
|
virtual const char* getTypeId() const = 0;
|
|
/*
|
* isOpaque - true if this surface is opaque
|
*
|
* This takes into account the buffer format (i.e. whether or not the
|
* pixel format includes an alpha channel) and the "opaque" flag set
|
* on the layer. It does not examine the current plane alpha value.
|
*/
|
virtual bool isOpaque(const Layer::State&) const { return false; }
|
|
/*
|
* isSecure - true if this surface is secure, that is if it prevents
|
* screenshots or VNC servers.
|
*/
|
bool isSecure() const;
|
|
/*
|
* isVisible - true if this layer is visible, false otherwise
|
*/
|
virtual bool isVisible() const = 0;
|
|
/*
|
* isHiddenByPolicy - true if this layer has been forced invisible.
|
* just because this is false, doesn't mean isVisible() is true.
|
* For example if this layer has no active buffer, it may not be hidden by
|
* policy, but it still can not be visible.
|
*/
|
bool isHiddenByPolicy() const;
|
|
/*
|
* Returns whether this layer can receive input.
|
*/
|
virtual bool canReceiveInput() const;
|
|
/*
|
* isProtected - true if the layer may contain protected content in the
|
* GRALLOC_USAGE_PROTECTED sense.
|
*/
|
virtual bool isProtected() const { return false; }
|
|
/*
|
* isFixedSize - true if content has a fixed size
|
*/
|
virtual bool isFixedSize() const { return true; }
|
|
/*
|
* usesSourceCrop - true if content should use a source crop
|
*/
|
virtual bool usesSourceCrop() const { return false; }
|
|
// Most layers aren't created from the main thread, and therefore need to
|
// grab the SF state lock to access HWC, but ContainerLayer does, so we need
|
// to avoid grabbing the lock again to avoid deadlock
|
virtual bool isCreatedFromMainThread() const { return false; }
|
|
bool isRemovedFromCurrentState() const;
|
|
void writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet,
|
uint32_t traceFlags = SurfaceTracing::TRACE_ALL);
|
|
void writeToProto(LayerProto* layerInfo, const sp<DisplayDevice>& displayDevice,
|
uint32_t traceFlags = SurfaceTracing::TRACE_ALL);
|
|
virtual Geometry getActiveGeometry(const Layer::State& s) const { return s.active_legacy; }
|
virtual uint32_t getActiveWidth(const Layer::State& s) const { return s.active_legacy.w; }
|
virtual uint32_t getActiveHeight(const Layer::State& s) const { return s.active_legacy.h; }
|
virtual ui::Transform getActiveTransform(const Layer::State& s) const {
|
return s.active_legacy.transform;
|
}
|
virtual Region getActiveTransparentRegion(const Layer::State& s) const {
|
return s.activeTransparentRegion_legacy;
|
}
|
virtual Rect getCrop(const Layer::State& s) const { return s.crop_legacy; }
|
|
protected:
|
virtual bool prepareClientLayer(const RenderArea& renderArea, const Region& clip,
|
bool useIdentityTransform, Region& clearRegion,
|
const bool supportProtectedContent,
|
renderengine::LayerSettings& layer);
|
|
public:
|
/*
|
* compositionengine::LayerFE overrides
|
*/
|
void latchCompositionState(compositionengine::LayerFECompositionState&,
|
bool includeGeometry) const override;
|
void onLayerDisplayed(const sp<Fence>& releaseFence) override;
|
const char* getDebugName() const override;
|
|
protected:
|
void latchGeometry(compositionengine::LayerFECompositionState& outState) const;
|
|
public:
|
virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {}
|
|
virtual bool isHdrY410() const { return false; }
|
|
void forceClientComposition(const sp<DisplayDevice>& display);
|
bool getForceClientComposition(const sp<DisplayDevice>& display);
|
virtual void setPerFrameData(const sp<const DisplayDevice>& display,
|
const ui::Transform& transform, const Rect& viewport,
|
int32_t supportedPerFrameMetadata,
|
const ui::Dataspace targetDataspace) = 0;
|
|
// callIntoHwc exists so we can update our local state and call
|
// acceptDisplayChanges without unnecessarily updating the device's state
|
void setCompositionType(const sp<const DisplayDevice>& display,
|
Hwc2::IComposerClient::Composition type);
|
Hwc2::IComposerClient::Composition getCompositionType(
|
const sp<const DisplayDevice>& display) const;
|
bool getClearClientTarget(const sp<const DisplayDevice>& display) const;
|
void updateCursorPosition(const sp<const DisplayDevice>& display);
|
|
virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; }
|
virtual void setTransformHint(uint32_t /*orientation*/) const { }
|
|
/*
|
* called before composition.
|
* returns true if the layer has pending updates.
|
*/
|
virtual bool onPreComposition(nsecs_t refreshStartTime) = 0;
|
|
/*
|
* called after composition.
|
* returns true if the layer latched a new buffer this frame.
|
*/
|
virtual bool onPostComposition(const std::optional<DisplayId>& /*displayId*/,
|
const std::shared_ptr<FenceTime>& /*glDoneFence*/,
|
const std::shared_ptr<FenceTime>& /*presentFence*/,
|
const CompositorTiming& /*compositorTiming*/) {
|
return false;
|
}
|
|
// If a buffer was replaced this frame, release the former buffer
|
virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { }
|
|
/*
|
* prepareClientLayer - populates a renderengine::LayerSettings to passed to
|
* RenderEngine::drawLayers. Returns true if the layer can be used, and
|
* false otherwise.
|
*/
|
bool prepareClientLayer(const RenderArea& renderArea, const Region& clip, Region& clearRegion,
|
const bool supportProtectedContent, renderengine::LayerSettings& layer);
|
bool prepareClientLayer(const RenderArea& renderArea, bool useIdentityTransform,
|
Region& clearRegion, const bool supportProtectedContent,
|
renderengine::LayerSettings& layer);
|
|
/*
|
* doTransaction - process the transaction. This is a good place to figure
|
* out which attributes of the surface have changed.
|
*/
|
uint32_t doTransaction(uint32_t transactionFlags);
|
|
/*
|
* setVisibleRegion - called to set the new visible region. This gives
|
* a chance to update the new visible region or record the fact it changed.
|
*/
|
void setVisibleRegion(const Region& visibleRegion);
|
|
/*
|
* setCoveredRegion - called when the covered region changes. The covered
|
* region corresponds to any area of the surface that is covered
|
* (transparently or not) by another surface.
|
*/
|
void setCoveredRegion(const Region& coveredRegion);
|
|
/*
|
* setVisibleNonTransparentRegion - called when the visible and
|
* non-transparent region changes.
|
*/
|
void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion);
|
|
/*
|
* Clear the visible, covered, and non-transparent regions.
|
*/
|
void clearVisibilityRegions();
|
|
/*
|
* latchBuffer - called each time the screen is redrawn and returns whether
|
* the visible regions need to be recomputed (this is a fairly heavy
|
* operation, so this should be set only if needed). Typically this is used
|
* to figure out if the content or size of a surface has changed.
|
*/
|
virtual bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) {
|
return {};
|
}
|
|
virtual bool isBufferLatched() const { return false; }
|
|
/*
|
* Remove relative z for the layer if its relative parent is not part of the
|
* provided layer tree.
|
*/
|
void removeRelativeZ(const std::vector<Layer*>& layersInTree);
|
|
/*
|
* Remove from current state and mark for removal.
|
*/
|
void removeFromCurrentState();
|
|
/*
|
* called with the state lock from a binder thread when the layer is
|
* removed from the current list to the pending removal list
|
*/
|
void onRemovedFromCurrentState();
|
|
/*
|
* Called when the layer is added back to the current state list.
|
*/
|
void addToCurrentState();
|
|
// Updates the transform hint in our SurfaceFlingerConsumer to match
|
// the current orientation of the display device.
|
void updateTransformHint(const sp<const DisplayDevice>& display) const;
|
|
/*
|
* returns the rectangle that crops the content of the layer and scales it
|
* to the layer's size.
|
*/
|
Rect getContentCrop() const;
|
|
/*
|
* Returns if a frame is ready
|
*/
|
virtual bool hasReadyFrame() const { return false; }
|
|
virtual int32_t getQueuedFrameCount() const { return 0; }
|
|
// -----------------------------------------------------------------------
|
|
bool hasHwcLayer(const sp<const DisplayDevice>& displayDevice);
|
HWC2::Layer* getHwcLayer(const sp<const DisplayDevice>& displayDevice);
|
|
inline const State& getDrawingState() const { return mDrawingState; }
|
inline const State& getCurrentState() const { return mCurrentState; }
|
inline State& getCurrentState() { return mCurrentState; }
|
|
LayerDebugInfo getLayerDebugInfo() const;
|
|
/* always call base class first */
|
static void miniDumpHeader(std::string& result);
|
void miniDump(std::string& result, const sp<DisplayDevice>& display) const;
|
void dumpFrameStats(std::string& result) const;
|
void dumpFrameEvents(std::string& result);
|
void clearFrameStats();
|
void logFrameStats();
|
void getFrameStats(FrameStats* outStats) const;
|
|
virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) {
|
return {};
|
}
|
|
void onDisconnect();
|
void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry,
|
FrameEventHistoryDelta* outDelta);
|
|
virtual bool getTransformToDisplayInverse() const { return false; }
|
|
ui::Transform getTransform() const;
|
|
// Returns the Alpha of the Surface, accounting for the Alpha
|
// of parent Surfaces in the hierarchy (alpha's will be multiplied
|
// down the hierarchy).
|
half getAlpha() const;
|
half4 getColor() const;
|
|
// Returns how rounded corners should be drawn for this layer.
|
// This will traverse the hierarchy until it reaches its root, finding topmost rounded
|
// corner definition and converting it into current layer's coordinates.
|
// As of now, only 1 corner radius per display list is supported. Subsequent ones will be
|
// ignored.
|
RoundedCornerState getRoundedCornerState() const;
|
|
void traverseInReverseZOrder(LayerVector::StateSet stateSet,
|
const LayerVector::Visitor& visitor);
|
void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor);
|
|
/**
|
* Traverse only children in z order, ignoring relative layers that are not children of the
|
* parent.
|
*/
|
void traverseChildrenInZOrder(LayerVector::StateSet stateSet,
|
const LayerVector::Visitor& visitor);
|
|
size_t getChildrenCount() const;
|
void addChild(const sp<Layer>& layer);
|
// Returns index if removed, or negative value otherwise
|
// for symmetry with Vector::remove
|
ssize_t removeChild(const sp<Layer>& layer);
|
sp<Layer> getParent() const { return mCurrentParent.promote(); }
|
bool hasParent() const { return getParent() != nullptr; }
|
Rect getScreenBounds(bool reduceTransparentRegion = true) const;
|
bool setChildLayer(const sp<Layer>& childLayer, int32_t z);
|
bool setChildRelativeLayer(const sp<Layer>& childLayer,
|
const sp<IBinder>& relativeToHandle, int32_t relativeZ);
|
|
// Copy the current list of children to the drawing state. Called by
|
// SurfaceFlinger to complete a transaction.
|
void commitChildList();
|
int32_t getZ() const;
|
virtual void pushPendingState();
|
|
/**
|
* Returns active buffer size in the correct orientation. Buffer size is determined by undoing
|
* any buffer transformations. If the layer has no buffer then return INVALID_RECT.
|
*/
|
virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; }
|
|
/**
|
* Returns the source bounds. If the bounds are not defined, it is inferred from the
|
* buffer size. Failing that, the bounds are determined from the passed in parent bounds.
|
* For the root layer, this is the display viewport size.
|
*/
|
virtual FloatRect computeSourceBounds(const FloatRect& parentBounds) const {
|
return parentBounds;
|
}
|
|
compositionengine::OutputLayer* findOutputLayerForDisplay(
|
const sp<const DisplayDevice>& display) const;
|
|
protected:
|
// constant
|
sp<SurfaceFlinger> mFlinger;
|
/*
|
* Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer)
|
* is called.
|
*/
|
class LayerCleaner {
|
sp<SurfaceFlinger> mFlinger;
|
sp<Layer> mLayer;
|
|
protected:
|
~LayerCleaner() {
|
// destroy client resources
|
mFlinger->onHandleDestroyed(mLayer);
|
}
|
|
public:
|
LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
|
: mFlinger(flinger), mLayer(layer) {}
|
};
|
|
friend class impl::SurfaceInterceptor;
|
|
// For unit tests
|
friend class TestableSurfaceFlinger;
|
|
virtual void commitTransaction(const State& stateToCommit);
|
|
uint32_t getEffectiveUsage(uint32_t usage) const;
|
|
/**
|
* Setup rounded corners coordinates of this layer, taking into account the layer bounds and
|
* crop coordinates, transforming them into layer space.
|
*/
|
void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const;
|
void setParent(const sp<Layer>& layer);
|
LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers);
|
void addZOrderRelative(const wp<Layer>& relative);
|
void removeZOrderRelative(const wp<Layer>& relative);
|
|
class SyncPoint {
|
public:
|
explicit SyncPoint(uint64_t frameNumber, wp<Layer> requestedSyncLayer)
|
: mFrameNumber(frameNumber),
|
mFrameIsAvailable(false),
|
mTransactionIsApplied(false),
|
mRequestedSyncLayer(requestedSyncLayer) {}
|
|
uint64_t getFrameNumber() const { return mFrameNumber; }
|
|
bool frameIsAvailable() const { return mFrameIsAvailable; }
|
|
void setFrameAvailable() { mFrameIsAvailable = true; }
|
|
bool transactionIsApplied() const { return mTransactionIsApplied; }
|
|
void setTransactionApplied() { mTransactionIsApplied = true; }
|
|
sp<Layer> getRequestedSyncLayer() { return mRequestedSyncLayer.promote(); }
|
|
private:
|
const uint64_t mFrameNumber;
|
std::atomic<bool> mFrameIsAvailable;
|
std::atomic<bool> mTransactionIsApplied;
|
wp<Layer> mRequestedSyncLayer;
|
};
|
|
// SyncPoints which will be signaled when the correct frame is at the head
|
// of the queue and dropped after the frame has been latched. Protected by
|
// mLocalSyncPointMutex.
|
Mutex mLocalSyncPointMutex;
|
std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints;
|
|
// SyncPoints which will be signaled and then dropped when the transaction
|
// is applied
|
std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints;
|
|
// Returns false if the relevant frame has already been latched
|
bool addSyncPoint(const std::shared_ptr<SyncPoint>& point);
|
|
void popPendingState(State* stateToCommit);
|
virtual bool applyPendingStates(State* stateToCommit);
|
virtual uint32_t doTransactionResize(uint32_t flags, Layer::State* stateToCommit);
|
|
// Returns mCurrentScaling mode (originating from the
|
// Client) or mOverrideScalingMode mode (originating from
|
// the Surface Controller) if set.
|
virtual uint32_t getEffectiveScalingMode() const { return 0; }
|
|
public:
|
/*
|
* The layer handle is just a BBinder object passed to the client
|
* (remote process) -- we don't keep any reference on our side such that
|
* the dtor is called when the remote side let go of its reference.
|
*
|
* LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
|
* this layer when the handle is destroyed.
|
*/
|
class Handle : public BBinder, public LayerCleaner {
|
public:
|
Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
|
: LayerCleaner(flinger, layer), owner(layer) {}
|
|
wp<Layer> owner;
|
};
|
|
// Creates a new handle each time, so we only expect
|
// this to be called once.
|
sp<IBinder> getHandle();
|
const String8& getName() const;
|
virtual void notifyAvailableFrames() {}
|
virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; }
|
bool getPremultipledAlpha() const;
|
|
bool mPendingHWCDestroy{false};
|
void setInputInfo(const InputWindowInfo& info);
|
|
InputWindowInfo fillInputInfo();
|
bool hasInput() const;
|
|
protected:
|
// -----------------------------------------------------------------------
|
bool usingRelativeZ(LayerVector::StateSet stateSet) const;
|
|
bool mPremultipliedAlpha{true};
|
String8 mName;
|
String8 mTransactionName; // A cached version of "TX - " + mName for systraces
|
|
bool mPrimaryDisplayOnly = false;
|
|
// these are protected by an external lock
|
State mCurrentState;
|
State mDrawingState;
|
std::atomic<uint32_t> mTransactionFlags{0};
|
|
// Accessed from main thread and binder threads
|
Mutex mPendingStateMutex;
|
Vector<State> mPendingStates;
|
|
// Timestamp history for UIAutomation. Thread safe.
|
FrameTracker mFrameTracker;
|
|
// Timestamp history for the consumer to query.
|
// Accessed by both consumer and producer on main and binder threads.
|
Mutex mFrameEventHistoryMutex;
|
ConsumerFrameEventHistory mFrameEventHistory;
|
FenceTimeline mAcquireTimeline;
|
FenceTimeline mReleaseTimeline;
|
|
// main thread
|
sp<NativeHandle> mSidebandStream;
|
// Active buffer fields
|
sp<GraphicBuffer> mActiveBuffer;
|
sp<Fence> mActiveBufferFence;
|
// False if the buffer and its contents have been previously used for GPU
|
// composition, true otherwise.
|
bool mIsActiveBufferUpdatedForGpu = true;
|
|
ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN;
|
Rect mCurrentCrop;
|
uint32_t mCurrentTransform{0};
|
// We encode unset as -1.
|
int32_t mOverrideScalingMode{-1};
|
std::atomic<uint64_t> mCurrentFrameNumber{0};
|
bool mFrameLatencyNeeded{false};
|
// Whether filtering is needed b/c of the drawingstate
|
bool mNeedsFiltering{false};
|
|
std::atomic<bool> mRemovedFromCurrentState{false};
|
|
// page-flip thread (currently main thread)
|
bool mProtectedByApp{false}; // application requires protected path to external sink
|
|
// protected by mLock
|
mutable Mutex mLock;
|
|
const wp<Client> mClientRef;
|
|
// This layer can be a cursor on some displays.
|
bool mPotentialCursor{false};
|
|
bool mFreezeGeometryUpdates{false};
|
|
// Child list about to be committed/used for editing.
|
LayerVector mCurrentChildren{LayerVector::StateSet::Current};
|
// Child list used for rendering.
|
LayerVector mDrawingChildren{LayerVector::StateSet::Drawing};
|
|
wp<Layer> mCurrentParent;
|
wp<Layer> mDrawingParent;
|
|
// Can only be accessed with the SF state lock held.
|
bool mLayerDetached{false};
|
// Can only be accessed with the SF state lock held.
|
bool mChildrenChanged{false};
|
|
// Window types from WindowManager.LayoutParams
|
const int mWindowType;
|
|
// This is populated if the layer is registered with Scheduler for tracking purposes.
|
std::unique_ptr<scheduler::LayerHistory::LayerHandle> mSchedulerLayerHandle;
|
|
private:
|
/**
|
* Returns an unsorted vector of all layers that are part of this tree.
|
* That includes the current layer and all its descendants.
|
*/
|
std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet);
|
/**
|
* Traverses layers that are part of this tree in the correct z order.
|
* layersInTree must be sorted before calling this method.
|
*/
|
void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree,
|
LayerVector::StateSet stateSet,
|
const LayerVector::Visitor& visitor);
|
LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet,
|
const std::vector<Layer*>& layersInTree);
|
/**
|
* Returns the cropped buffer size or the layer crop if the layer has no buffer. Return
|
* INVALID_RECT if the layer has no buffer and no crop.
|
* A layer with an invalid buffer size and no crop is considered to be boundless. The layer
|
* bounds are constrained by its parent bounds.
|
*/
|
Rect getCroppedBufferSize(const Layer::State& s) const;
|
|
// Cached properties computed from drawing state
|
// Effective transform taking into account parent transforms and any parent scaling.
|
ui::Transform mEffectiveTransform;
|
|
// Bounds of the layer before any transformation is applied and before it has been cropped
|
// by its parents.
|
FloatRect mSourceBounds;
|
|
// Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and
|
// its parent bounds.
|
FloatRect mBounds;
|
|
// Layer bounds in screen space.
|
FloatRect mScreenBounds;
|
|
void setZOrderRelativeOf(const wp<Layer>& relativeOf);
|
|
bool mGetHandleCalled = false;
|
|
void removeRemoteSyncPoints();
|
};
|
|
} // namespace android
|
|
#define RETURN_IF_NO_HWC_LAYER(displayDevice, ...) \
|
do { \
|
if (!hasHwcLayer(displayDevice)) { \
|
ALOGE("[%s] %s failed: no HWC layer found for display %s", mName.string(), \
|
__FUNCTION__, displayDevice->getDebugName().c_str()); \
|
return __VA_ARGS__; \
|
} \
|
} while (false)
|
|
#endif // ANDROID_LAYER_H
|